Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMJ ; 385: e077890, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897625

RESUMO

OBJECTIVE: To compare the effectiveness and safety of nab-paclitaxel, cisplatin, and capecitabine (nab-TPC) with gemcitabine and cisplatin as an alternative first line treatment option for recurrent or metastatic nasopharyngeal carcinoma. DESIGN: Phase 3, open label, multicentre, randomised trial. SETTING: Four hospitals located in China between September 2019 and August 2022. PARTICIPANTS: Adults (≥18 years) with recurrent or metastatic nasopharyngeal carcinoma. INTERVENTIONS: Patients were randomised in a 1:1 ratio to treatment with either nab-paclitaxel (200 g/m2 on day 1), cisplatin (60 mg/m2 on day 1), and capecitabine (1000 mg/m2 twice on days 1-14) or gemcitabine (1 g/m2 on days 1 and 8) and cisplatin (80 mg/m2 on day 1). MAIN OUTCOME MEASURES: Progression-free survival was evaluated by the independent review committee as the primary endpoint in the intention-to-treat population. RESULTS: The median follow-up was 15.8 months in the prespecified interim analysis (31 October 2022). As assessed by the independent review committee, the median progression-free survival was 11.3 (95% confidence interval 9.7 to 12.9) months in the nab-TPC cohort compared with 7.7 (6.5 to 9.0) months in the gemcitabine and cisplatin cohort. The hazard ratio was 0.43 (95% confidence interval 0.25 to 0.73; P=0.002). The objective response rate in the nab-TPC cohort was 83% (34/41) versus 63% (25/40) in the gemcitabine and cisplatin cohort (P=0.05), and the duration of response was 10.8 months in the nab-TPC cohort compared with 6.9 months in the gemcitabine and cisplatin cohort (P=0.009). Treatment related grade 3 or 4 adverse events, including leukopenia (4/41 (10%) v 13/40 (33%); P=0.02), neutropenia (6/41 (15%) v 16/40 (40%); P=0.01), and anaemia (1/41 (2%) v 8/40 (20%); P=0.01), were higher in the gemcitabine and cisplatin cohort than in the nab-TPC cohort. No deaths related to treatment occurred in either treatment group. Survival and long term toxicity are still being evaluated with longer follow-up. CONCLUSION: The nab-TPC regimen showed a superior antitumoural efficacy and favourable safety profile compared with gemcitabine and cisplatin for recurrent or metastatic nasopharyngeal carcinoma. Nab-TPC should be considered the standard first line treatment for recurrent or metastatic nasopharyngeal carcinoma. Longer follow-up is needed to confirm the benefits for overall survival. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR1900027112.


Assuntos
Albuminas , Protocolos de Quimioterapia Combinada Antineoplásica , Capecitabina , Cisplatino , Desoxicitidina , Gencitabina , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Recidiva Local de Neoplasia , Paclitaxel , Humanos , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Cisplatino/efeitos adversos , Masculino , Pessoa de Meia-Idade , Feminino , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/mortalidade , Desoxicitidina/análogos & derivados , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Capecitabina/uso terapêutico , Capecitabina/administração & dosagem , Adulto , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/mortalidade , Recidiva Local de Neoplasia/tratamento farmacológico , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Paclitaxel/efeitos adversos , Albuminas/administração & dosagem , Albuminas/efeitos adversos , Albuminas/uso terapêutico , Idoso , Intervalo Livre de Progressão , China , Metástase Neoplásica
2.
Light Sci Appl ; 13(1): 52, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374161

RESUMO

Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental, and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm ([Formula: see text]) compared to established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400% accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images, especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a scenario of high throughput, cross-device, various analyte complexity, and diverse applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA