Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209803

RESUMO

AMPylation is a prevalent posttranslational modification that involves the addition of adenosine monophosphate (AMP) to proteins. Exactly how Huntingtin-associated yeast-interacting protein E (HYPE), as the first human protein, is involved in the transformation of the AMP moiety to its substrate target protein (the endoplasmic reticulum chaperone binding to immunoglobulin protein (BiP)) is still an open question. Additionally, a conserved glutamine plays a vital key role in the AMPylation reaction in most filamentation processes induced by the cAMP (Fic) protein. In the present work, the detailed catalytic AMPylation mechanisms in HYPE were determined based on the density functional theory (DFT) method. Molecular dynamics (MD) simulations were further used to investigate the exact role of the inhibitory glutamate. The metal center, Mg2+, in HYPE has been examined in various coordination configurations, including 4-coordrinated, 5-coordinated and 6-coordinated. DFT calculations revealed that the transformation of the AMP moiety of HYPE with BiP followed a sequential pathway. The model with a 4-coordinated metal center had a barrier of 14.7 kcal/mol, which was consistent with the experimental value and lower than the 38.7 kcal/mol barrier of the model with a 6-coordinated metal center and the 31.1 kcal/mol barrier of the model with a 5-coordinated metal center. Furthermore, DFT results indicated that Thr518 residue oxygen directly attacks the phosphorus, while the His363 residue acts as H-bond acceptor. At the same time, an MD study indicated that Glu234 played an inhibitory role in the α-inhibition helix by regulating the hydrogen bond interaction between Arg374 and the Pγ of the ATP molecule. The revealed sequential pathway and the inhibitory role of Glu234 in HYPE were inspirational for understanding the catalytic and inhibitory mechanisms of Fic-mediated AMP transfer, paving the way for further studies on the physiological role of Fic enzymes.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Cristalografia por Raios X , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Membrana/química , Redes e Vias Metabólicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Nucleotidiltransferases/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas
2.
Inorg Chem ; 60(11): 7719-7731, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34004115

RESUMO

The non-heme iron-dependent enzyme SznF catalyzes a critical N-nitrosation step during the N-nitrosourea pharmacophore biosynthesis in streptozotocin. The intramolecular oxidative rearrangement process is known to proceed at the FeII-containing active site in the cupin domain of SznF, but its mechanism has not been elucidated to date. In this study, based on the density functional theory calculations, a unique mechanism was proposed for the N-nitrosation reaction catalyzed by SznF in which a four-electron oxidation process is accomplished through a series of complicated electron transferring between the iron center and substrate to bypass the high-valent FeIV═O species. In the catalytic reaction pathway, the O2 binds to the iron center and attacks on the substrate to form the peroxo bridge intermediate by obtaining two electrons from the substrate exclusively. Then, instead of cleaving the peroxo bridge, the Cε-Nω bond of the substrate is homolytically cleaved first to form a carbocation intermediate, which polarizes the peroxo bridge and promotes its heterolysis. After O-O bond cleavage, the following reaction steps proceed effortlessly so that the N-nitrosation is accomplished without NO exchange among reaction species.


Assuntos
Compostos de Nitrosoureia/metabolismo , Ferroproteínas não Heme/metabolismo , Biocatálise , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Conformação Molecular , Nitrosação , Compostos de Nitrosoureia/química , Ferroproteínas não Heme/química , Oxirredução , Streptomyces/enzimologia
3.
J Chem Inf Model ; 60(3): 1700-1708, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32096984

RESUMO

The monofunctional trinuclear platinum complex (MTPC), as a promising antitumor agent, can form MTPC-DNA adducts via bifunctional and trifunctional cross-links. Molecular dynamics simulations were used to investigate DNA structural distortions of the MTPC-DNA adducts. MTPC coordinating to DNA results in the decrease of base-pair thermal stability and DNA structural distortions. It is found that there are more significant DNA structural distortions in the trifunctional cross-link than in the bifunctional cross-link, in the 1,4-GG than in the 1,3-GG cross-link, and in the intrastrand than in the interstrand cross-link with the same spans. The results provide a better understanding of DNA structural distortions induced by MTPC with various cross-links at the nucleotide level and are helpful for exploring novel Pt-based anticancer drugs.


Assuntos
Antineoplásicos , Platina , Antineoplásicos/farmacologia , Reagentes de Ligações Cruzadas , DNA , Adutos de DNA , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Compostos Organoplatínicos/farmacologia
4.
Int J Mol Sci ; 19(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423927

RESUMO

Riboswtich RNAs can control gene expression through the structural change induced by the corresponding small-molecule ligands. Molecular dynamics simulations and free energy calculations on the aptamer domain of the 3',3'-cGAMP riboswitch in the ligand-free, cognate-bound and noncognate-bound states were performed to investigate the structural features of the 3',3'-cGAMP riboswitch induced by the 3',3'-cGAMP ligand and the specificity of ligand recognition. The results revealed that the aptamer of the 3',3'-cGAMP riboswitch in the ligand-free state has a smaller binding pocket and a relatively compact structure versus that in the 3',3'-cGAMP-bound state. The binding of the 3',3'-cGAMP molecule to the 3',3'-cGAMP riboswitch induces the rotation of P1 helix through the allosteric communication from the binding sites pocket containing the J1/2, J1/3 and J2/3 junction to the P1 helix. Simultaneously, these simulations also revealed that the preferential binding of the 3',3'-cGAMP riboswitch to its cognate ligand, 3',3'-cGAMP, over its noncognate ligand, c-di-GMP and c-di-AMP. The J1/2 junction in the 3',3'-cGAMP riboswitch contributing to the specificity of ligand recognition have also been found.


Assuntos
GMP Cíclico/química , Simulação de Dinâmica Molecular , Nucleotídeos Cíclicos/química , Riboswitch , Regulação Alostérica , Sítios de Ligação , GMP Cíclico/análogos & derivados , Ligação de Hidrogênio , Ligantes , Conformação de Ácido Nucleico , Análise de Componente Principal , Termodinâmica , Fatores de Tempo
5.
Molecules ; 22(4)2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28362358

RESUMO

In this work, we have investigated a novel distal proton shuttle mechanism of ribosome catalyzed peptide bond formation reaction. The reaction was found to follow a two-step mechanism. A distal water molecule located about 6.1 Šaway from the attacking amine plays as a proton acceptor and results in a charge-separated intermediate that is stabilized by the N terminus of L27 and the A-site A76 5'-phosphate. The ribose A2451 bridges the proton shuttle pathway, thus plays critical role in the reaction. The calculated 27.64 kcal•mol-1 free energy barrier of the distal proton shuttle mechanism is lower than that of eight-membered ring transition state. The distal proton shuttle mechanism studied in this work can provide new insights into the important biological peptide synthesis process.


Assuntos
Modelos Moleculares , Peptídeos/metabolismo , Prótons , Ribossomos/metabolismo , Catálise , Conformação Molecular , Fosfatos/química , Teoria Quântica , Termodinâmica , Água/química
6.
Phys Chem Chem Phys ; 17(38): 25228-34, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352441

RESUMO

Diacylglycerol kinase is an integral membrane protein which catalyzes phosphoryl transfer from ATP to diacylglycerol. As the smallest kinase known, it shares no sequence homology with conventional kinases and possesses a distinct trimer structure. Thus far, its catalytic mechanism remains elusive. Using molecular dynamics and quantum mechanics calculations, we investigated the co-factor and the substrate binding and phosphoryl transfer mechanism. Based on the analysis of density functional theory calculations, we reveal that the phosphorylation reaction of diacylglycerol kinase features the same phosphoryl transfer mechanism as other kinases, despite its unique structural properties. Our results further show that the active site is relatively open and able to accommodate ligands in multiple orientations, suggesting that the optimization of binding orientations and conformational changes would occur prior to actual phosphoryl transfer.


Assuntos
Diacilglicerol Quinase/metabolismo , Fosfatos/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Biocatálise , Domínio Catalítico , Diacilglicerol Quinase/química , Escherichia coli/enzimologia , Simulação de Dinâmica Molecular , Fosfatos/química , Fosforilação , Teoria Quântica
7.
PLoS One ; 9(1): e86104, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465900

RESUMO

BACKGROUND: Eukaryotic initiation factor 4A (eIF4A) plays a key role in the process of protein translation initiation by facilitating the melting of the 5' proximal secondary structure of eukaryotic mRNA for ribosomal subunit attachment. It was experimentally postulated that the closed conformation of the eIF4A protein bound by the ATP and RNA substrates is coupled to RNA duplex unwinding to promote protein translation initiation, rather than an open conformation in the absence of ATP and RNA substrates. However, the allosteric process of eIF4A from the open to closed state induced by the ATP and RNA substrates are not yet fully understood. METHODOLOGY: In the present work, we constructed a series of diplex and ternary models of the eIF4A protein bound by the ATP and RNA substrates to carry out molecular dynamics simulations, free energy calculations and conformation analysis and explore the allosteric properties of eIF4A. RESULTS: The results showed that the eIF4A protein completes the conformational transition from the open to closed state via two allosteric processes of ATP binding followed by RNA and vice versa. Based on cooperative allosteric network analysis, the ATP binding to the eIF4A protein mainly caused the relative rotation of two domains, while the RNA binding caused the proximity of two domains via the migration of RNA bases in the presence of ATP. The cooperative binding of ATP and RNA for the eIF4A protein plays a key role in the allosteric transition.


Assuntos
Trifosfato de Adenosina/química , RNA Helicases DEAD-box/química , Fator de Iniciação 4A em Eucariotos/química , Simulação de Dinâmica Molecular , RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Regulação Alostérica , Sítio Alostérico , Humanos , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Termodinâmica
8.
J Phys Chem B ; 118(5): 1273-87, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24456306

RESUMO

The positive cooperativity of the Kemptide substrate or the ATP molecule with the PKA catalytic subunit has been studied by dynamics simulations and free energy calculations on a series of binary and ternary models. The results revealed that the first ATP binding to the PKA catalytic subunit is energetically favorable for the successive Kemptide binding, confirming the positive cooperativity. The key residues Thr51, Glu170, and Phe187 in PKA contributing to the positive cooperativity have been found. The binding of ATP to PKA induces the positive cooperativity through one direct allosteric communication network in PKA from the ATP binding sites in the catalytic loop of the large lobe to the Kemptide binding sites in the activation segment of the large lobe, two indirect ones from those in the glycine-rich loop and the ß3 strand of the small lobe, and from those in the catalytic loop to those in the activation segment via the αF helix media. The Tyr204Ala mutation in the activation segment of PKA causes both the decoupling of the cooperativity and the disruption of the corresponding allosteric network through the αF helix media.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Simulação de Dinâmica Molecular , Oligopeptídeos/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/química , Ligação de Hidrogênio , Ligantes , Oligopeptídeos/química , Ligação Proteica , Especificidade por Substrato , Termodinâmica
9.
PLoS One ; 8(8): e72048, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977203

RESUMO

Isocitrate dehydrogenase kinase/phosphatase (AceK) is the founding member of the protein phosphorylation system in prokaryotes. Based on the novel and unique structural characteristics of AceK recently uncovered, we sought to understand its kinase reaction mechanism, along with other features involved in the phosphotransfer process. Herein we report density functional theory QM calculations of the mechanism of the phosphotransfer reaction catalysed by AceK. The transition states located by the QM calculations indicate that the phosphorylation reaction, catalysed by AceK, follows a dissociative mechanism with Asp457 serving as the catalytic base to accept the proton delivered by the substrate. Our results also revealed that AceK prefers a single Mg(2+)-containing active site in the phosphotransfer reaction. The catalytic roles of conserved residues in the active site are discussed.


Assuntos
Simulação por Computador , Proteínas de Escherichia coli/química , Magnésio/química , Modelos Moleculares , Complexos Multienzimáticos/química , Trifosfato de Adenosina/química , Biocatálise , Domínio Catalítico , Complexos de Coordenação/química , Escherichia coli/enzimologia , Ligação de Hidrogênio , Isocitrato Desidrogenase , Modelos Químicos , Ligação Proteica , Teoria Quântica , Termodinâmica
10.
BMC Struct Biol ; 13: 4, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23517640

RESUMO

BACKGROUND: To explore novel platinum-based anticancer agents that are distinct from the structure and interaction mode of the traditional cisplatin by forming the bifunctional intrastrand 1,2 GpG adduct, the monofunctional platinum+DNA adducts with extensive non-covalent interactions had been studied. It was reported that the monofunctional testosterone-based platinum(II) agents present the high anticancer activity. Moreover, it was also found that the testosterone-based platinum agents could cause the DNA helix to undergo significant unwinding and bending over the non-testosterone-based platinum agents. However, the interaction mechanisms of these platinum agents with DNA at the atomic level are not yet clear so far. RESULTS: In the present work, we used molecular dynamics (MD) simulations and DNA conformational dynamics calculations to study the DNA distortion properties of the testosterone-based platinum+DNA, the improved testosterone-based platinum+DNA and the non-testosterone-based platinum+DNA adducts. The results show that the intercalative interaction of the improved flexible testosterone-based platinum agent with DNA molecule could cause larger DNA conformational distortion than the groove-face interaction of the rigid testosterone-based platinum agent with DNA molecule. Further investigations for the non-testosterone-based platinum agent reveal the occurrence of insignificant change of DNA conformation due to the absence of testosterone ligand in such agent. Based on the DNA dynamics analysis, the DNA base motions relating to DNA groove parameter changes and hydrogen bond destruction of DNA base pairs were also discussed in this work. CONCLUSIONS: The flexible linker in the improved testosterone-based platinum agent causes an intercalative interaction with DNA in the improved testosterone-based platinum+DNA adduct, which is different from the groove-face interaction caused by a rigid linker in the testosterone-based platinum agent. The present investigations provide useful information of DNA conformation affected by a testosterone-based platinum complex at the atomic level.


Assuntos
DNA/metabolismo , Substâncias Intercalantes/metabolismo , Simulação de Dinâmica Molecular , Platina/química , Testosterona/química , Pareamento de Bases , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , DNA/química , Adutos de DNA/química , Ligação de Hidrogênio , Substâncias Intercalantes/química , Conformação de Ácido Nucleico , Análise de Componente Principal
11.
J Phys Chem B ; 114(48): 16020-8, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21077589

RESUMO

Phosphodiesterase-2 (PDE2) is a key enzyme catalyzing hydrolysis of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) that serve as intracellular second messengers. PDE2 has been recognized as an attractive drug target, and selective inhibitors of PDE2 are expected to be promising candidates for the memory enhancer, antidepressant, and anxiolytic agent. In the present study, we examined the detailed binding structures and free energies for PDE2 interacting with a promising series of inhibitors, i.e., benzo[1,4]diazepin-2-one derivatives, by carrying out molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decompositions. The computational results provide valuable insights into the detailed enzyme-inhibitor binding modes including important intermolecular interactions, e.g., the π-π stacking interactions with the common benzo[1,4]diazepin-2-one scaffold of the inhibitors, hydrogen bonding and hydrophobic interactions with the substituents on the benzo[1,4]diazepin-2-one scaffold. Future rational design of new, more potent inhibitors of PDE2 should carefully account for all of these favorable intermolecular interactions. By use of the MD-simulated binding structures, the calculated binding free energies are in good agreement with the experimental activity data for all of the examined benzo[1,4]diazepin-2-one derivatives. The enzyme-inhibitor binding modes determined and the agreement between the calculated and experimental results are expected to be valuable for future rational design of more potent inhibitors of PDE2.


Assuntos
Benzodiazepinonas/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Simulação de Dinâmica Molecular , Termodinâmica , Benzodiazepinonas/síntese química , Benzodiazepinonas/metabolismo , Benzodiazepinonas/farmacologia , Sítios de Ligação , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
12.
Nucleic Acids Res ; 37(17): 5930-42, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19654239

RESUMO

We present here molecular dynamics simulations and DNA conformational dynamics for a series of trinuclear platinum [Pt(3)(HPTAB)](6+)-DNA adducts [HPTAB = N,N,N',N',N'',N''-hexakis (2-pyridyl-methyl)-1,3,5-tris(aminomethyl) benzene], including three types of bifunctional crosslinks and four types of trifunctional crosslinks. Our simulation results reveal that binding of the trinuclear platinum compound to a DNA duplex induces the duplex unwinding in the vicinity of the platination sites, and causes the DNA to bend toward the major groove. As a consequence, this produces a DNA molecule whose minor groove is more widened and shallow compared to that of an undamaged bare-DNA molecule. Notably, for trifunctional crosslinks, we have observed extensive DNA conformational distortions, which is rarely seen for normal platinum-DNA adducts. Our findings, in this study, thus provide further support for the idea that platinum compounds with trifunctional intra-strand or long-range-inter-strand cross-linking modes can generate larger DNA conformational distortions than other types of cross-linking modes.


Assuntos
Antineoplásicos/química , Reagentes de Ligações Cruzadas/química , Adutos de DNA/química , Compostos Organoplatínicos/química , Pareamento de Bases , Simulação por Computador , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Análise de Componente Principal
13.
Chemistry ; 15(21): 5245-53, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19350599

RESUMO

The DNA binding and cross-linking modes of a trinuclear platinum complex [Pt(3)Cl(3)(hptab)][ClO(4)](3) (1; hptab = N,N,N',N',N'',N''-hexakis(2-pyridylmethyl)-1,3,5-tris(aminomethyl)benzene) and its dinuclear analogue [Pt(2)Cl(2)(m-tpxa)]Cl(2) (2; m-tpxa = N,N,N',N'-tetra(2-pyridylmethyl)-m-xylylene diamine) are reported and compared. The adducts of 1 and 2 with 18-mer duplex N1, 5'-d(GAAGAAGTCACAAAATGT)-3'5'-d(ACATTTTGTGACTTCTTC)-3', have been characterized by means of denaturing polyacrylamide gels, Maxam-Gilbert sequencing, and MALDI-TOF mass spectrometry combined with enzymatic degradation to obtain insights into structural features responsible for the differences in their antitumor activities. The cytotoxic-active complex 1 readily forms various DNA adducts, such as through 1,3- and 1,4-intrastrand cross-links, and in particular, the unique and unprecedented interstrand cross-linked triadducts. In contrast, the cytotoxic-inactive complex 2 preferentially forms 1,4-intrastrand rather than 1,3-intra- and -interstrand cross-links. Digestion of the DNA adducts of 1 shows that the cleavage is completely blocked at one nucleotide before the cross-linked guanine residues on the opposite strand, a feature that appears to be unprecedented in antitumor platinum complexes. In the case of 2, the cleavage bypasses the first platinated guanine site and stops at one nucleotide prior to the second platinated site, confirming that very few 1,3-intrastrand cross-links are formed by 2. These results are supported by molecular-modeling studies of intra- and interstrand cross-links of duplex N1 with 1 and 2. The remarkable differences between 1 and 2 in DNA binding and cross-linking provide mechanistic insights into their different cytotoxicity against the tumor cell lines; these insights are useful for designing future antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , DNA de Neoplasias/química , Compostos Organoplatínicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , DNA de Neoplasias/genética , Guanina/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Compostos Organoplatínicos/química , Compostos Organoplatínicos/metabolismo , Espectrometria de Fluorescência
14.
J Org Chem ; 69(19): 6228-37, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15357580

RESUMO

Oligo(ethylene glycols) 1a-h, which are incorporated with one to eight 2,3-naphthylene units, respectively, have been synthesized and characterized. The conformational changes of the new oligomers have been investigated in chloroform-acetonitrile binary solvents by the UV-vis, (1)H NMR, and fluorescent spectroscopy. It has been revealed that the naphthalene units in hexamer 1f, heptamer 1g, and octamer 1h are driven by solvophobic interaction to stack in polar solvents. As a result, compact helical conformations are formed that give rise to a cavity similar to that of 18-crown-6. Shorter oligomers 1b-e exhibit weaker folding tendency. (1)H NMR studies reveal that 1f-h are able to complex ammonium or ethane-1,2-diaminium 19, but not secondary ammonium compounds. The association constants of complexes 1f.19, 1g.19, and 1h.19 in acetonitrile are determined to be 3.5(+/-0.4) x 10(3), 1.0(+/-0.12) x 10(4), and 2.5(+/-0.4) x 10(4) M(-1), respectively, with the (1)H NMR titration method. For comparison, hexamer 22, which incorporates six 1,5-naphthylene units, is also prepared. The UV-vis and fluorescent investigations show that 22 is also able to fold in polar solvents, but no helical structure can be produced due to mismatch of the stacking naphthalene units and consequently there is no obvious complexation between 22 with ethane-1,2-diaminium ion. The structures of the longest foldamer 1h and its complex with 19 have been studied with molecular mechanics calculations. This work represents a new approach to building folding conformations from flexible linear molecules.

15.
J Org Chem ; 69(2): 270-9, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14725438

RESUMO

Donor-acceptor interaction between electron-rich 1,5-dioxynaphthalene (DAN) and electron-deficient pyromellitic diimide (PDI) has been utilized to induce the formation of a new kind of zipper-featured delta-peptide foldamers. Seven l-ornithine-based delta-peptides 1a-g, in which one to three DNA and PDI units are incorporated to the two ends of the peptide backbones, respectively, have been designed and prepared by the standard liquid-phase synthetic method. (1)H NMR, UV-vis, and fluorescent quenching studies reveal that all the delta-peptides adopt folding conformations in nonpolar chloroform and polar DMF as a result of intramolecular donor-acceptor interaction between the DAN and PDI units. The folding states become more compact for the peptide skeletons possessing more donor-acceptor interacting sites. Variable-temperature UV-vis experiments indicate that, although the folding is a dynamic process, the folding state can remain even at 150 degrees C in DMF. Circular dichroism (CD) investigations reveal that the new generation of delta-peptides have similar folding patterns. A zipper-featured folding motif has been proposed for the new generation of delta-peptide foldamers. Molecular modeling has generated two most stable folding states for the longest delta-peptide 1g, with an energy difference of 26.80 kcal/mol.


Assuntos
Peptídeos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA