Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biomed Mater ; 19(4)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857606

RESUMO

Chemotherapeutic agents hold significant clinical potential in combating tumors. However, delivering these drugs to the tumor site for controlled release remains a crucial challenge. In this study, we synthesize and construct a glutathione (GSH) and acid dual-responsive bismuth-based nano-delivery platform (BOD), aiming for sonodynamic enhancement of docetaxel (DTX)-mediated tumor therapy. The bismuth nanomaterial can generate multiple reactive oxygen species under ultrasound stimulation. Furthermore, the loading of DTX to form BOD effectively reduces the toxicity of DTX in the bloodstream, ensuring its cytotoxic effect is predominantly exerted at the tumor site. DTX can be well released in high expression of GSH and acidic tumor microenvironment. Meanwhile, ultrasound can also promote the release of DTX. Results from bothin vitroandin vivoexperiments substantiate that the synergistic therapy involving chemotherapy and sonodynamic therapy significantly inhibits the growth and proliferation of tumor cells. This study provides a favorable paradigm for developing a synergistic tumor treatment platform for tumor microenvironment response and ultrasound-promoted drug release.


Assuntos
Antineoplásicos , Bismuto , Docetaxel , Glutationa , Microambiente Tumoral , Terapia por Ultrassom , Bismuto/química , Animais , Glutationa/metabolismo , Docetaxel/farmacologia , Docetaxel/química , Camundongos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Terapia por Ultrassom/métodos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos BALB C , Liberação Controlada de Fármacos , Nanopartículas/química , Feminino
2.
J Colloid Interface Sci ; 662: 171-182, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341940

RESUMO

The physical property tuning of nanomaterials is of great importance in energy, medicine, environment, catalysis, and other fields. Topochemical synthesis of nanomaterials can achieve precise control of material properties. Here, we synthesized a kind of element-doped bismuth-based nanomaterial (BOS) by topochemical-like synthesis and used it for the phototherapy of tumors. In this study, we employed bismuth fluoride nanoflowers as a template and fabricated element-doped bismuth oxide nanoflowers by reduction conditions. The product is consistent with the precursor in crystal structure and nanomorphology, realizing topochemical-like synthesis under mild conditions. BOS can generate reactive oxygen species, consume glutathione, and perform photothermal conversion under 730 nm light irradiation. In vitro and in vivo studies demonstrate that BOS could suppress tumor growth by inducing apoptosis and ferroptosis through phototherapy. Therefore, this study offers a general regulation method for tuning the physical properties of nanomaterials by using a topochemical-like synthesis strategy.


Assuntos
Neoplasias da Mama , Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Feminino , Neoplasias da Mama/radioterapia , Bismuto/química , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Nanoestruturas/química , Linhagem Celular Tumoral
3.
J Colloid Interface Sci ; 662: 914-927, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382375

RESUMO

Ultrasound and X-rays possess remarkable tissue penetration capabilities, making them promising candidates for cancer therapy. Sonodynamic therapy, which utilizes ultrasound excitation, offers a safer alternative to radiotherapy and can be combined with X-rays to mitigate the adverse effects on normal tissues. In this study, we developed a bismuth-based heterostructure semiconductor (BFIP) to enhance the efficacy of radiotherapy and sonodynamic therapy in treating breast cancer. The semiconductor is fabricated through a two-step process involving the synthesis of porous spherical bismuth fluoride and partially reduced to bismuth oxyiodide. Then, followed by surface modification with amphiphilic polyethylene glycol, BFIP is fabricated. Incorporating heavy atoms in the BFIP enhances radiosensitivity. The BFIP exhibits superior carrier separation efficiency compared to bismuth fluoride, generating a substantial quantity of reactive oxygen species upon ultrasound stimulation. Moreover, the BFIP effectively depletes glutathione through coordination and hole-mediated oxidation pathways, disrupting the tumor microenvironment and inducing oxidative stress. Encouraging results are acquired in both in vitro cell and in vivo tumor models. Our study provides a de-risking strategy by utilizing ultrasound as a partial substitute for X-rays in treating deep-seated tumors, offering a viable research direction for constructing a unified nanoplatform.


Assuntos
Bismuto , Neoplasias , Humanos , Fluoretos , Glutationa , Estresse Oxidativo , Polietilenoglicóis , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Microambiente Tumoral
4.
Transl Psychiatry ; 14(1): 109, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395906

RESUMO

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.


Assuntos
Transtorno Bipolar , Lítio , Humanos , Lítio/farmacologia , Lítio/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Estudo de Associação Genômica Ampla , Multiômica , Adesões Focais
5.
Acta Biomater ; 176: 390-404, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244657

RESUMO

Non-invasive precision tumor dynamic phototherapy has broad application prospects. Traditional semiconductor materials have low photocatalytic activity and low reactive oxygen species (ROS) production rate due to their wide band gap, resulting in unsatisfactory phototherapy efficacy for tumor treatment. Employing the dye-sensitization mechanism can significantly enhance the catalytic activity of the materials. We develop a multifunctional nanoplatform (BZP) by leveraging the benefits of bismuth-based semiconductor nanomaterials. BZP possesses robust ROS generation and remarkable near-infrared photothermal conversion capabilities for improving tumor immune microenvironment and achieving superior phototherapy sensitization. BZP produces highly cytotoxic ROS species via the photocatalytic process and cascade reaction, amplifying the photocatalytic therapy effect. Moreover, the simultaneous photothermal effect during the photocatalytic process facilitates the improvement of therapeutic efficacy. Additionally, BZP-mediated phototherapy can trigger the programmed death of tumor cells, stimulate dendritic cell maturation and T cell activation, modulate the tumor immune microenvironment, and augment the therapeutic effect. Hence, this study demonstrates a promising research paradigm for tumor immune microenvironment-improved phototherapy. STATEMENT OF SIGNIFICANCE: Through the utilization of dye sensitization and rare earth doping techniques, we have successfully developed a biodegradable bismuth-based semiconductor nanocatalyst (BZP). Upon optical excitation, the near-infrared dye incorporated within BZP promptly generates free electrons, which, under the influence of the Fermi energy level, undergo transfer to BiF3 within BZP, thereby facilitating the effective separation of electron-hole pairs and augmenting the catalytic capability for reactive oxygen species (ROS) generation. Furthermore, a cascade reaction mechanism generates highly cytotoxic ROS, which synergistically depletes intracellular glutathione, thereby intensifying oxidative stress. Ultimately, this dual activation strategy, combining oxidative and thermal damage, holds significant potential for tumor immunotherapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Neoplasias , Humanos , Feminino , Neoplasias da Mama/patologia , Espécies Reativas de Oxigênio/metabolismo , Bismuto/uso terapêutico , Nanopartículas/uso terapêutico , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Nanotecnologia , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38052461

RESUMO

Gleason grading is an important prognostic indicator for prostate adenocarcinoma and is crucial for patient treatment decisions. However, intermediate-risk patients diagnosed in the Gleason grade group (GG) 2 and GG3 can harbour either aggressive or non-aggressive disease, resulting in under- or overtreatment of a significant number of patients. Here, we performed proteomic, differential expression, machine learning, and survival analyses for 1,348 matched tumour and benign sample runs from 278 patients. Three proteins (F5, TMEM126B, and EARS2) were identified as candidate biomarkers in patients with biochemical recurrence. Multivariate Cox regression yielded 18 proteins, from which a risk score was constructed to dichotomize prostate cancer patients into low- and high-risk groups. This 18-protein signature is prognostic for the risk of biochemical recurrence and completely independent of the intermediate GG. Our results suggest that markers generated by computational proteomic profiling have the potential for clinical applications including integration into prostate cancer management.


Assuntos
Neoplasias da Próstata , Proteômica , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Risco , Gradação de Tumores
7.
J Colloid Interface Sci ; 656: 320-331, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995402

RESUMO

Ferroptosis-mediated tumor treatment is constrained by the absence of single-component, activatable multifunctional inducers. Given this, a topological synthesis strategy is employed to develop an efficient bismuth-based semiconductor nano-photocatalyst (Bi2O3:S) for tumor ferroptosis therapy. Photo-excited electrons can participate in the reduction reaction to produce harmful reactive oxygen species (ROS) when exposed to near-infrared light. Meanwhile, photo-excited holes can contribute to the oxidation reaction to utilize extra glutathione (GSH) in tumors. In the acidic tumor microenvironment, bismuth ions generated from Bi2O3:S may further cooperate with GSH to amplify oxidative stress damage and achieve biodegradation. Both promote ferroptosis by downregulating glutathione peroxidase 4 (GPX4) expression. Besides, sulfur doping optimizes its near-infrared light-induced photothermal conversion efficiency, benefiting its therapeutic effect. Thus, bismuth ions and holes synergistically drive photo-activable ferroptosis in this nanoplatform, opening up new avenues for tumor therapy.


Assuntos
Ferroptose , Neoplasias , Fotoquimioterapia , Humanos , Bismuto , Glutationa , Espécies Reativas de Oxigênio , Íons , Neoplasias/terapia , Linhagem Celular Tumoral , Fototerapia , Microambiente Tumoral
8.
Environ Health Perspect ; 131(10): 107002, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792558

RESUMO

BACKGROUND: Previous evidence has identified exposure to fine ambient particulate matter (PM2.5) as a leading risk factor for adverse health outcomes. However, to date, only a few studies have examined the potential association between long-term exposure to PM2.5 and bone homeostasis. OBJECTIVE: We sought to examine the relationship between long-term PM2.5 exposure and bone health and explore its potential mechanism. METHODS: This research included both observational and experimental studies. First, based on human data from UK Biobank, linear regression was used to explore the associations between long-term exposure to PM2.5 (i.e., annual average PM2.5 concentration for 2010) and bone mineral density [BMD; i.e., heel BMD (n=37,440) and femur neck and lumbar spine BMD (n=29,766)], which were measured during 2014-2020. For the experimental animal study, C57BL/6 male mice were assigned to ambient PM2.5 or filtered air for 6 months via a whole-body exposure system. Micro-computed tomography analyses were applied to measure BMD and bone microstructures. Biomarkers for bone turnover and inflammation were examined with histological staining, immunohistochemistry staining, and enzyme-linked immunosorbent assay. We also performed tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay to determine the effect of PM2.5 exposure on osteoclast activity in vitro. In addition, the potential downstream regulators were assessed by real-time polymerase chain reaction and western blot. RESULTS: We observed that long-term exposure to PM2.5 was significantly associated with lower BMD at different anatomical sites, according to the analysis of UK Biobank data. In experimental study, mice exposed long-term to PM2.5 exhibited excessive osteoclastogenesis, dysregulated osteogenesis, higher tumor necrosis factor-alpha (TNF-α) expression, and shorter femur length than control mice, but they demonstrated no significant differences in femur structure or BMD. In vitro, cells stimulated with conditional medium of PM2.5-stimulated macrophages had aberrant osteoclastogenesis and differences in the protein/mRNA expression of members of the TNF-α/Traf6/c-Fos pathway, which could be partially rescued by TNF-α inhibition. DISCUSSION: Our prospective observational evidence suggested that long-term exposure to PM2.5 is associated with lower BMD and further experimental results demonstrated exposure to PM2.5 could disrupt bone homeostasis, which may be mediated by inflammation-induced osteoclastogenesis. https://doi.org/10.1289/EHP11646.


Assuntos
Poluentes Atmosféricos , Bancos de Espécimes Biológicos , Animais , Humanos , Masculino , Camundongos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Homeostase , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , Material Particulado/toxicidade , Material Particulado/análise , Reino Unido , Microtomografia por Raio-X , Estudos Observacionais como Assunto
9.
Small ; 19(48): e2304032, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37528704

RESUMO

Immunogenic cell death (ICD) can activate the body's immune system via dead cell antigens to achieve immunotherapy. Currently, small molecule drugs have been used for ICD treatment in clinical, however, how to precisely control the induced ICD while treating tumors is of great significance for improving therapeutic efficacy. Based on this, a sono/light dual response strategy to tumor therapy and activation of ICD is proposed. A topological synthesis method is used to obtain sulfur-doped bismuth oxide Bi2 O3-x Sx (BS) using BiF3 (BF) as a template through reduction and a morphology-controllable bismuth-based nano-semiconductor with a narrow bandgap is constructed. Under the stimulation of ultrasound, BS can produce reactive oxygen species (ROS) through the sonocatalytic process, which cooperates with BS to consume glutathione and enhance cellular oxidative damage, further inducing ICD. Due to the introduction of sulfur in the reduction reaction, BS can achieve photothermal conversion under light, and combine with ROS to treat tumors. Further, with the assistance of ivermectin (IVM) to form composite (BSM), combined with sono/light dual strategy, ICD is promoted and DCs maturation is accelerated. The proposed ICD-mediated hyperthermia/sonocatalytic therapy strategy will pay the way for synergetic enhancement of tumor treatment efficacy and provide a feasible idea for controllable induction of ICD.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Bismuto , Morte Celular Imunogênica , Espécies Reativas de Oxigênio , Imunoterapia , Neoplasias/terapia , Enxofre , Linhagem Celular Tumoral
10.
Adv Healthc Mater ; 12(27): e2301133, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37311013

RESUMO

Ferroptosis is identified as a novel type of cell death with distinct properties involved in physical conditions and various diseases, including cancers. It is considered that ferroptosis provides a promising therapeutic strategy for optimizing oncotherapy. Although erastin is an effective ferroptosis trigger, the potential of its clinical application is largely restricted by its poor water solubility and concomitant limitations. To address this issue, an innovative nanoplatform (PE@PTGA) that integrated protoporphyrin IX (PpIX) and erastin coated with amphiphilic polymers (PTGA) to evoke ferroptosis and apoptosis is constructed and exemplified using an orthotopic hepatocellular carcinoma (HCC) xenograft mouse model as a paradigm. The self-assembled nanoparticles can enter HCC cells and release PpIX and erastin. With light stimulation, PpIX exerts hyperthermia and reactive oxygen species to inhibit the proliferation of HCC cells. Besides, the accumulated reactive oxygen species (ROS) can further promote erastin-induced ferroptosis in HCC cells. In vitro and in vivo studies reveal that PE@PTGA synergistically inhibits tumor development by stimulating both ferroptosis- and apoptosis-related pathways. Moreover, PE@PTGA has low toxicity and satisfactory biocompatibility, suggesting its promising clinical benefit in cancer treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Pró-Fármacos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
11.
Molecules ; 28(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298873

RESUMO

Regulating redox homeostasis in tumor cells and exploiting oxidative stress to damage tumors is an efficacious strategy for cancer therapy. However, the strengths of organic nanomaterials within this strategy are often ignored. In this work, a light-triggered reactive oxygen species (ROS) damaging nanoamplifier (IrP-T) was developed for enhanced photodynamic therapy (PDT). The IrP-T was fabricated with an amphiphilic iridium complex and a MTH1 inhibitor (TH287). Under green light stimulation, IrP-T catalyzed the oxygen in cells to generate ROS for realizing oxidative damage; meanwhile, TH287 increased the accumulation of 8-oxo-dGTP, further strengthening oxidative stress and inducing cell death. IrP-T could maximize the use of a small amount of oxygen, thus further boosting the efficacy of PDT in hypoxic tumors. The construction of nanocapsules provided a valuable therapeutic strategy for oxidative damage and synergizing PDT.


Assuntos
Nanocápsulas , Neoplasias , Fotoquimioterapia , Humanos , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Irídio/farmacologia , Estresse Oxidativo , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia
12.
Adv Healthc Mater ; 12(21): e2300089, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055912

RESUMO

Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Hipóxia Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxigênio , Hipóxia/tratamento farmacológico , Microambiente Tumoral , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia
13.
Langmuir ; 39(17): 6258-6265, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37074756

RESUMO

Various carcinogenic dyes in water bodies are difficult to degrade due to their stability to light and oxidants, causing extended pollution. In this study, MOF 1 ({[Co(tib)2]·(H2O)2·SO4}n) and MOF 2 ({[Cu(tib)2]·(H2O)2·SO4}n) (tib = 1,3,5-tirs(1-imidazolyl)benzene) were synthesized by the solvothermal method. MOFs 1 and 2 were successfully characterized by single-crystal X-ray diffraction (XRD) and powder X-ray diffraction (PXRD). Based on the structural characteristics of MOFs 1 and 2, we designed two cationic MOF material skeletons, namely, MOFs I and II ([Co(tib)22+]n and [Cu(tib)22+]n), which were obtained by calcination in combination with the thermogravimetric curve to remove the free components in the lattice. As expected, MOFs I and II showed an excellent adsorption effect on sulfonic anionic dyes. Notably, the adsorption capacity of MOF I can reach 2922.8 mg g-1 for Congo Red (CR) at room temperature (RT). The adsorption process fits the pseudo-second-order kinetic model and Freundlich isotherm model. Moreover, zeta potential tests and quantum chemical calculations indicate that electrostatic interactions and hydrogen bond between the hydroxyl group on the sulfonic acid group and the N atom on the imidazole ring mainly promote the adsorption of CR dyes on MOF I. MOFs I and II are revealed as a promising novel adsorption material to remove hazardous organic aromatic pollutants with high efficiency in future endeavors.

14.
Nanomedicine ; 50: 102668, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933757

RESUMO

Frequency upconversion optical imaging has attracted great attention due to its remarkable advantages over traditional down-conversion optical imaging. However, the development of frequency upconversion optical imaging is extremely limited. Herein, five derivatives with BODIPY structure (B1-B5) were developed to investigate its frequency upconversion luminescence (FUCL) performance by introducing electron-donating and electron-withdrawing groups. Except for the nitro group decorated derivative, the other derivatives have strong and stable FUCL around 520 nm under 635 nm light excitation. More importantly, B5 retains FUCL ability after self-assembly. When applied to FUCL imaging of cells, B5 nanoparticles can be enriched in the cytoplasm and show a good signal-to-noise ratio. Meanwhile, FUCL tumor imaging can be achieved after 1 h of injection. This study not only provides a potential agent for FUCL biomedical imaging but also develops a new strategy for designing FUCL agents that exhibit excellent performance.


Assuntos
Nanopartículas , Neoplasias , Humanos , Luminescência , Nanopartículas/química
15.
Acta Biomater ; 158: 637-648, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621634

RESUMO

Decreasing the scavenging capacity of reactive oxygen species (ROS) and enhancing ROS production are the two principal objectives in the development of novel sonosensitizers for sonodynamic therapy (SDT). Herein, we designed a protoporphyrin-sensitized bismuth-based semiconductor (P-NBOF) as a sonosensitizer to generate ROS and synergistically depleted glutathione for enhanced SDT against tumors. The bismuth-based nanomaterial (NBOF) is a wide-bandgap semiconductor. Sensitization by protoporphyrin made it easier to excite electrons under ultrasonic stimulation, and the energy of the lowest unoccupied electron orbital in protoporphyrin was higher than the conduction-band energy of NBOF. Under ultrasound excitation, the excited electrons in the protoporphyrin were injected into the conduction band of the NBOF, increasing its reducing ability leading to the production of more superoxide anion radicals and also helping to increase the charge separation of protoporphyrin leading to the production of more singlet oxygen. Meanwhile, P-NBOF continuously depleted glutathione, which was not only conducive to breaking the redox balance of the tumor microenvironment to enhance the therapeutic efficacy of SDT, but also promoted its degradation and metabolism. The construction of this P-NBOF sonosensitizer thus provided an effective strategy to enhance SDT for tumors. STATEMENT OF SIGNIFICANCE: To enhance the efficacy of sonodynamic tumor therapy, we developed a degradable protoporphyrin-sensitized bismuth-based nano-semiconductor (P-NBOF) by optimizing the band structure and glutathione-depletion ability. Protoporphyrin in P-NBOF under excitation preferentially generates free electrons, which are then injected into the conduction band of NBOF, improving the reducing ability of NBOF and promoting the separation of electron-hole pairs, thereby enhancing the production capacity of reactive oxygen species. Furthermore, P-NBOF can deplete glutathione, reduce the scavenging of reactive oxygen species, and reactivate and amplify the effect of sonodynamic therapy. The construction of the nanotherapeutic platform provides an option for enhancing sonodynamic therapy.


Assuntos
Neoplasias , Terapia por Ultrassom , Humanos , Protoporfirinas/farmacologia , Protoporfirinas/química , Espécies Reativas de Oxigênio , Bismuto/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Biomater Sci ; 10(20): 5809-5830, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36052551

RESUMO

Multifunctional bismuth oxyhalide (BiOX, X = F, Cl, Br, and I) nanomaterials have great potential advantages in medical diagnostic and therapeutic applications. Pure BiOX nanomaterials have some limitations such as limited light absorption range, easy electron-hole recombination, and large nanoparticle size. It is widely assumed that proper functionalization of BiOX nanomaterials can compensate for these flaws and notably improve performance. Due to easy modification of the structures, the multi-functionalization of BiOX nanomaterials can be realized. These nanomaterials can be applied as sensitizers against tumor and bacterial proliferation, as well as contrast agents for computer tomography (CT) imaging, photoacoustic (PA) imaging, and other forms of imaging to provide real-time monitoring and detection guidance. Here, we summarize the methods for functionalizing BiOX nanomaterials and discuss the applications in biomedicine in the past few years, especially focusing on anticancer, antibacterial, and bioimaging. We also discuss how we can use these systems to inhibit and treat tumors, and how we can overcome current limitations to enhance therapeutic efficacy and imaging quality. We hope that this review can serve as inspiration and direction for the development of multifunctional BiOX nanomedicine platforms.


Assuntos
Nanoestruturas , Neoplasias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bismuto/química , Meios de Contraste/química , Humanos , Nanomedicina , Nanoestruturas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
17.
Medicine (Baltimore) ; 100(24): e26279, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34128861

RESUMO

ABSTRACT: Early determination of coronavirus disease 2019 (COVID-19) pneumonia from numerous suspected cases is critical for the early isolation and treatment of patients.The purpose of the study was to develop and validate a rapid screening model to predict early COVID-19 pneumonia from suspected cases using a random forest algorithm in China.A total of 914 initially suspected COVID-19 pneumonia in multiple centers were prospectively included. The computer-assisted embedding method was used to screen the variables. The random forest algorithm was adopted to build a rapid screening model based on the training set. The screening model was evaluated by the confusion matrix and receiver operating characteristic (ROC) analysis in the validation.The rapid screening model was set up based on 4 epidemiological features, 3 clinical manifestations, decreased white blood cell count and lymphocytes, and imaging changes on chest X-ray or computed tomography. The area under the ROC curve was 0.956, and the model had a sensitivity of 83.82% and a specificity of 89.57%. The confusion matrix revealed that the prospective screening model had an accuracy of 87.0% for predicting early COVID-19 pneumonia.Here, we developed and validated a rapid screening model that could predict early COVID-19 pneumonia with high sensitivity and specificity. The use of this model to screen for COVID-19 pneumonia have epidemiological and clinical significance.


Assuntos
Algoritmos , Teste para COVID-19/métodos , COVID-19/diagnóstico , Programas de Rastreamento/métodos , SARS-CoV-2/isolamento & purificação , Adulto , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Sensibilidade e Especificidade
18.
Sci Rep ; 11(1): 3863, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594193

RESUMO

Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP.


Assuntos
COVID-19/diagnóstico , COVID-19/epidemiologia , Programas de Rastreamento , Modelos Biológicos , Pneumonia/diagnóstico , SARS-CoV-2/fisiologia , Adulto , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC
19.
BMC Med Genet ; 18(1): 94, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851283

RESUMO

BACKGROUND: Predicting risk of disease from genotypes is being increasingly proposed for a variety of diagnostic and prognostic purposes. Genome-wide association studies (GWAS) have identified a large number of genome-wide significant susceptibility loci for Crohn's disease (CD) and ulcerative colitis (UC), two subtypes of inflammatory bowel disease (IBD). Recent studies have demonstrated that including only loci that are significantly associated with disease in the prediction model has low predictive power and that power can substantially be improved using a polygenic approach. METHODS: We performed a comprehensive analysis of risk prediction models using large case-control cohorts genotyped for 909,763 GWAS SNPs or 123,437 SNPs on the custom designed Immunochip using four prediction methods (polygenic score, best linear genomic prediction, elastic-net regularization and a Bayesian mixture model). We used the area under the curve (AUC) to assess prediction performance for discovery populations with different sample sizes and number of SNPs within cross-validation. RESULTS: On average, the Bayesian mixture approach had the best prediction performance. Using cross-validation we found little differences in prediction performance between GWAS and Immunochip, despite the GWAS array providing a 10 times larger effective genome-wide coverage. The prediction performance using Immunochip is largely due to the power of the initial GWAS for its marker selection and its low cost that enabled larger sample sizes. The predictive ability of the genomic risk score based on Immunochip was replicated in external data, with AUC of 0.75 for CD and 0.70 for UC. CD patients with higher risk scores demonstrated clinical characteristics typically associated with a more severe disease course including ileal location and earlier age at diagnosis. CONCLUSIONS: Our analyses demonstrate that the power of genomic risk prediction for IBD is mainly due to strongly associated SNPs with considerable effect sizes. Additional SNPs that are only tagged by high-density GWAS arrays and low or rare-variants over-represented in the high-density region on the Immunochip contribute little to prediction accuracy. Although a quantitative assessment of IBD risk for an individual is not currently possible, we show sufficient power of genomic risk scores to stratify IBD risk among individuals at diagnosis.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Predisposição Genética para Doença , Genótipo , Medição de Risco/métodos , Teorema de Bayes , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes
20.
Hum Mol Genet ; 23(17): 4710-20, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24728037

RESUMO

As custom arrays are cheaper than generic GWAS arrays, larger sample size is achievable for gene discovery. Custom arrays can tag more variants through denser genotyping of SNPs at associated loci, but at the cost of losing genome-wide coverage. Balancing this trade-off is important for maximizing experimental designs. We quantified both the gain in captured SNP-heritability at known candidate regions and the loss due to imperfect genome-wide coverage for inflammatory bowel disease using immunochip (iChip) and imputed GWAS data on 61,251 and 38.550 samples, respectively. For Crohn's disease (CD), the iChip and GWAS data explained 19 and 26% of variation in liability, respectively, and SNPs in the densely genotyped iChip regions explained 13% of the SNP-heritability for both the iChip and GWAS data. For ulcerative colitis (UC), the iChip and GWAS data explained 15 and 19% of variation in liability, respectively, and the dense iChip regions explained 10 and 9% of the SNP-heritability in the iChip and the GWAS data. From bivariate analyses, estimates of the genetic correlation in risk between CD and UC were 0.75 (SE 0.017) and 0.62 (SE 0.042) for the iChip and GWAS data, respectively. We also quantified the SNP-heritability of genomic regions that did or did not contain the previous 163 GWAS hits for CD and UC, and SNP-heritability of the overlapping loci between the densely genotyped iChip regions and the 163 GWAS hits. For both diseases, over different genomic partitioning, the densely genotyped regions on the iChip tagged at least as much variation in liability as in the corresponding regions in the GWAS data, however a certain amount of tagged SNP-heritability in the GWAS data was lost using the iChip due to the low coverage at unselected regions. These results imply that custom arrays with a GWAS backbone will facilitate more gene discovery, both at associated and novel loci.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Padrões de Herança/genética , Análise de Sequência com Séries de Oligonucleotídeos , Cromossomos Humanos/genética , Colite Ulcerativa/genética , Doença de Crohn/genética , Feminino , Frequência do Gene/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA