Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Pathog ; 20(3): e1012082, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470932

RESUMO

Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.


Assuntos
Ferroptose , Herpesvirus Humano 8 , Neoplasias , Sarcoma de Kaposi , Sirtuína 3 , Ratos , Animais , Herpesvirus Humano 8/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo , Transformação Celular Neoplásica , Proteínas Virais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Clin Sci (Lond) ; 138(6): 351-369, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411015

RESUMO

Septic acute kidney injury (AKI) is a severe form of renal dysfunction associated with high morbidity and mortality rates. However, the pathophysiological mechanisms underlying septic AKI remain incompletely understood. Herein, we investigated the signaling pathways involved in septic AKI using the mouse models of lipopolysaccharide (LPS) treatment and cecal ligation and puncture (CLP). In these models, renal inflammation and tubular cell apoptosis were accompanied by the aberrant activation of the mechanistic target of rapamycin (mTOR) and the signal transducer and activator of transcription 3 (STAT3) signaling pathways. Pharmacological inhibition of either mTOR or STAT3 significantly improved renal function and reduced apoptosis and inflammation. Interestingly, inhibition of STAT3 with pharmacological inhibitors or small interfering RNA blocked LPS-induced mTOR activation in renal tubular cells, indicating a role of STAT3 in mTOR activation. Moreover, knockdown of STAT3 reduced the expression of the phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1/p85α), a key subunit of the phosphatidylinositol 3-kinase for AKT and mTOR activation. Chromatin immunoprecipitation assay also proved the binding of STAT3 to PIK3R1 gene promoter in LPS-treated kidney tubular cells. In addition, knockdown of PIK3R1 suppressed mTOR activation during LPS treatment. These findings highlight the dysregulation of mTOR and STAT3 pathways as critical mechanisms underlying the inflammatory and apoptotic phenotypes observed in renal tubular cells during septic AKI, suggesting the STAT3/ PIK3R1/mTOR pathway as a therapeutic target of septic AKI.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Camundongos , Injúria Renal Aguda/metabolismo , Apoptose , Inflamação/metabolismo , Rim/metabolismo , Lipopolissacarídeos , Sepse/complicações , Sepse/metabolismo , Sirolimo/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo
3.
Curr Med Chem ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38415439

RESUMO

INTRODUCTION: Due to the confounding heterogeneity, the therapeutic strategy for proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) remains to be defined. CASE REPRESENTATION: We report a 38-year-old man with recurrent swelling of the eyelids and lower limbs, undergoing rituximab combined with steroid and tacrolimus treatment, who achieved an improved renal outcome. Underlying solid malignant tumours were excluded from the diagnosis. DISCUSSION: We treated patients with rituximab along with steroids and tacrolimus. Improvements in proteinuria and renal function were observed. We also reviewed the current literature to assess the efficacy of rituximab in the treatment of PGNMID. CONCLUSION: However, a larger pool of patients and a longer follow-up period are required to establish the role of rituximab and steroids in the treatment of PGNMID.

4.
Mycoses ; 67(1): e13674, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37986630

RESUMO

BACKGROUND: The efficacy and side effects of voriconazole plus 5-flucytosine (Vori + 5-FC) versus amphotericin B deoxycholate plus 5-flucytosine (AmBd + 5-FC) as an induction treatment for cryptococcal meningitis are unknown. METHODS: Forty-seven patients treated with Vori + 5-FC and 92 patients treated with AmBd + 5-FC were included in the current study after propensity score matching (PSM) at a ratio of 1:2. Two-week laboratory test results and 90-day mortality were compared between the two groups. RESULTS: After 2 weeks of induction treatment, the CSF Cryptococcus sterile culture rate was 57.1% in the Vori + 5-FC group and 76.5% in the AmBd + 5-FC group (p = .026). No difference was found in the normalization of CSF indicators (glucose, total protein, intracranial pressure and India ink sterile rate) between the two groups. Both the Vori + 5FC regimen and AmBd + 5-FC regimen obviously decreased haemoglobin concentrations, platelet counts and serum potassium levels (all p ≤ .010). Notably, the Vori + 5FC regimen did not influence serum creatinine levels (p = .263), while AmBd + 5FC increased serum creatinine levels (p = .019) after 2-week induction treatment. The Vori + 5-FC group and AmBd + 5-FC group had similar 90-day cumulative survival rates (89.9% vs. 87.8%, p = .926). CONCLUSION: The Vori + 5-FC regimen was associated with low 2-week CSF sterile culture and was not superior to AmBd + 5-FC as induction therapy in terms of the 90-day cumulative survival rate of CM patients.


Assuntos
Anfotericina B , Ácido Desoxicólico , Flucitosina , Meningite Criptocócica , Humanos , Flucitosina/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Antifúngicos/efeitos adversos , Voriconazol/uso terapêutico , Creatinina/uso terapêutico , Quimioterapia Combinada , Fluconazol/uso terapêutico , Combinação de Medicamentos
5.
Clin Immunol ; 257: 109840, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37939913

RESUMO

IgA nephropathy (IgAN) is an essential cause of kidney failure and end-stage kidney disease worldwide. Mesangial hypercellularity is an important characteristic of IgAN, but the underlying mechanism remains unclear. Endoplasmic reticulum (ER) stress is a series of stress responses to restore the function of endoplasmic reticulum. We aimed to explore how ER stress functioned in kidneys of IgAN. We first examined ER stress in IgAN kidneys in vivo and in vitro, by testing the levels of ER stress associated proteins (BIP, p-eIF2α and ATF4). Our results showed that ER stress was activated in IgAN patients, mice and cell model. ER stress activation was related to the distribution of IgA deposition and the degree of mesangial proliferation. To determine the role of ER stress in mesangial cell (MC) proliferation of IgAN, we then tested the levels of ER stress and MC proliferation (cyclin D1, cell viability and cell cycle) through inhibiting ER stress associated proteins. After inhibiting ER stress associated proteins, ER stress was inactivated and cell proliferation was inhibited in MCs. We also explored the correlation between ER stress in the glomerulus and the clinical outcomes of IgAN patients in a prospective study. Patients with lower expression of p-eIF2α or ATF4 had higher rates of hematuria remission, proteinuria remission and clinical remission. In summary, our work outlines that in IgAN, ER stress mediated by eIF2α/ATF4 pathway promotes MC proliferation via up-regulating the expression of cyclin D1. Furthermore, p-eIF2α and ATF4 in the glomerulus negatively correlate with the clinical remission of IgAN patients.


Assuntos
Glomerulonefrite por IGA , Células Mesangiais , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Estresse do Retículo Endoplasmático , Glomerulonefrite por IGA/metabolismo , Células Mesangiais/metabolismo , Estudos Prospectivos , Transdução de Sinais
6.
Clin Ther ; 45(10): 965-972, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37537015

RESUMO

PURPOSE: Trastuzumab deruxtecan has been shown to be effective for advanced breast cancer with low levels of human epidermal growth factor receptor 2. To optimize the allocation of limited health care resources, this study evaluated the cost-effectiveness of trastuzumab deruxtecan from the US payer perspective. METHODS: A partitioned survival model was developed to project the disease course of advanced breast cancer. Clinical efficacy, treatment utilization, safety, and cost data were gathered from the DESTINY-Breast04 (Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer) trial and the Centers for Medicare & Medicaid Services. Transition probabilities were obtained from the reported survival probabilities per DESTINY-Breast04 group. The incremental cost-effectiveness ratio (ICER), the incremental monetary benefit, and the incremental net health benefit were measured. One-way sensitivity analysis, probabilistic sensitivity analysis, and subgroup analysis were performed to explore the uncertainty of the model. FINDINGS: Trastuzumab deruxtecan had an ICER of $307,751 per quality-adjusted life-year (QALY) gained, with an incremental net health benefit of -0.317 QALY and an incremental monetary benefit of -$63,313 compared with the physician's choice of alternative chemotherapy agents. Subgroup analysis indicated that trastuzumab deruxtecan had an ICER of $383,776 per QALY gained for the hormone receptor-positive subgroup and an ICER of $194,424 per QALY for the hormone receptor-negative subgroup. One-way sensitivity analysis showed that the cost of trastuzumab deruxtecan had the most impact on model outcomes. The cost-effectiveness acceptability curve projected that the probability of trastuzumab deruxtecan being cost-effective was 5% in the overall population, 2% in the hormone receptor-positive subgroup, and 56% in the hormone receptor-negative subgroup at the willingness-to-pay threshold of $200,000 per QALY. IMPLICATIONS: Trastuzumab deruxtecan may be a cost-effective option for hormone receptor-negative patients with advanced breast cancer with low levels of human epidermal growth factor receptor 2.


Assuntos
Neoplasias da Mama , Idoso , Humanos , Estados Unidos , Feminino , Neoplasias da Mama/tratamento farmacológico , Análise Custo-Benefício , Medicare , Trastuzumab/uso terapêutico , Receptor ErbB-2/metabolismo , Hormônios , Anos de Vida Ajustados por Qualidade de Vida
7.
Theranostics ; 13(9): 2757-2773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284446

RESUMO

Rationale: Cisplatin, a potent chemotherapeutic drug, induces side effects in normal tissues including the kidney. To reduce the side effects, repeated low-dose cisplatin (RLDC) is commonly used in clinical setting. While RLDC reduces acute nephrotoxicity to certain extents, a significant portion of patients later develop chronic kidney problems, underscoring the need for novel therapeutics to alleviate the long-term sequelae of RLDC therapy. Methods: In vivo, the role of HMGB1 was examined by testing HMGB1 neutralizing antibodies in RLDC mice. In vitro, the effects of HMGB1 knockdown on RLDC-induced nuclear factor-κB (NF-κB) activation and fibrotic phenotype changes were tested in proximal tubular cells. To study signal transducer and activator of transcription 1 (STAT1), siRNA knockdown and its pharmacological inhibitor Fludarabine were used. We also searched the Gene Expression Omnibus (GEO) database for transcriptional expression profiles and evaluated kidney biopsy samples from CKD patients to verify the STAT1/HMGB1/NF-κB signaling axis. Results: We found that RLDC induced kidney tubule damage, interstitial inflammation, and fibrosis in mice, accompanied by up-regulation of HMGB1. Blockage of HMGB1with neutralizing antibodies and Glycyrrhizin suppressed NF-κB activation and associated production of pro-inflammatory cytokines, reduced tubular injury and renal fibrosis, and improved renal function after RLDC treatment. Consistently, knockdown of HMGB1 decreased NF-κB activation and prevented the fibrotic phenotype in RLDC-treated renal tubular cells. At the upstream, knockdown of STAT1 suppressed HMGB1 transcription and cytoplasmic accumulation in renal tubular cells, suggesting a critical role of STAT1 in HMGB1 activation. Upregulation of STAT1/HMGB1/NF-κB along with inflammatory cytokines was also verified in kidney tissues of CKD patients. Conclusion: These results unravel the STAT1/HMGB1/NF-κB pathway that contributes to persistent inflammation and chronic kidney problems after cisplatin nephrotoxicity, suggesting new therapeutic targets for kidney protection in cancer patients receiving cisplatin chemotherapy.


Assuntos
Injúria Renal Aguda , Proteína HMGB1 , Insuficiência Renal Crônica , Camundongos , Animais , NF-kappa B/metabolismo , Cisplatino/efeitos adversos , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Rim/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Anticorpos Neutralizantes/farmacologia , Injúria Renal Aguda/metabolismo
8.
Int Immunopharmacol ; 121: 110418, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290326

RESUMO

Dysfunctional immune cells participate in the pathogenesis of a variety of autoimmune diseases, although the specific mechanisms remain elusive and effective clinical interventions are lacking. Recent research on immune checkpoint molecules has revealed significant expression of T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) on the surfaces of various immune cells. These include different subsets of T cells, macrophages, dendritic cells, natural killer cells, and mast cells. Further investigation into its protein structure, ligands, and intracellular signaling pathway activation mechanisms has found that TIM-3, by binding with different ligands, is involved in the regulation of crucial biological processes such as proliferation, apoptosis, phenotypic transformation, effector protein synthesis, and cellular interactions of various immune cells. The TIM-3-ligand axis plays a pivotal role in the pathogenesis of numerous conditions, including autoimmune diseases, infections, cancers, transplant rejection, and chronic inflammation. This article primarily focuses on the research findings of TIM-3 in the field of autoimmune diseases, with a special emphasis on the structure and signaling pathways of TIM-3, its types of ligands, and the potential mechanisms implicated in systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, as well as other autoimmune diseases and chronic inflammation. The latest research results in the field of immunology suggest that TIM-3 dysfunction affects various immune cells and participates in the pathogenesis of diseases. Monitoring the activity of its receptor-ligand axis can serve as a novel biological marker for disease clinical diagnosis and prognosis evaluation. More importantly, the TIM-3-ligand axis and the downstream signaling pathway molecules may become key targets for targeted intervention treatment of autoimmune-related diseases.


Assuntos
Doenças Autoimunes , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Ligantes , Mucinas , Proteínas de Membrana , Linfócitos T , Inflamação , Imunoglobulinas
9.
Drug Des Devel Ther ; 17: 887-900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992900

RESUMO

Purpose: Accumulating clinical evidence showed that Tripterygium hypoglaucum (Lév.) Hutch (THH) is effective against IgA nephropathy (IgAN), but the mechanism is still unclear. This study is to evaluate the renal protective effect and molecular mechanism of THH against IgAN via network pharmacology, molecular docking strategy and experimental validation. Methods: Several databases were used for obtaining the active ingredients of THH, the corresponding targets, as well as the IgAN-related genes. The critical active ingredients, functional pathways, and potential for the combination of the hub genes and their corresponding active components were determined through bioinformatics analysis and molecular docking. The IgAN mouse model was treated with celastrol (1 mg/kg/d) for 21 days, and the aggregated IgA1-induced human mesangial cell (HMC) was treated with various concentrations of celastrol (25, 50 or 75 nM) for 48 h. The immunohistochemistry and Western blot techniques were applied to evaluate the protein expression of the predicted target. The cell counting kit 8 (CCK8) was used to detect HMC proliferation. Results: A total of 17 active ingredients from THH were screened, covering 165 IgAN-related targets. The PPI network identified ten hub targets, including PTEN. The binding affinity between the celastrol and PTEN was the highest (-8.69 kJ/mol). The immunohistochemistry showed that celastrol promoted the expression of PTEN in the glomerulus of IgAN mice. Furthermore, the Western blot techniques showed that celastrol significantly elevated the expression of PTEN and inhibited PCNA and Cyclin D1 in vitro and in vivo. The CCK8 assay determined that celastrol decreased HMC proliferation in a concentration-dependent manner. Conclusion: This study suggests that activating PTEN by celastrol may play a pivotal role in THH alleviating IgAN renal injury.


Assuntos
Glomerulonefrite por IGA , Humanos , Animais , Camundongos , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/metabolismo , Tripterygium/química , Farmacologia em Rede , Simulação de Acoplamento Molecular , PTEN Fosfo-Hidrolase
10.
Front Immunol ; 13: 925738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874713

RESUMO

Chronic inflammation contributes to maladaptive kidney repair, but its regulation is unclear. Here, we report that sirtuin 1 (SIRT1) is downregulated after repeated low-dose cisplatin (RLDC) injury, and this downregulation leads to p65 acetylation and consequent NF-κB activation resulting in a persistent inflammatory response. RLDC induced the down-regulation of SIRT1 and activation of NF-κB, which were accompanied by chronic tubular damage, tubulointerstitial inflammation, and fibrosis in mice. Inhibition of NF-κB suppressed the production of pro-inflammatory cytokines and fibrotic phenotypes in RLDC-treated renal tubular cells. SIRT1 activation by its agonists markedly reduced the acetylation of p65 (a key component of NF-κB), resulting in the attenuation of the inflammatory and fibrotic responses. Conversely, knockdown of SIRT1 exacerbated these cellular changes. At the upstream, p53 was activated after RLDC treatment to repress SIRT1, resulting in p65 acetylation, NF-κB activation and transcription of inflammatory cytokines. In mice, SIRT1 agonists attenuated RLDC-induced chronic inflammation, tissue damage, and renal fibrosis. Together, these results unveil the p53/SIRT1/NF-κB signaling axis in maladaptive kidney repair following RLDC treatment, where p53 represses SIRT1 to increase p65 acetylation for NF-κB activation, leading to chronic renal inflammation.


Assuntos
NF-kappa B , Sirtuína 1 , Animais , Cisplatino/efeitos adversos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Rim/metabolismo , Camundongos , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética
11.
Front Med (Lausanne) ; 9: 881322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836957

RESUMO

Background: IgA nephropathy (IgAN) is the most common primary glomerular disease and the leading cause of the end-stage renal disease in the world. The pathogenesis of IgAN has not been well elucidated, and yet treatment is limited. High-throughput microarray has been applied for elucidating molecular biomarkers and potential mechanisms involved in IgAN. This study aimed to identify the potential key genes and therapeutics associated with IgAN using integrative bioinformatics and transcriptome-based computational drug repurposing approach. Methods: Three datasets of mRNA expression profile were obtained from the gene expression omnibus database and differentially expressed genes (DEGs) between IgAN glomeruli and normal tissue were identified by integrated analysis. Gene ontology and pathway enrichment analyses of the DEGs were performed by R software, and protein-protein interaction networks were constructed using the STRING online search tool. External dataset and immunohistochemical assessment of kidney biopsy specimens were used for hub gene validation. Potential compounds for IgAN therapy were obtained by Connectivity Map (CMap) analysis and preliminarily verified in vitro. Stimulated human mesangial cells were collected for cell proliferation and cell cycle analysis using cell counting kit 8 and flow cytometry, respectively. Results: 134 DEGs genes were differentially expressed across kidney transcriptomic data from IgAN patients and healthy living donors. Enrichment analysis showed that the glomerular compartments underwent a wide range of interesting pathological changes during kidney injury, focused on anion transmembrane transporter activity and protein digestion and absorption mostly. Hub genes (ITGB2, FCER1G, CSF1R) were identified and verified to be significantly upregulated in IgAN patients, and associated with severity of renal lesions. Computational drug repurposing with the CMap identified tetrandrine as a candidate treatment to reverse IgAN hub gene expression. Tetrandrine administration significantly reversed mesangial cell proliferation and cell cycle transition. Conclusion: The identification of DEGs and related therapeutic strategies of IgAN through this integrated bioinformatics analysis provides a valuable resource of therapeutic targets and agents of IgAN. Especially, our findings suggest that tetrandrine might be beneficial for IgAN, which deserves future research.

12.
Int J Biol Sci ; 17(13): 3343-3355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512151

RESUMO

Mesangial cell (MC) proliferation and matrix expansion are basic pathological characteristics of IgA nephropathy (IgAN). However, the stepwise mechanism of MC proliferation and the exact set of related signaling molecules remain largely unclear. In this study, we found a significant upregulation of miR-214-3p in the renal cortex of IgAN mice by miRNA sequencing. In situ hybridization analysis showed that miR-214-3p expression was obviously elevated in MCs in the renal cortex in IgAN. Functionally, knockdown of miR-214-3p alleviated mesangial hypercellularity and renal lesions in IgAN mice. In vitro, the inhibition of miR-214-3p suppressed MC proliferation and arrested G1-S cell cycle pSrogression in IgAN. Mechanistically, a luciferase reporter assay verified PTEN as a direct target of miR-214-3p. Downregulation of miR-214-3p increased PTEN expression and reduced p-JNK and p-c-Jun levels, thereby inhibiting MC proliferation and ameliorating renal lesions in IgAN. Moreover, these changes could be attenuated by co-transfection with PTEN siRNA. Collectively, these results illustrated that miR-214-3p accelerated MC proliferation in IgAN by directly targeting PTEN to modulate JNK/c-Jun signaling. Therefore, miR-214-3p may represent a novel therapeutic target for IgAN.


Assuntos
Glomerulonefrite por IGA/metabolismo , Células Mesangiais/metabolismo , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Feminino , Glomerulonefrite por IGA/patologia , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Células Mesangiais/patologia , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-jun/metabolismo , Distribuição Aleatória
13.
Front Immunol ; 12: 798683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154075

RESUMO

T cell immunoglobulin domain and mucin domain 3 (TIM3) was initially identified as an inhibitory molecule on IFNγ-producing T cells. Further research discovered the broad expression of TIM3 on different immune cells binding to multiple ligands. Apart from its suppressive effects on the Th1 cells, recent compelling experiments highlighted the indispensable role of TIM3 in the myeloid cell-mediated inflammatory response, supporting that TIM3 exerts pleiotropic effects on both adaptive and innate immune cells in a context-dependent manner. A large number of studies have been conducted on TIM3 biology in the disease settings of infection, cancer, and autoimmunity. However, there is a lack of clinical evidence to closely evaluate the role of T cell-expressing TIM3 in the pathogenesis of chronic kidney disease (CKD). Here, we reported an intriguing case of Mycobacterium tuberculosis (Mtb) infection that was characterized by persistent overexpression of TIM3 on circulating T cells and ongoing kidney tubulointerstitial inflammation for a period of 12 months. In this case, multiple histopathological biopsies revealed a massive accumulation of recruited T cells and macrophages in the enlarged kidney and liver. After standard anti-Mtb treatment, repeated renal biopsy identified a dramatic remission of the infiltrated immune cells in the tubulointerstitial compartment. This is the first clinical report to reveal a time-course expression of TIM3 on the T cells, which is pathologically associated with the progression of severe kidney inflammation in a non-autoimmunity setting. Based on this case, we summarize the recent findings on TIM3 biology and propose a novel model of CKD progression due to the aberrant crosstalk among immune cells.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A/imunologia , Inflamação/imunologia , Mycobacterium tuberculosis/imunologia , Insuficiência Renal Crônica/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Inflamação/metabolismo , Masculino , Mycobacterium tuberculosis/fisiologia , Insuficiência Renal Crônica/metabolismo , Literatura de Revisão como Assunto , Linfócitos T/metabolismo , Linfócitos T/microbiologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Adulto Jovem
14.
BMC Nephrol ; 21(1): 447, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109129

RESUMO

BACKGROUND: Interstitial fibrosis/tubular atrophy (T) score is a known determinant of the progression of immunoglobulin A nephropathy (IgAN). Strong evidence indicates that the components of the coagulation system closely linked with fibrotic events have been highlighted in the kidney. However, whether the coagulation system can affect the renal outcome of IgAN remains unclear. Herein, we investigated the association of coagulation parameters and pathological phenotype of IgAN and their combined effects on the deterioration of renal function. METHODS: This retrospective study included N = 291 patients with biopsy-proven IgAN from May 2009 to April 2013 in the Second Xiangya Hospital. Clinical data, pathological features were collected, and the associations of coagulation parameters at biopsy, T score, and renal outcome were evaluated. T score indicated the degree of tubular atrophy or interstitial fibrosis. The renal outcome was defined as an end-stage renal disease (ESRD) or an irreversible 50% estimated glomerular filtration rate (eGFR) reduction. RESULTS: Shorter prothrombin time (PT) and the activated partial thromboplastin time (APTT) were significantly associated with T (both p < 0.001). PT (< 11.15 s) or APTT (< 29.65 s) had worse cumulative survival rate (p = 0.008, p = 0.027 respectively) and were significantly but not independently associated with a higher risk of renal outcome (p = 0.012, p = 0.032 respectively). In the combined analyses of PT, APTT, and T lesions, the odd ratios for the outcome were significantly higher in the presence of T with PT (< 11.15 s) or APTT (< 29.65 s). CONCLUSION: Shorter PT and APTT are associated with an increased incidence of the T lesion and are additional factors that portend a poorer prognosis in IgAN. Monitoring coagulation function might be important when assessing the risk of progression. Additional studies exploring the molecular mechanism between coagulation and IgAN pathology are needed.


Assuntos
Coagulação Sanguínea , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/fisiopatologia , Túbulos Renais/patologia , Adulto , Biópsia , Pressão Sanguínea , Creatinina/sangue , Progressão da Doença , Feminino , Fibrose , Taxa de Filtração Glomerular , Humanos , Masculino , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Estudos Retrospectivos
15.
Clin Immunol ; 217: 108483, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32479989

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN nephropathy, IgAN) is named for the renal pathological features of IgA-dominant immunoglobulin deposition. IgA deposits, however, may also occur in other diseases, from liver disease and inflammation to chronic infections and tumors. Now increasing studies have suggested that galactose-deficient IgA1 (Gd-IgA1) plays a critical role in the pathogenesis of IgAN. This study aims to investigate whether the Gd-IgA1-specific antibody KM55 contributes to differentiating primary IgAN from other diseases with IgA deposits. METHODS: In this retrospective study, we enrolled 100 Chinese patients with IgA deposits in renal biopsies, including IgAN(n = 40), IgAN with hepatitis B virus antigen deposits(n = 14), IgA vasculitis(n = 16), lupus nephritis(n = 11), incidental IgA deposits(n = 13) and negative controls(n = 6). Double immunostaining of Gd-IgA1 and IgA was performed in all biopsies. RESULTS: There were similar patterns of Gd-IgA1 deposition in primary IgAN, IgA vasculitis, and IgAN with hepatitis B virus antigen deposits. Gd-IgA1 staining could also be seen in patients with lupus nephritis and incidental IgA deposits, but the intensity was significantly lower than IgAN, and the optimal cutoff was 2+ staining for differential diagnosis. Every increase in KM55 staining intensity of 1+ was associated with an increase in the odds of primary IgAN (OR: 4.399; 95% CI: 1.725-11.216). CONCLUSIONS: Immunostaining for Gd-IgA1 by KM55 is not specific for IgA nephropathy, but weak or negative staining may favor incidental IgA deposits.


Assuntos
Glomerulonefrite por IGA/imunologia , Vírus da Hepatite B/imunologia , Imunoglobulina A/imunologia , Coloração e Rotulagem/métodos , Adolescente , Adulto , Idoso , Feminino , Imunofluorescência , Galactose/deficiência , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/patologia , Humanos , Imunoglobulina A/genética , Testes Imunológicos/métodos , Inflamação , Glomérulos Renais/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Vasculite/imunologia , Vasculite/patologia , Adulto Jovem
16.
Int Immunopharmacol ; 80: 106125, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31931362

RESUMO

IgA nephropathy (IgAN) is an autoimmune kidney disease and is the most prevalent form of glomerular kidney disease in China and worldwide. IgA immune complex deposition accompanied by mesangial cell proliferation and mesangial matrix expansion is the most basic pathological feature of IgAN. Dihydroartemisinin (DHA), an antimalarial drug, was recently reported to be effective in treating autoimmune diseases. However, its potential therapeutic role in IgAN is relatively unstudied. The aim of this study was to investigate the pharmacological effects and the underlying mechanisms of DHA in the treatment of IgAN. In this study, renal biopsy specimens were collected for immunohistochemistry. In vitro, 25 µg/ml concentrations of aggregated IgA1 (aIgA1) was used to construct the IgAN mesangial cell model. Stimulated human mesangial cells (HMCs) were treated for 24 h with DHA (0-15 µM) and were collected for western blot analyses. Cell proliferation was assessed by Cell Counting Kit 8 (CCK8) and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. In vitro, our results showed that DHA could downregulate the mammalian target of rapamycin/ribosomal protein S6 kinase beta-1 (mTOR/S6K1) signaling pathway, promote cell autophagy, and ameliorate cell proliferation in aIgA1-induced HMCs. The results suggested that DHA may represent a novel class of mTOR inhibitor and promote an anti-proliferation effect in IgAN HMCs, which provides an alternative approach for IgAN treatment.


Assuntos
Artemisininas/farmacologia , Glomerulonefrite por IGA/metabolismo , Células Mesangiais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Células Mesangiais/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
17.
Int Immunopharmacol ; 80: 106147, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31931367

RESUMO

DNA methylation, especially DNA methyltransferases (DNMTs), is involved in the pathogenesis of many autoimmune diseases through regulating immune function. This study aimed to explore the potential role of DNMTs in IgA nephropathy (IgAN). We evaluated mRNA expressions of DNMT1, DNMT3A, DNMT3B along with ß1,3-galactosyltransferase (C1GALT1) in peripheral blood mononuclear cells (PBMCs), and measured galactose-deficient IgA1 (Gd-IgA1) levels in plasma. The expression intensity of DNMT1 and DNMT3B in the renal specimen of IgAN patients were also detected. Results showed DNMT3B, not DNMT1 or DNMT3A, was notably increased in IgAN patients compared to controls and associated with pathologic types. However, DNMT1 and C1GALT1 were found positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with 24 h Urine protein in IgAN patients. No association was found between DNMT1 and Gd-IgA1. The expressions of DNMT3B and DNMT1 were barely observed in IgAN renal biopsy specimens. In conclusion, for the first time, we identified the relations of DNMTs and C1GALT1 to the clinical state and pathology of IgAN patients, which provide new clues for IgAN.


Assuntos
Metilases de Modificação do DNA/genética , Galactosiltransferases/genética , Glomerulonefrite por IGA/enzimologia , Adulto , Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Feminino , Glomerulonefrite por IGA/sangue , Glomerulonefrite por IGA/patologia , Humanos , Imunoglobulina A/sangue , Rim/enzimologia , Rim/patologia , Leucócitos Mononucleares/metabolismo , Masculino , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Adulto Jovem
18.
Kidney Int ; 97(1): 106-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31787254

RESUMO

Fibrosis is a common pathologic pathway of progressive kidney disease involving complex signaling networks. The deacetylase sirtuin 6 (sirt6) was recently implicated in kidney injury. However, it remains elusive whether and how sirt6 contributes to the regulation of kidney fibrosis. Here, we demonstrate that sirt6 protects against kidney interstitial fibrosis through epigenetic regulation of ß-catenin signaling. Sirt6 is markedly upregulated during fibrogenesis following obstructed nephropathy and kidney ischemia-reperfusion injury. Pharmacological inhibition of sirt6 deacetylase activity aggravates kidney fibrosis in obstructed nephropathy. Consistently, knockdown of sirt6 in mouse kidney proximal tubular epithelial cells aggravates transforming growth factor-ß-induced fibrosis in vitro. Mechanistically, sirt6 deficiency results in augmented expression of the downstream target proteins of ß-catenin signaling. We further show that sirt6 interacts with ß-catenin during transforming growth factor-ß treatment and binds to the promoters of ß-catenin target genes, resulting in the deacetylation of histone H3K56 to prevent the transcription of fibrosis-related genes. Thus, our data reveal the anti-fibrotic function of sirt6 by epigenetically attenuating ß-catenin target gene expression.


Assuntos
Epigênese Genética , Túbulos Renais/patologia , Sirtuínas/metabolismo , beta Catenina/metabolismo , Acetilação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Células Epiteliais , Fibrose , Técnicas de Silenciamento de Genes , Inibidores de Histona Desacetilases/farmacologia , Histonas/genética , Humanos , Túbulos Renais/citologia , Masculino , Camundongos , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Traumatismo por Reperfusão/patologia , Sirtuínas/antagonistas & inibidores , Sirtuínas/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
19.
Am J Nephrol ; 49(4): 307-316, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917363

RESUMO

BACKGROUND: Aberrant O-glycosylation IgA1 production is a major factor in the pathogenesis of IgA nephropathy, but the underlying mechanism is still unclear. IgA1 glycosylation modification is in Golgi, and downregulation of the Golgi peripheral membrane protein Golgi matrix protein 130 (GM130) could lead to glycosylation deficiency. In this study, we aimed to explore the role of GM130 in glycosylate deficiency IgA1 (Gd-IgA1) production. METHODS: We enrolled 27 IgA nephropathy patients, 12 patients with chronic tonsillitis, 15 non-IgAN chronic kidney disease patients, and 15 healthy volunteers as healthy control. We explored GM130 expression in Tonsillar tissue by immunofluorescence staining and Western blotting and expression in peripheral blood mononuclear cells (PBMCs) by flow cytometry. The concentration of IgA1 and level of O-glycosylation were determined by ELISA and Vicia Villosa lectin-binding assay. Real-time PCR and Western blot were used to analyze the levels of ß1,3-Gal transferase (C1GALT1) and ST6GalNAC2, respectively. To explore the contribution of GM130 in IgA1 O-glycosylation modification, cells were subjected to experiments for evaluation of GM130 silencing by GM130-siRNA transfection. RESULTS: GM130 expression was significantly decreased in tonsil tissues and PBMC of IgAN patients; the expression of C1GALT1 decreased and Gd-IgA1 level increased significantly in patients with IgAN patients. The expression of GM130 was negatively related to Gd-IgA1 production. By siRNA transfection, our results clearly indicated that the downregulation of GM130 can increase IgA1 O-glycosylation deficiency, which is thought to reduce C1GALT1 expression but not affect the expression of ST6GalNAC2. CONCLUSION: We identified and demonstrated that GM130 plays an important role in IgA1 O-glycans deficiency in IgAN patients, by negatively regulating C1GALT1 expression. We believe that this finding will provide theoretical foundations for a new mechanism of Gd-IgA1 production in IgAN patients.


Assuntos
Galactosiltransferases/metabolismo , Glomerulonefrite por IGA/imunologia , Imunoglobulina A/metabolismo , Proteínas de Membrana/deficiência , Adolescente , Adulto , Autoantígenos/genética , Biópsia , Células Cultivadas , Criança , Regulação para Baixo , Feminino , Glomerulonefrite por IGA/sangue , Glomerulonefrite por IGA/patologia , Glicosilação , Humanos , Imunoglobulina A/imunologia , Rim/imunologia , Rim/patologia , Leucócitos Mononucleares , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Tonsila Palatina/imunologia , Tonsila Palatina/patologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Sialiltransferases/metabolismo , Adulto Jovem
20.
Kidney Int ; 95(4): 880-895, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30791996

RESUMO

Ectopic fat deposition (EFD) in the kidney has been shown to play a causal role in diabetic nephropathy; however, the mechanism underlying EFD remains elusive. By transcriptome analysis, we found decreased expression levels of disulfide-bond A oxidoreductase-like protein (DsbA-L) in the kidneys of diabetic mice (induced by high-fat diet plus Streptozotocin) compared with control mice. Increased expression of adipocyte differentiation-related protein and abnormal levels of collagen I, fibronectin, and phosphorylated 5'AMP-activated kinase (p-AMPK), adipose triglyceride lipase (p-ATGL), and HMG-CoA reductase (p-HMGCR) were also observed in diabetic mice. These alterations were accompanied by deposition of lipid droplets in the kidney, and were more pronounced in diabetic DsbA-L knockout mice. In vitro, overexpression of DsbA-L ameliorated high glucose-induced intracellular lipid droplet deposition in a human proximal tubular cell line, and DsbA-L siRNA aggravated lipid droplet deposition and reduced the levels of p-AMPK, p-ATGL, and p-HMGCR. High glucose and palmitic acid treatment enhanced the expression of interleukin-1ß and interleukin-18; these enhancements were further increased after treatment with DsbA-L siRNA but alleviated by co-treatment with an AMPK activator. In kidney biopsy tissue from patients with diabetic nephropathy, DsbA-L expression was negatively correlated with EFD and tubular damage. Collectively, these results suggest that DsbA-L has a protective role against EFD and lipid-related kidney damage in diabetic nephropathy. Activation of the AMPK pathway is a potential mechanism underlying DsbA-L action in the kidney.


Assuntos
Nefropatias Diabéticas/patologia , Glutationa Transferase/metabolismo , Rim/patologia , Metabolismo dos Lipídeos , Adenilato Quinase/metabolismo , Adulto , Animais , Biópsia , Linhagem Celular , Colesterol/biossíntese , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Glutationa Transferase/genética , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Rim/citologia , Gotículas Lipídicas/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Estreptozocina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA