Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Death Dis ; 15(5): 326, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729966

RESUMO

Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations, including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor, including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the tumor region, a typical feature of TMSB4X-high expression was identified, which could be a potential marker of CRC. The stroma region was found to be characterized by VIM-high expression, suggesting it fostered a stromal niche in the TME. Collectively, single cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new molecular subtypes of CRC.


Assuntos
Neoplasias Colorretais , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Microambiente Tumoral/genética , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Perfilação da Expressão Gênica , Masculino , Feminino
2.
Nucleic Acids Res ; 51(21): 11634-11651, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870468

RESUMO

Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation. Notably, supplementation of NODAL, TGF-ß, Activin A or WNT3A rescues the differentiation defects caused by BRD9 loss. Mechanistically, BRD9 forms a complex with BRD4, SMAD2/3, ß-CATENIN and P300, which regulates the expression of pluripotency genes and the activity of TGF-ß/Nodal/Activin and Wnt signaling pathways. This is achieved by regulating the deposition of H3K27ac on associated genes, thus maintaining and directing hESC differentiation. BRD9-mediated regulation of the TGF-ß/Activin/Nodal pathway is also demonstrated in the development of pancreatic and breast cancer cells. In summary, our study highlights the crucial role of BRD9 in the regulation of hESC self-renewal and differentiation, as well as its participation in the progression of pancreatic and breast cancers.


Assuntos
Células-Tronco Embrionárias Humanas , Neoplasias , Humanos , Fator de Crescimento Transformador beta/genética , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Ativinas/metabolismo , Via de Sinalização Wnt , Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Clin Cancer Res ; 29(19): 3986-4001, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37527025

RESUMO

PURPOSE: Sarcoma is the second most common solid tumor type in children and adolescents. The high level of tumor heterogeneity as well as aggressive behavior of sarcomas brings serious difficulties to developing effective therapeutic strategies for clinical application. Therefore, it is of great importance to identify accurate biomarkers for early detection and prognostic prediction of sarcomas. EXPERIMENTAL DESIGN: In this study, we characterized three subtypes of sarcomas based on tumor immune infiltration levels (TIIL), and constructed a prognosis-related competing endogenous RNA (ceRNA) network to investigate molecular regulations in the sarcoma tumor microenvironment (TME). We further built a subnetwork consisting of mRNAs and lncRNAs that are targets of key miRNAs and strongly correlated with each other in the ceRNA network. After validation using public data and experiments in vivo and in vitro, we deeply dug the biological role of the miRNAs and lncRNAs in a subnetwork and their impact on TME. RESULTS: Altogether, 5 miRNAs (hsa-mir-125b-2, hsa-mir-135a-1, hsa-mir92a-2, hsa-mir-181a-2, and hsa-mir-214), 3 lncRNAs (LINC00641, LINC01146, and LINC00892), and 10 mRNAs (AGO2, CXCL10, CD86, CASP1, IKZF1, CD27, CD247, CD69, CCR2, and CSF2RB) in the subnetwork were identified as vital regulators to shape the TME. On the basis of the systematic network, we identified that trichostatin A, a pan-HDAC inhibitor, could potentially regulate the TME of sarcoma, thereby inhibiting the tumor growth. CONCLUSIONS: Our study identifies a ceRNA network as a promising biomarker for sarcoma. This system provides a more comprehensive understanding and a novel perspective of how ceRNAs are involved in shaping sarcoma TME.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sarcoma , Criança , Humanos , Adolescente , Prognóstico , RNA Longo não Codificante/genética , Microambiente Tumoral/genética , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , Sarcoma/genética
4.
Biomark Res ; 11(1): 63, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287049

RESUMO

The ATP-adenosine pathway has emerged as a promising target for cancer therapy, but challenges remain in achieving effective tumor control. Early research focused on blocking the adenosine generating enzyme CD73 and the adenosine receptors A2AR or A2BR in cancer. However, recent studies have shown that targeting CD39, the rate-limiting ecto-enzyme of the ATP-adenosine pathway, can provide more profound anti-tumor efficacy by reducing immune-suppressive adenosine accumulation and increasing pro-inflammatory ATP levels. In addition, combining CD39 blocking antibody with PD-1 immune checkpoint therapy may have synergistic anti-tumor effects and improve patient survival. This review will discuss the immune components that respond to CD39 targeting in the tumor microenvironment. Targeting CD39 in cancer has been shown to not only decrease adenosine levels in the tumor microenvironment (TME), but also increase ATP levels. Additionally, targeting CD39 can limit the function of Treg cells, which are known to express high levels of CD39. With phase I clinical trials of CD39 targeting currently underway, further understanding and rational design of this approach for cancer therapy are expected.

5.
Commun Biol ; 6(1): 476, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127734

RESUMO

Mesenchymal stem/Stromal cells (MSCs) have great therapeutic potentials, and they have been isolated from various tissues and organs including definitive endoderm (DE) organs, such as the lung, liver and intestine. MSCs have been induced from human pluripotent stem cells (hPSCs) through multiple embryonic lineages, including the mesoderm, neural crest, and extraembryonic cells. However, it remains unclear whether hPSCs could give rise to MSCs in vitro through the endodermal lineage. Here, we report that hPSC-derived, SOX17+ definitive endoderm progenitors can further differentiate to cells expressing classic MSC markers, which we name definitive endoderm-derived MSCs (DE-MSCs). Single cell RNA sequencing demonstrates the stepwise emergence of DE-MSCs, while endoderm-specific gene expression can be elevated by signaling modulation. DE-MSCs display multipotency and immunomodulatory activity in vitro and possess therapeutic effects in a mouse ulcerative colitis model. This study reveals that, in addition to the other germ layers, the definitive endoderm can also contribute to MSCs and DE-MSCs could be a cell source for regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Fígado , Mesoderma
6.
Cancer Res ; 83(6): 906-921, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634207

RESUMO

Sex is known to be an important factor in the incidence, progression, and outcome of cancer. A better understanding of the underlying mechanisms could help improve cancer prevention and treatment. Here, we demonstrated a crucial role of antitumor immunity in the sex differences in cancer. Consistent with observations in human cancers, male mice showed accelerated tumor progression compared with females, but these differences were not observed in immunodeficient mice. Androgen signaling suppressed T-cell immunity against cancer in males. Mechanistically, androgen-activated androgen receptor upregulated expression of USP18, which inhibited TAK1 phosphorylation and the subsequent activation of NF-κB in antitumor T cells. Reduction of testosterone synthesis by surgical castration or using the small-molecular inhibitor abiraterone significantly enhanced the antitumor activity of T cells in male mice and improved the efficacy of anti-PD-1 immunotherapy. Together, this study revealed a novel mechanism contributing to sex differences in cancer. These results indicate that inhibition of androgen signaling is a promising approach to improve the efficacy of immunotherapy in males. SIGNIFICANCE: Androgen signaling induces immunosuppression in cancer by blocking T-cell activity through upregulation of USP18 and subsequent inhibition of NF-κB activity, providing a targetable axis to improve antitumor immunity in males.


Assuntos
NF-kappa B , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Feminino , Animais , Camundongos , NF-kappa B/metabolismo , Androgênios/metabolismo , Caracteres Sexuais , Regulação Neoplásica da Expressão Gênica , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/metabolismo
7.
EMBO Mol Med ; 15(2): e16671, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36541165

RESUMO

Nonhealing diabetic wounds, with persistent inflammation and damaged vasculature, have failed conventional treatments and require comprehensive interference. Here, inspired by tumor-associated macrophages (TAMs) that produce abundant immunosuppressive and proliferative factors in tumor development, we generate macrophages to recapitulate TAMs' reparative functions, by culturing normal macrophages with TAMs' conditional medium (TAMs-CM). These TAMs-educated macrophages (TAMEMs) outperform major macrophage phenotypes (M0, M1, or M2) in suppressing inflammation, stimulating angiogenesis, and activating fibroblasts in vitro. When delivered to skin wounds in diabetic mice, TAMEMs efficiently promote healing. Based on TAMs-CM's composition, we further reconstitute a nine-factor cocktail to train human primary monocytes into TAMEMsC-h , which fully resemble TAMEMs' functions without using tumor components, thereby having increased safety and enabling the preparation of autologous cells. Our study demonstrates that recapitulating TAMs' unique reparative activities in nontumor cells can lead to an effective cell therapeutic approach with high translational potential for regenerative medicine.


Assuntos
Diabetes Mellitus Experimental , Neoplasias , Humanos , Camundongos , Animais , Macrófagos Associados a Tumor , Macrófagos/patologia , Cicatrização , Neoplasias/patologia , Inflamação/patologia
8.
J Hematol Oncol ; 14(1): 21, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514401

RESUMO

BACKGROUND: B7-H3, an immune-checkpoint molecule and a transmembrane protein, is overexpressed in non-small cell lung cancer (NSCLC), making it an attractive therapeutic target. Here, we aimed to systematically evaluate the value of B7-H3 as a target in NSCLC via T cells expressing B7-H3-specific chimeric antigen receptors (CARs) and bispecific killer cell engager (BiKE)-redirected natural killer (NK) cells. METHODS: We generated B7-H3 CAR and B7-H3/CD16 BiKE derived from an anti-B7-H3 antibody omburtamab that has been shown to preferentially bind tumor tissues and has been safely used in humans in early-phase clinical trials. Antitumor efficacy and induced-immune response of CAR and BiKE were evaluated in vitro and in vivo. The effects of B7-H3 on aerobic glycolysis in NSCLC cells were further investigated. RESULTS: B7-H3 CAR-T cells effectively inhibited NSCLC tumorigenesis in vitro and in vivo. B7-H3 redirection promoted highly specific T-cell infiltration into tumors. Additionally, NK cell activity could be specially triggered by B7-H3/CD16 BiKE through direct CD16 signaling, resulting in significant increase in NK cell activation and target cell death. BiKE improved antitumor efficacy mediated by NK cells in vitro and in vivo, regardless of the cell surface target antigen density on tumor tissues. Furthermore, we found that anti-B7-H3 blockade might alter tumor glucose metabolism via the reactive oxygen species-mediated pathway. CONCLUSIONS: Together, our results suggest that B7-H3 may serve as a target for NSCLC therapy and support the further development of two therapeutic agents in the preclinical and clinical studies.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Animais , Anticorpos Biespecíficos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Ativação Linfocitária , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante
9.
Adv Sci (Weinh) ; 7(23): 2001914, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304752

RESUMO

Resistance to therapeutic drugs occurs in virtually all types of cancers, and the tolerance to one drug frequently becomes broad therapy resistance; however, the underlying mechanism remains elusive. Combining a whole whole-genome-wide RNA interference screening and an evolutionary drug pressure model with MDA-MB-231 cells, it is found that enhanced protein damage clearance and reduced mitochondrial respiratory activity are responsible for cisplatin resistance. Screening drug-resistant cancer cells and human patient-derived organoids for breast and colon cancers with many anticancer drugs indicates that activation of mitochondrion protein import surveillance system enhances proteasome activity and minimizes caspase activation, leading to broad drug resistance that can be overcome by co-treatment with a proteasome inhibitor, bortezomib. It is further demonstrated that cisplatin and bortezomib encapsulated into nanoparticle further enhance their therapeutic efficacy and alleviate side effects induced by drug combination treatment. These data demonstrate a feasibility for eliminating broad drug resistance by targeting its common mechanism to achieve effective therapy for multiple cancers.

10.
Stem Cell Reports ; 15(6): 1362-1376, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33186539

RESUMO

Insulin is an essential growth factor for the survival and self-renewal of human embryonic stem cells (hESCs). Although it is best known as the principal hormone promoting glycolysis in somatic cells, insulin's roles in hESC energy metabolism remain unclear. In this report, we demonstrate that insulin is essential to sustain hESC mitochondrial respiration that is rapidly decreased upon insulin removal. Insulin-dependent mitochondrial respiration is stem cell specific, and mainly relies on pyruvate and glutamine, while glucose suppresses excessive oxidative phosphorylation. Pharmacologic and genetic manipulations reveal that continuous insulin signal sustains mitochondrial respiration through PI3K/AKT activation and downstream GSK3 inhibition. We further show that insulin acts through GSK3 inhibition to suppress caspase activation and rescue cell survival. This study uncovers a critical role of the AKT/GSK3 pathway in the regulation of mitochondrial respiration and cell survival, highlighting insulin as an essential factor for accurate assessment of mitochondrial respiration in hESCs.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Insulina/farmacologia , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Stem Cell Res Ther ; 11(1): 243, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552810

RESUMO

BACKGROUND: In our previous study, a venom-based peptide named Gonearrestide (also named P13) was identified and demonstrated with an effective inhibition in the proliferation of colon cancer cells. In this study, we explored if P13 and its potent mutant M6 could promote the proliferation of human embryonic stem cells and even maintain their self-renewal. METHODS: The structure-function relationship analysis on P13 and its potent mutant M6 were explored from the molecular mechanism of corresponding receptor activation by a series of inhibitor assay plus molecular and dynamics simulation studies. RESULTS: An interesting phenomenon is that P13 (and its potent mutant M6), an 18AA short peptide, can activate both FGF and TGFß signaling pathways. We demonstrated that the underlying molecular mechanisms of P13 and M6 could cooperate with proteoglycans to complete the "dimerization" of FGFR and TGFß receptors. CONCLUSIONS: Taken together, this study is the first research finding on a venom-based peptide that works on the FGF and TGF-ß signaling pathways to maintain the self-renewal of hESCs.


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular , Proliferação de Células , Humanos , Peptídeos/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta , Peçonhas
12.
Stem Cells ; 37(8): 1030-1041, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021484

RESUMO

Insulin is present in most maintenance media for human embryonic stem cells (hESCs), but little is known about its essential role in the cell survival of individualized cells during passage. In this article, we show that insulin suppresses caspase cleavage and apoptosis after dissociation. Insulin activates insulin-like growth factor (IGF) receptor and PI3K/AKT cascade to promote cell survival and its function is independent of rho-associated protein kinase regulation. During niche reformation after passaging, insulin activates integrin that is essential for cell survival. IGF receptor colocalizes with focal adhesion complex and stimulates protein phosphorylation involved in focal adhesion formation. Insulin promotes cell spreading on matrigel-coated surfaces and suppresses myosin light chain phosphorylation. Further study showed that insulin is also required for the cell survival on E-cadherin coated surface and in suspension, indicating its essential role in cell-cell adhesion. This work highlights insulin's complex roles in signal transduction and niche re-establishment in hESCs. Stem Cells 2019;37:1030-1041.


Assuntos
Adesão Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/enzimologia , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos
13.
Oncotarget ; 9(62): 31958-31970, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30174789

RESUMO

Angiogenesis is a hallmark for cancer development because it is essential for cancer growth and provides the route for cancer cell migration (metastasis). Understanding the mechanism of angiogenesis and developing drugs that target the process has therefore been a major focus for research on cancer therapy. In this study, we screened 114 FDA-approved anti-cancer drugs for their effects on angiogenesis in the zebrafish. Among those with positive effects, we chose to focus on Ponatinib (AP24534; Iclusig®) for further investigation. Ponatinib is an inhibitor of the tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), and its clinical trial has been approved by FDA for the treatment of the disease. In recent clinical trials, however, some side effects have been reported for Ponatinib, mostly on blood vessel disorders, raising the possibility that this drug may influence angiogenesis. In this study, we demonstrated that Ponatinib was able to suppress the formation of intersegmental vessels (ISV) and subintestinal vessels (SIV) in the zebrafish larvae. The anti-angiogenic effect of Ponatinib was further validated by other bioassays in human umbilical vein endothelial cells (HUVECs), including cell proliferation and migration, tube formation, and wound healing. Further experiments showed that Ponatinib inhibited VEGF-induced VEGFR2 phosphorylation and its downstream signaling pathways including Akt/eNOS/NO pathway and MAPK pathways (ERK and p38MAPK). Taken together, these results suggest that inhibition of VEGF signaling at its receptor level and downstream pathways may likely be responsible for the antiangiogenic activity of Ponatinib.

14.
Int J Biol Sci ; 14(5): 485-496, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29805300

RESUMO

Cell density has profound impacts on the cell culture practices of human pluripotent stem cells. The regulation of cell growth, cell death, pluripotency and differentiation converge at high density, but it is largely unknown how different regulatory mechanisms act at this stage. We use a chemically defined medium to systemically examine cellular activities and the impact of medium components in high-density culture. We show that medium acidosis is the main factor that alters cell cycle, gene expression and cellular metabolism at high cell density. The low medium pH leads to inhibition of glucose consumption, cell cycle arrest, and subsequent cell death. At high cell density, the suppression of medium acidosis with sodium bicarbonate (NaHCO3) significantly increases culture capacity for stem cell survival, derivation, maintenance and differentiation. Our study provides a simple and effective tool to improve stem cell maintenance and applications.


Assuntos
Acidose/metabolismo , Meios de Cultura/química , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Trifosfato de Adenosina/química , Técnicas de Cultura de Células , Ciclo Celular , Morte Celular , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Separação Celular , Sobrevivência Celular , Citometria de Fluxo , Coração/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio , Bicarbonato de Sódio/química
15.
ACS Chem Neurosci ; 9(8): 2041-2053, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543430

RESUMO

When individual neurons in a circuit contain multiple neuropeptides, these peptides can target different sets of follower neurons. This endows the circuit with a certain degree of flexibility. Here we identified a novel family of peptides, the Aplysia SPTR-Gene Family-Derived peptides (apSPTR-GF-DPs). We demonstrated apSPTR-GF-DPs, particularly apSPTR-GF-DP2, are expressed in the Aplysia CNS using immunohistochemistry and MALDI-TOF MS. Furthermore, apSPTR-GF-DP2 is present in single projection neurons, e.g., in the cerebral-buccal interneuron-12 (CBI-12). Previous studies have demonstrated that CBI-12 contains two other peptides, FCAP/CP2. In addition, CBI-12 and CP2 promote shortening of the protraction phase of motor programs. Here, we demonstrate that FCAP shortens protraction. Moreover, we show that apSPTR-GF-DP2 also shortens protraction. Surprisingly, apSPTR-GF-DP2 does not increase the excitability of retraction interneuron B64. B64 terminates protraction and is modulated by FCAP/CP2 and CBI-12. Instead, we show that apSPTR-GF-DP2 and CBI-12 increase B20 excitability and B20 activity can shorten protraction. Taken together, these data indicate that different CBI-12 peptides target different sets of pattern-generating interneurons to exert similar modulatory actions. These findings provide the first definitive evidence for SPTR-GF's role in modulation of feeding, and a form of molecular degeneracy by multiple peptide cotransmitters in single identified neurons.


Assuntos
Aplysia/metabolismo , Atividade Motora/fisiologia , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Aplysia/citologia , Biologia Computacional , Ingestão de Alimentos/fisiologia , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/genética , Processamento de Proteína Pós-Traducional , Ratos Sprague-Dawley , Alinhamento de Sequência
16.
Stem Cell Res ; 27: 42-45, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29320756

RESUMO

Turner syndrome (TS) with 45,X/46,XY mosaic karyotype is a rare sex chromosome disorder with an occurrence of 0.15‰ at birth. We report the generation of an induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells of a Chinese adult male with 45,X/46,XY mosaicism. The iPSC line retains the original 45,X/46,XY mosaic karyotype, expresses pluripotency markers and undergoes trilineage differentiation. Therefore, it offers an unprecedented cellular model to investigate the profound symptoms like infertility of TS in the male, and serve as a useful tool to develop therapies for the disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Mosaicismo , Síndrome de Turner/metabolismo , Adulto , Animais , Humanos , Cariotipagem/métodos , Masculino , Camundongos SCID , Reação em Cadeia da Polimerase , Teratoma/genética , Síndrome de Turner/genética
17.
Cancer Res ; 77(22): 6267-6281, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28935813

RESUMO

In this study, we generated induced pluripotent stem cells (iPSC) from normal human small airway epithelial cells (SAEC) to investigate epigenetic mechanisms of stemness and pluripotency in lung cancers. We documented key hallmarks of reprogramming in lung iPSCs (Lu-iPSC) that coincided with modulation of more than 15,000 genes relative to parental SAECs. Of particular novelty, we identified the PRC2-associated protein, ASXL3, which was markedly upregulated in Lu-iPSCs and small cell lung cancer (SCLC) lines and clinical specimens. ASXL3 overexpression correlated with increased genomic copy number in SCLC lines. ASXL3 silencing inhibited proliferation, clonogenicity, and teratoma formation by Lu-iPSCs, and diminished clonogenicity and malignant growth of SCLC cells in vivo Collectively, our studies validate the utility of the Lu-iPSC model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and highlight ASXL3 as a novel candidate target for SCLC therapy. Cancer Res; 77(22); 6267-81. ©2017 AACR.


Assuntos
Células Epiteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Reprogramação Celular , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mucosa Respiratória/citologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Teratoma/genética , Teratoma/metabolismo , Fatores de Transcrição/metabolismo , Transplante Heterólogo
18.
Stem Cells Transl Med ; 3(7): 821-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24833591

RESUMO

Human induced pluripotent stem (hiPS) cell lines with tissue-specific or ubiquitous reporter genes are extremely useful for optimizing in vitro differentiation conditions as well as for monitoring transplanted cells in vivo. The adeno-associated virus integration site 1 (AAVS1) locus has been used as a "safe harbor" locus for inserting transgenes because of its open chromatin structure, which permits transgene expression without insertional mutagenesis. However, it is not clear whether targeted transgene expression at the AAVS1 locus is always protected from silencing when driven by various promoters, especially after differentiation and transplantation from hiPS cells. In this paper, we describe a pair of transcription activator-like effector nucleases (TALENs) that enable more efficient genome editing than the commercially available zinc finger nuclease at the AAVS1 site. Using these TALENs for targeted gene addition, we find that the cytomegalovirus-immediate early enhancer/chicken ß-actin/rabbit ß-globin (CAG) promoter is better than cytomegalovirus 7 and elongation factor 1α short promoters in driving strong expression of the transgene. The two independent AAVS1, CAG, and enhanced green fluorescent protein (EGFP) hiPS cell reporter lines that we have developed do not show silencing of EGFP either in undifferentiated hiPS cells or in randomly and lineage-specifically differentiated cells or in teratomas. Transplanting cardiomyocytes from an engineered AAVS1-CAG-EGFP hiPS cell line in a myocardial infarcted mouse model showed persistent expression of the transgene for at least 7 weeks in vivo. Our results show that high-efficiency targeting can be obtained with open-source TALENs and that careful optimization of the reporter and transgene constructs results in stable and persistent expression in vitro and in vivo.


Assuntos
Diferenciação Celular , Desoxirribonucleases/metabolismo , Dependovirus/genética , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Transdução Genética , Transfecção/métodos , Actinas/genética , Animais , Linhagem da Célula , Rastreamento de Células , Células Cultivadas , Citomegalovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/transplante , NADH Desidrogenase/biossíntese , NADH Desidrogenase/genética , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas , Fatores de Tempo
19.
BMC Cancer ; 13: 340, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23841898

RESUMO

BACKGROUND: Anemia refers to low hemoglobin (Hb) level and is a risk factor of cancer patient survival. The National Comprehensive Cancer Network recently suggested that post-diagnosis Hb change, regardless of baseline Hb level, indicates the potential presence of anemia. However, there is no epidemiological study evaluating whether Hb change has direct prognostic values for cancer patients at the population level. METHODS: We identified 6675 patients with a diagnosis of primary lung, breast, colorectal, or liver cancer who visited the Kimmel Cancer Center at the Thomas Jefferson University from 1998 to 2011. All patients had at least two Hb measurements within the first six months after diagnosis. We analyzed the main, dose-dependent, and time-dependent effects of Hb changes on patient survival. RESULTS: Compared to patients with a low Hb change (|∆Hb|≤2.6), those having a |∆Hb|>2.6 exhibited a significantly shorter survival (hazard ratio=1.40, 95% confidence interval 1.31-1.50, P=4.5 × 10(-22), Plog rank=1.6 × 10(-39)). This association remained significant across the four cancer types. Bootstrap resampling validated these findings 100% of the time with P<0.01 in all patients and in patients of individual cancers. The association exhibited an apparent U-shape dose-dependent pattern. Time-dependent modeling demonstrated that the effect of Hb change on the survival of the overall patient population persisted for approximately 4.5 years after diagnosis. CONCLUSION: Post-diagnosis Hb change associates with the survival of multiple cancers and may have clinical values in tailoring anti-anemia treatments. Because Hb level is frequently measured during cancer treatment, Hb changes may be a potentially important variable in building cancer prognosis models.


Assuntos
Neoplasias da Mama/sangue , Neoplasias Colorretais/sangue , Hemoglobinas/análise , Neoplasias Hepáticas/sangue , Neoplasias Pulmonares/sangue , Anemia/complicações , Anemia/mortalidade , Neoplasias da Mama/complicações , Neoplasias da Mama/mortalidade , Estudos de Coortes , Neoplasias Colorretais/complicações , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/mortalidade , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais
20.
Nat Protoc ; 7(11): 2029-40, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23099485

RESUMO

This protocol describes an EDTA-based passaging procedure to be used with chemically defined E8 medium that serves as a tool for basic and translational research into human pluripotent stem cells (PSCs). In this protocol, passaging one six-well or 10-cm plate of cells takes about 6-7 min. This enzyme-free protocol achieves maximum cell survival without enzyme neutralization, centrifugation or drug treatment. It also allows for higher throughput, requires minimal material and limits contamination. Here we describe how to produce a consistent E8 medium for routine maintenance and reprogramming and how to incorporate the EDTA-based passaging procedure into human induced PSC (iPSC) derivation, colony expansion, cryopreservation and teratoma formation. This protocol has been successful in routine cell expansion, and efficient for expanding large-volume cultures or a large number of cells with preferential dissociation of PSCs. Effective for all culture stages, this procedure provides a consistent and universal approach to passaging human PSCs in E8 medium.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes/citologia , Animais , Células Cultivadas , Colágeno , Meios de Cultura/química , Combinação de Medicamentos , Ácido Edético/química , Feminino , Humanos , Laminina , Camundongos , Camundongos SCID , Proteoglicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA