Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Eur J Med Chem ; 272: 116468, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718626

RESUMO

High expression of ubiquitin-specific protease 10 (USP10) promote the proliferation of hepatocellular carcinoma (HCC), thus the development of USP10 inhibitors holds promise as a novel therapeutic approach for HCC treatment. However, the development of selective USP10 inhibitor is still limited. In this study, we developed a novel USP10 inhibitor for investigating the feasibility of targeting USP10 for the treatment of HCC. Due to high USP10 inhibition potency and prominent selectivity, compound D1 bearing quinolin-4(1H)-one scaffold was identified as a lead compound. Subsequent research revealed that D1 significantly inhibits cell proliferation and clone formation in HCC cells. Mechanistic insights indicated that D1 targets the ubiquitin pathway, facilitating the degradation of YAP (Yes-associated protein), thereby triggering the downregulation of p53 and its downstream protein p21. Ultimately, this cascade leads to S-phase arrest in HCC cells, followed by cell apoptosis. Collectively, our findings highlight D1 as a promising starting point for USP10-positive HCC treatment, underscoring its potential as a vital tool for unraveling the functional intricacies of USP10.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos , Carcinoma Hepatocelular , Proliferação de Células , Descoberta de Drogas , Neoplasias Hepáticas , Fatores de Transcrição , Ubiquitina Tiolesterase , Proteínas de Sinalização YAP , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Relação Estrutura-Atividade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas de Sinalização YAP/metabolismo , Estrutura Molecular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Linhagem Celular Tumoral
2.
Biophys J ; 123(10): 1253-1263, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38615193

RESUMO

Disordered proteins are conformationally flexible proteins that are biologically important and have been implicated in devastating diseases such as Alzheimer's disease and cancer. Unlike stably folded structured proteins, disordered proteins sample a range of different conformations that needs to be accounted for. Here, we treat disordered proteins as polymer chains, and compute a dimensionless quantity called instantaneous shape ratio (Rs), as Rs = Ree2/Rg2, where Ree is end-to-end distance and Rg is radius of gyration. Extended protein conformations tend to have high Ree compared with Rg, and thus have high Rs values, whereas compact conformations have smaller Rs values. We use a scatter plot of Rs (representing shape) against Rg (representing size) as a simple map of conformational landscapes. We first examine the conformational landscape of simple polymer models such as Random Walk, Self-Avoiding Walk, and Gaussian Walk (GW), and we notice that all protein/polymer maps lie within the boundaries of the GW map. We thus use the GW map as a reference and, to assess conformational diversity, we compute the fraction of the GW conformations (fC) covered by each protein/polymer. Disordered proteins all have high fC scores, consistent with their disordered nature. Each disordered protein accesses a different region of the reference map, revealing differences in their conformational ensembles. We additionally examine the conformational maps of the nonviral gene delivery vector polyethyleneimine at various protonation states, and find that they resemble disordered proteins, with coverage of the reference map decreasing with increasing protonation state, indicating decreasing conformational diversity. We propose that our method of combining Rs and Rg in a scatter plot generates a simple, meaningful map of the conformational landscape of a disordered protein, which in turn can be used to assess conformational diversity of disordered proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Conformação Proteica , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Polímeros/química
3.
Am J Ophthalmol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615831

RESUMO

PURPOSE: To evaluate changes in retinal microvascular density and choroidal vascularity in patients with retinoblastoma (RB) after intra-arterial chemotherapy (IAC). DESIGN: Retrospective clinical cohort study. METHODS: This study included 12 unilateral RB eyes treated with IAC (RB tumour), 12 contralateral normal eyes (RB fellow), and 12 healthy controls. The macular retinal thickness and retinal microvascular structure, including foveal avascular zone (FAZ) area, the macular and peripapillary superficial vessel density (SVD) and deep vessel density (DVD), were measured by optical coherence tomography angiography (OCTA). The choroidal thickness (ChT) and choroidal vascularity, including total choroidal area (TCA), luminal area (LA), stromal area (SA) and Choroidal Vascularity Index (CVI), were measured by spectral-domain optical coherence tomography (SD-OCT). A comparison among the three groups was conducted, while the correlations among the parameters were analyzed. RESULTS: Between the three cohorts, the foveal retinal thickness, the SVD, DVD, ChT, TCA, LA, SA and CVI were significantly lower in RB tumour compared to RB fellow and the control eyes (all P<0.01). There were no significant differences in the parameters between the contralateral and control eyes. The correlation analyses indicated a significant negative correlation between the total melphalan dose and foveal and parafoveal DVD, ChT, and LA. CONCLUSIONS: The retinal microvascular density and choroidal vascularity were lower in unilateral RB treated with IAC, and seemed to be related to the total melphalan dose. Moreover there were no measurable changes in the contralateral eyes.

4.
Front Neurol ; 15: 1350780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606279

RESUMO

Capillary hemangiomas, usually found in skin and mucosal tissues, are rarely encountered within the spinal cord, presenting a significant diagnostic challenge. We report a rare case of intradural extramedullary capillary hemangioma at the conus medullaris in a 66-year-old female patient. Our initial diagnosis leaned towards a cystic hemangioblastoma based on MRI findings due to the presence of cystic formation with an enhanced mural nodule. However, surgical exploration and subsequent pathological examination revealed the lesion as a capillary hemangioma. To the authors' knowledge, this case may represent the first documented instance of a spinal capillary hemangioma that mimics a cystic hemangioblastoma.

5.
Fitoterapia ; 174: 105869, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378132

RESUMO

Fourteen sesquiterpenes, including one undescribed sesquiterpene lactone, were isolated from Youngia japonica, and their structures were identified by NMR, HRESIMS, ECD and calculated ECD. Cytotoxic activities of all isolates against A549, HeLa, and 4 T1 cell lines were detected by CCK8 assay. Among them, 2 showed obvious cytotoxic activity against A549 cells. Subsequently, the production of ROS, and apoptosis of A549 cells treated with 2 were evaluated. The result showed that 2 distinctly increased the ROS level, and induced the apoptosis of A549 cells. Further anticancer mechanism studies showed that 2 increased the expression of cleaved caspase 3. Taken together, our results demonstrated that 2 might become potential leading compounds for the treatment of lung cancer.


Assuntos
Antineoplásicos , Asteraceae , Sesquiterpenos , Humanos , Linhagem Celular Tumoral , Estrutura Molecular , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Apoptose , Sesquiterpenos/farmacologia , Sesquiterpenos/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-38173217

RESUMO

OBJECTIVE: Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells. METHODS: An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells. RESULTS: miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells. CONCLUSION: Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.

7.
Breast Cancer ; 31(2): 295-304, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231460

RESUMO

INTRODUCTION: Breast cancer subtypes based on estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression have significant implications for prognosis. HER2-positive tumors historically demonstrated poorer survival, but anti-HER2 targeted therapy improved outcomes. However, hormone receptor (HR)-positive patients may experience reduced benefit due to HER2-HR signaling crosstalk. METHODS: Data from two databases, the Shanghai Jiao Tong University Breast Cancer Data Base (SJTUBCDB) and the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database, were analyzed. Propensity score adjustments were used to balance patient characteristics between ER+/PR+/HER2+ and ER+/PR-/HER2+ subtypes. Kaplan-Meier survival curves estimated disease-free survival (DFS), breast cancer-specific survival (BCSS), overall survival (OS) for these subtypes in the SJTUBCDB, while subgroup analyses using multivariable models were performed based on menstruation, pN stage, HER2-targeted therapy, and endocrinotherapy. RESULTS: The ER+/PR+/HER2+ group showed significantly better DFS and BCSS than the ER+/PR-/HER2+ group, particularly in postmenopausal and pN0 stage patients. Survival outcomes were similar after anti-HER2 therapy or endocrine aromatase inhibitor (AI) therapy in both groups. However, among patients receiving selective estrogen receptor modulator (SERM) treatment, those in the ER+/PR-/HER2+ group had a significantly worse prognosis compared to ER+/PR+/HER2+ patients. CONCLUSIONS: HER2-positive breast cancers with different HR statuses exhibit distinct clinicopathological features and survival outcomes. Patients in the ER+/PR+/HER2+ group generally experience better survival, particularly in postmenopausal and pN0 stage patients. Treatment strategies should consider HR status and specific modalities for better personalized management.


Assuntos
Neoplasias da Mama , Feminino , Humanos , China , Receptor ErbB-2/metabolismo , Prognóstico , Intervalo Livre de Doença , Estimativa de Kaplan-Meier , Receptores de Progesterona/metabolismo , Biomarcadores Tumorais/metabolismo
8.
Bioorg Chem ; 144: 107116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237391

RESUMO

Four undescribed coumarin derivatives, ficusalt A (1) and ficusalt B (2), a pair of racemic coumarins, (±) ficudimer A (3a/3b), along with ten known amides, were isolated from the roots of Ficus hirta. Their structures were elucidated by several spectroscopic data analyses, including HRESIMS, NMR, and X-ray single-crystal diffraction. The cytotoxic activities of all compounds against HeLa, HepG2, MCF-7, and H460 cell lines were detected using the MTT assay. Among these, 5 showed the highest activity against HeLa cells. Subsequently, the apoptotic, anti-invasive, and anti-migration effects of 5 on HeLa cells were determined by flow cytometer, transwell invasion assay, and wound-healing assay, respectively. The result suggested that 5 distinctly induced the apoptosis in HeLa cells and inhibited their invasion and migration. Further studies on anticancer mechanisms were conducted using Western blotting. As a result, 5 increased the cleavage of PARP and the expression of pro-apoptotic protein Bax. Moreover, 5 notably upregulated the phosphorylation of p38 and JNK, whereas inhibited the expression of p-ERK and p-AKT. Our results demonstrated that 5 could be a potential leading compound for further application in the treatment of cervical cancer.


Assuntos
Antineoplásicos , Ficus , Feminino , Humanos , Células HeLa , Ficus/química , Amidas/farmacologia , Cumarínicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose
9.
Cancer Med ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38168907

RESUMO

BACKGROUND: Currently, many stemness-related signatures have been developed for gastric cancer (GC) to predict prognosis and immunotherapy outcomes. However, due to batch effects, these signatures cannot accurately analyze patients one by one, rendering them impractical in real clinical scenarios. Therefore, we aimed to develop an individualized and clinically applicable signature based on GC stemness. METHODS: Malignant epithelial cells from single-cell RNA-Seq data of GC were used to identify stemness-related signature genes based on the CytoTRACE score. Using two bulk tissue datasets as training data, the enrichment scores of the signature genes were applied to classify samples into two subtypes. Then, using the identified subtypes as criteria, we developed an individualized stemness-related signature based on the within-sample relative expression orderings of genes. RESULTS: We identified 175 stemness-related signature genes, which exhibited significantly higher AUCell scores in poorly differentiated GCs compared to differentiated GCs. In training datasets, GC samples were classified into two subtypes with significantly different survival times and genomic characteristics. Utilizing the two subtypes, an individualized signature was constructed containing 47 gene pairs. In four independent testing datasets, GC samples classified as high risk exhibited significantly shorter survival times, higher infiltration of M2 macrophages, and lower immune responses compared to low-risk samples. Moreover, the potential therapeutic targets and corresponding drugs were identified for the high-risk group, such as CD248 targeted by ontuxizumab. CONCLUSIONS: We developed an individualized stemness-related signature, which can accurately predict the prognosis and efficacy of immunotherapy for each GC sample.

10.
Expert Opin Drug Deliv ; 20(11): 1623-1642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059646

RESUMO

INTRODUCTION: Tumors pose a significant global economic and health burden, with conventional cancer treatments lacking tumor specificity, leading to limited efficiency and undesirable side effects. Targeted tumor therapy is imminent. Tumor cells produce lactate and hydrogen ions (H+) by Warburg effect, forming an acidic tumor microenvironment (TME), which can be employed to design targeted tumor therapy. Recently, progress in nanotechnology has led to the development of pH-responsive nanocarriers, which have gathered significant attention. Under acidic tumor conditions, they exhibit targeted accumulation within tumor sites and controlled release profiles of therapeutic reagents, enabling precise tumor therapy. AREAS COVERED: This review comprehensively summarize the principles underlying pH-responsive features, discussing various types of pH-responsive nanocarriers, their advantages, and limitations. Innovative therapeutic drugs are also examined, followed by an exploration of recent advancements in applying various pH-responsive nanocarriers as delivery systems for enhanced tumor therapy. EXPERT OPINIONS: pH-responsive nanocarriers have garnered significant attention for their capability to achieve targeted accumulation of therapeutic agents at tumor sites and controlled drug delivery profiles, ultimately increasing the efficiency of tumor eradication. It is anticipated that the employment of pH-responsive nanocarriers will elevate the effectiveness and safety of tumor therapy, contributing to improved overall outcomes.


Assuntos
Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanotecnologia , Microambiente Tumoral , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
11.
Biomater Res ; 27(1): 120, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996880

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive, metastatic and apparently drug-resistant subtype of breast cancer with a higher immune response compared to other types of breast cancer. Photodynamic therapy (PDT) has been gaining popularity for its non-invasive nature, minimal side effects, and spatiotemporally controlled benifits. The use of metal-organic frameworks (MOFs) loaded with programmed death-ligand 1 inhibitors (iPD-L1) offers the possibility of combining PDT with immunotherapy. METHOD: Here, we construct PCN-224, a MOFs with good biocompatibility and biodegradability for the delivery of the PD-L1 small molecule inhibitor BMS-202 to achieve a synergistic anti-tumor strategy of PDT and immunotherapy. Hyaluronic acid (HA) modified PEG (HA-PEG) was synthesized for the outer layer modification of the nanocomplex, which prolongs its systemic circulation time. RESULTS: In vitro cellular experiments show that the nanocomplexes irradiated by 660 nm laser has a strong ability to produce singlet oxygen, which effectively induce PDT. PDT with strong immunogenicity leads to tumor necrosis and apoptosis, and induces immunogenic cell death, which causes tumor cells to release danger associated molecular patterns. In combination with iPD-L1, the combination therapy stimulates dendritic cell maturation, promotes T-cell activation and intratumoral infiltration, and reshapes the tumor immune microenvironment to achieve tumor growth inhibition and anti-distant tumor progression. CONCLUSIONS: MOFs-based nano-systems as a platform for combination therapy offer a potentially effective strategy for the treatment of TNBC with high metastatic rates.

12.
Protein Sci ; 32(12): e4829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921047

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a newly identified prokaryotic cyclic dinucleotide second messenger well elucidated in bacteria, while less studied in archaea. Here, we describe the enzymes involved in c-di-AMP metabolism in the hyperthermophilic archaeon Pyrococcus yayanosii. Our results demonstrate that c-di-AMP is synthesized from two molecules of ATP by diadenylate cyclase (DAC) and degraded into pApA and then to AMP by a DHH family phosphodiesterase (PDE). DAC can be activated by a wider variety of ions, using two conserved residues, D188 and E244, to coordinate divalent metal ions, which is different from bacterial CdaA and DisA. PDE possesses a broad substrate spectrum like bacterial DHH family PDEs but shows a stricter base selection between A and G in cyclic dinucleotides hydrolysis. PDE shows differences in substrate binding patches from bacterial counterparts. C-di-AMP was confirmed to exist in Thermococcus kodakarensis cells, and the deletion of the dac or pde gene supports that the synthesis and degradation of c-di-AMP are catalyzed by DAC and PDE, respectively. Our results provide a further understanding of the metabolism of c-di-AMP in archaea.


Assuntos
Archaea , Proteínas de Bactérias , Archaea/metabolismo , Proteínas de Bactérias/química , Bactérias/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Íons
13.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629058

RESUMO

Sucrose metabolism plays a critical role in development, stress response, and yield formation of plants. Sucrose phosphate synthase (SPS) is the key rate-limiting enzyme in the sucrose synthesis pathway. To date, genome-wide survey and comprehensive analysis of the SPS gene family in soybean (Glycine max) have yet to be performed. In this study, seven genes encoding SPS were identified in soybean genome. The structural characteristics, phylogenetics, tissue expression patterns, and cold stress response of these GmSPSs were investigated. A comparative phylogenetic analysis of SPS proteins in soybean, Medicago truncatula, Medicago sativa, Lotus japonicus, Arabidopsis, and rice revealed four families. GmSPSs were clustered into three families from A to C, and have undergone five segmental duplication events under purifying selection. All GmSPS genes had various expression patterns in different tissues, and family A members GmSPS13/17 were highly expressed in nodules. Remarkably, all GmSPS promoters contain multiple low-temperature-responsive elements such as potential binding sites of inducer of CBF expression 1 (ICE1), the central regulator in cold response. qRT-PCR proved that these GmSPS genes, especially GmSPS8/18, were induced by cold treatment in soybean leaves, and the expression pattern of GmICE1 under cold treatment was similar to that of GmSPS8/18. Further transient expression analysis in Nicotiana benthamiana and electrophoretic mobility shift assay (EMSA) indicated that GmSPS8 and GmSPS18 transcriptions were directly activated by GmICE1. Taken together, our findings may aid in future efforts to clarify the potential roles of GmSPS genes in response to cold stress in soybean.


Assuntos
Arabidopsis , Glycine max , Glycine max/genética , Resposta ao Choque Frio/genética , Filogenia , Sítios de Ligação
14.
Exp Ther Med ; 26(3): 439, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37614427

RESUMO

Breast cancer (BC) is a life-threatening malignant tumor that affects females more commonly than males. The mechanisms underlying BC proliferation, metastasis and glycolysis require further investigation. Homeobox C13 (HOXC13) is highly expressed in BC; however, the specific mechanisms in BC are yet to be fully elucidated. Therefore, the aim of the present study was to investigate the role of HOXC13 in BC proliferation, migration, invasion and glycolysis. In the present study, the UALCAN database was used to predict the expression levels of HOXC13 in patients with BC. Western blot analysis and reverse transcription-quantitative PCR were used to determine the expression levels of HOXC13 in BC cell lines. Moreover, HOXC13 knockdown was induced using cell transfection, and the viability, proliferation and apoptosis of cells were detected using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining and flow cytometry. Migration, invasion and epithelial-mesenchymal transition (EMT) were measured using wound healing assay, Transwell assay and western blotting. In addition, XF96 extracellular flux analyzer and corresponding kits were used to detect glycolysis. The JASPAR database was used to predict promoter binding sites for the transcription factors HOXC13 and DNA methyltransferase 3α (DNMT3A). HOXC13 expression was silenced and DNMT3A was simultaneously overexpressed using cell transfection. The results of the present study revealed that HOXC13 expression was significantly elevated in BC tissues and cells. Following HOXC13 knockdown in BC cells, the viability, proliferation, glycolysis, migration, invasion and EMT were significantly decreased, and apoptosis was significantly increased. In addition, HOXC13 positively regulated the transcription of DNMT3A in BC cells, thus playing a regulatory role in the malignant progression of cells. In conclusion, HOXC13 promoted cell viability, proliferation, migration, invasion, EMT and glycolysis in BC by regulating DNMT3A.

15.
ACS Appl Mater Interfaces ; 15(36): 42209-42226, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37605506

RESUMO

In developing countries, the incidence of colorectal cancer (CRC) is on the rise. The combination of programmed cell death ligand-1 (PD-L1) siRNA (siPD-L1) and mild photothermal therapy (PTT) is a promising strategy for CRC treatment. In this study, dopamine-modified polyethylenimine (PEI) was prepared to fabricate an IR780 and siPD-L1 codelivery lipid-polymer hybrid nanoparticle (lip@PSD-siP) for the photothermal immunotherapy of CRC. The modification of dopamine can significantly reduce the cytotoxicity of PEI. lip@PSD-siP can be effectively taken up by CT26 cells and successfully escaped from lysosomes after entering the cells for 4 h. After CT26 cells were transfected with lip@PSD-siP, the PD-L1 positive cell rate decreased by 82.4%, and its PD-L1 knockdown effect was significantly stronger than the positive control Lipo3000-siP. In vivo studies showed that lip@PSD-siP-mediated mild PTT and efficient PD-L1 knockdown exhibited primary and distal tumor inhibition, metastasis delay, and rechallenged tumor inhibition. The treatment with lip@PSD-siP significantly promoted the maturation of dendritic cells in lymph nodes. The amount of T cell infiltration in the tumor tissues increased significantly, and the frequency of CD8+ T cells and CD4+ T cells was significantly higher than that of other groups. The percentage of immunosuppressive regulatory cells (Tregs) in the tumor tissue on the treatment side decreased by 88% compared to the PBS group, and the proportion of CD8+CD69+ T cells in the distal tumor tissue was 2.8 times that of the PBS group. The memory T cells of mice in the long-term antitumor model were analyzed. The results showed that after treatment with lip@PSD-siP, the frequency of effector memory T cells (Tem cells) significantly increased, suggesting the formation of immune memory.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Animais , Camundongos , Antígeno B7-H1/genética , Dopamina , Imunoterapia , Lipídeos
16.
Mutat Res ; 827: 111830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437506

RESUMO

OBJECTIVE: The purpose of this study is to identify potential targets associated with breast cancer and screen potential small molecule drugs using bioinformatics analysis. METHODS: DEGs analysis of breast cancer tissues and normal breast tissues was performed using R language limma analysis on the GSE42568 and GSE205185 datasets. Functional enrichment analysis was conducted on the intersecting DEGs. The STRING analysis platform was used to construct a PPI network, and the top 10 core nodes were identified using Cytoscape software. QuartataWeb was utilized to build a target-drug interaction network and identify potential drugs. Cell survival and proliferation were assessed using CCK8 and colony formation assays. Cell cycle analysis was performed using flow cytometry. Western blot analysis was conducted to assess protein levels of PLK1, MELK, AURKA, and NEK2. RESULTS: A total of 54 genes were consistently upregulated in both datasets, which were functionally enriched in mitotic cell cycle and cell cycle-related pathways. The 226 downregulated genes were functionally enriched in pathways related to hormone level regulation and negative regulation of cell population proliferation. Ten key genes, namely CDK1, CCNB2, ASPM, AURKA, TPX2, TOP2A, BUB1B, MELK, RRM2, and NEK2 were identified. The potential drug Fostamatinib was predicted to target AURKA, MELK, CDK1, and NEK2. In vitro experiments demonstrated that Fostamatinib inhibited the proliferation of breast cancer cells, induced cell arrest in the G2/M phase, and down-regulated MELK, AURKA, and NEK2 proteins. CONCLUSION: In conclusion, Fostamatinib shows promise as a potential drug for the treatment of breast cancer by regulating the cell cycle and inhibiting the proliferation of breast cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Aurora Quinase A/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Quinases Relacionadas a NIMA/genética
17.
Int J Biol Macromol ; 243: 125233, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290543

RESUMO

Protein phosphorylation, catalyzed by kinases, is an important biochemical process, which plays an essential role in multiple cell signaling pathways. Meanwhile, protein-protein interactions (PPI) constitute the signaling pathways. Abnormal phosphorylation status on protein can regulate protein functions through PPI to evoke severe diseases, such as Cancer and Alzheimer's disease. Due to the limited experimental evidence and high costs to experimentally identify novel evidence of phosphorylation regulation on PPI, it is necessary to develop a high-accuracy and user-friendly artificial intelligence method to predict phosphorylation effect on PPI. Here, we proposed a novel sequence-based machine learning method named PhosPPI, which achieved better identification performance (Accuracy and AUC) than other competing predictive methods of Betts, HawkDock and FoldX. PhosPPI is now freely available in web server (https://phosppi.sjtu.edu.cn/). This tool can help the user to identify functional phosphorylation sites affecting PPI and explore phosphorylation-associated disease mechanism and drug development.


Assuntos
Inteligência Artificial , Proteínas , Fosforilação , Transdução de Sinais , Aprendizado de Máquina , Biologia Computacional/métodos
18.
Angew Chem Int Ed Engl ; 62(33): e202306498, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37309588

RESUMO

The difunctionalization of unsaturated bonds plays a vital role in the enrichment of molecular complexity. While various catalytic methods for alkene and alkyne difunctionalization have been developed in recent years, hetero-functionalization the introduction of two different atoms has been less explored. This is mainly due to the challenges associated with achieving high chemo-, regio-, and stereoselectivity, especially when adding two similar atoms from the same group across unsaturated bonds. In this study, we describe a nickel-catalyzed, three-component reductive protocol for group 14 element hetero-difunctionalization of 1,3-enynes using electrochemistry. This new method is mild, selective, and general, allowing for the silyl-, germanyl-, and stannyl-alkylation of enynes. Various chlorosilanes as well as chlorogermans, and chlorostannanes can be successfully used in combination with aryl/alkyl-substituted 1,3-enynes and primary, secondary, and tertiary alkyl bromides in the electroreductive coupling.

19.
Front Pharmacol ; 14: 1192970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324457

RESUMO

As an essential mediator of inflammation and innate immunity, the receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for transducing signaling downstream of the intracellular peptidoglycan sensors nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2), which will further activate nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to the transcription activation of pro-inflammatory cytokines and productive inflammatory response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive attention due to its significant role in numerous autoimmune diseases, making pharmacologic RIPK2 inhibition a promising strategy, but little is known about its role outside the immune system. Recently, RIPK2 has been related to tumorigenesis and malignant progression for which there is an urgent need for targeted therapies. Herein, we would like to evaluate the feasibility of RIPK2 being the anti-tumor drug target and summarize the research progress of RIPK2 inhibitors. More importantly, following the above contents, we will analyze the possibility of applying small molecule RIPK2 inhibitors to anti-tumor therapy.

20.
Am J Clin Nutr ; 118(1): 183-193, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37127109

RESUMO

BACKGROUND: Although substantial evidence reveals that healthy lifestyle behaviors are associated with a lower risk of rheumatoid arthritis (RA), the underlying metabolic mechanisms remain unclear. OBJECTIVES: This study aimed to identify the metabolic signature reflecting a healthy lifestyle and investigate its observational and genetic linkage with RA risk. METHODS: This study included 87,258 UK Biobank participants (557 cases with incident RA) aged 37-73 y with complete lifestyle, genotyping, and nuclear magnetic resonance (NMR) metabolomics data. A healthy lifestyle was assessed based on 5 factors: healthy diet, regular exercise, not smoking, moderate alcohol consumption, and normal body mass index. The metabolic signature was developed by summing the selected metabolites' concentrations weighted by the coefficients using elastic net regression. We used the multivariate Cox model to assess the associations between metabolic signatures and RA risk, and examined the mediating role of the metabolic signature in the impact of a healthy lifestyle on RA. We performed genome-wide association analysis (GWAS) to obtain genetic variants associated with the metabolic signature and then conducted Mendelian randomization (MR) analyses to detect causality. RESULTS: The metabolic signature comprised 81 metabolites, robustly correlated with a healthy lifestyle (r = 0.45, P = 4.2 × 10-15). The metabolic signature was inversely associated with RA risk (HR per standard deviation (SD) increment: 0.76; 95% CI: 0.70-0.83), and largely explained the protective effects of healthy lifestyle on RA with 64% (95% CI: 50.4-83.3) mediation proportion. 1- and 2-sample MR analyses also consistently showed the associations of genetically inferred per SD increment in metabolic signature with a reduction in RA risk (HR: 0.84; 95% CI: 0.75-0.94; and P = 0.002 and OR: 0.84; 95% CI: 0.73-0.97; and P = 0.02, respectively). CONCLUSIONS: Our findings implicate that the metabolic signature reflecting healthy lifestyle is a potential causal mediator in the development of RA, highlighting the importance of early lifestyle intervention and metabolic status tracking for precise prevention of RA.


Assuntos
Artrite Reumatoide , Análise da Randomização Mendeliana , Humanos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Artrite Reumatoide/genética , Estilo de Vida Saudável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA