Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 1): 127196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37793525

RESUMO

Nature food-derived angiotensin converting enzyme inhibitory peptides (ACEIPs) can be potent and safe therapeutics for many medical illnesses, particularly hypertension. In this study, novel ACEIPs were screened and identified from Pacific saury by bio-activity guided approach through ultrafiltration membrane, Sephadex G-25 and RP-HPLC. The antihypertensive effect of ultrafiltration fraction was confirmed with spontaneous hypertensive rats' (SHRs) model. The peptides sequences of which gave the best activity was identified by Q-Orbitrap-MS/MS and selectively synthesized based on the binding energy of molecular docking. Five peptides VVLASLK, LTLK, LEPWR, ELPPK and LPTEK were synthesized, and the peptide LEPWR (IC50 = 99.5 µM) showed the best ACE inhibitory ability. Furthermore, LEPWR against ACE in a mixed competitive pattern and formed six hydrogen bonds with ACE. Additionally, the apparent permeability coefficient (Papp) of LEPWR was 3.56 ± 0.14 × 10-6 cm/s and paracellular transport across tight junctions was the main pathway across the Caco-2 monolayer. Therefore, the Pacific saury is a good material to prepare ACEIPs, but antihypertensive mechanism of peptide LEPWR on SHRs needs further investigation.


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Humanos , Animais , Anti-Hipertensivos/química , Inibidores da Enzima Conversora de Angiotensina/química , Peptidil Dipeptidase A/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Células CACO-2 , Ratos Endogâmicos SHR , Peptídeos/química , Hipertensão/tratamento farmacológico
2.
Cell Immunol ; 393-394: 104773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37857190

RESUMO

Immunotherapy for prostate cancer (PCa) faces serious challenges. Therefore, the co-inhibitory receptors that regulate T cell function of PCa must be elucidated. Here we identified that the inhibitory receptor LAG3 was significantly induced in T cells from PCa patients. Gene array analysis revealed that insufficient ataxia telangiectasia mutated (ATM) gene expression in PCa T cells was responsible for the elevated LAG3 expression. Mechanistically, insufficient ATM expression impaired its ability to activate AMPKα signaling and CD4+ T cell functions, which further enhances the binding of the transcription factors XBP1 and EGR2 to LAG3 promoter. Reconstitution of ATM and inhibition of XBP1 or EGR2 in PCa T cells suppressed LAG3 expression and restored the effector function of CD4+ T cells from PCa. Our study revealed the mechanism of LAG3 upregulation in CD4+ T lymphocytes of PCa patients and may provide insights for the development of immunotherapeutic strategies for PCa treatment.


Assuntos
Neoplasias da Próstata , Linfócitos T , Masculino , Humanos , Linfócitos T/metabolismo , Transdução de Sinais , Regulação para Cima , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
3.
Hum Reprod Update ; 29(6): 794-810, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37353907

RESUMO

BACKGROUND: Mammalian reproduction requires the fusion of two specialized cells: an oocyte and a sperm. In addition to producing gametes, the reproductive system also provides the environment for the appropriate development of the embryo. Deciphering the reproductive system requires understanding the functions of each cell type and cell-cell interactions. Recent single-cell omics technologies have provided insights into the gene regulatory network in discrete cellular populations of both the male and female reproductive systems. However, these approaches cannot examine how the cellular states of the gametes or embryos are regulated through their interactions with neighboring somatic cells in the native tissue environment owing to tissue disassociations. Emerging spatial omics technologies address this challenge by preserving the spatial context of the cells to be profiled. These technologies hold the potential to revolutionize our understanding of mammalian reproduction. OBJECTIVE AND RATIONALE: We aim to review the state-of-the-art spatial transcriptomics (ST) technologies with a focus on highlighting the novel biological insights that they have helped to reveal about the mammalian reproductive systems in the context of gametogenesis, embryogenesis, and reproductive pathologies. We also aim to discuss the current challenges of applying ST technologies in reproductive research and provide a sneak peek at what the field of spatial omics can offer for the reproduction community in the years to come. SEARCH METHODS: The PubMed database was used in the search for peer-reviewed research articles and reviews using combinations of the following terms: 'spatial omics', 'fertility', 'reproduction', 'gametogenesis', 'embryogenesis', 'reproductive cancer', 'spatial transcriptomics', 'spermatogenesis', 'ovary', 'uterus', 'cervix', 'testis', and other keywords related to the subject area. All relevant publications until April 2023 were critically evaluated and discussed. OUTCOMES: First, an overview of the ST technologies that have been applied to studying the reproductive systems was provided. The basic design principles and the advantages and limitations of these technologies were discussed and tabulated to serve as a guide for researchers to choose the best-suited technologies for their own research. Second, novel biological insights into mammalian reproduction, especially human reproduction revealed by ST analyses, were comprehensively reviewed. Three major themes were discussed. The first theme focuses on genes with non-random spatial expression patterns with specialized functions in multiple reproductive systems; The second theme centers around functionally interacting cell types which are often found to be spatially clustered in the reproductive tissues; and the thrid theme discusses pathological states in reproductive systems which are often associated with unique cellular microenvironments. Finally, current experimental and computational challenges of applying ST technologies to studying mammalian reproduction were highlighted, and potential solutions to tackle these challenges were provided. Future directions in the development of spatial omics technologies and how they will benefit the field of human reproduction were discussed, including the capture of cellular and tissue dynamics, multi-modal molecular profiling, and spatial characterization of gene perturbations. WIDER IMPLICATIONS: Like single-cell technologies, spatial omics technologies hold tremendous potential for providing significant and novel insights into mammalian reproduction. Our review summarizes these novel biological insights that ST technologies have provided while shedding light on what is yet to come. Our review provides reproductive biologists and clinicians with a much-needed update on the state of art of ST technologies. It may also facilitate the adoption of cutting-edge spatial technologies in both basic and clinical reproductive research.


Assuntos
Sêmen , Transcriptoma , Animais , Humanos , Masculino , Feminino , Reprodução/fisiologia , Oócitos/fisiologia , Fertilidade , Mamíferos
4.
Hematology ; 28(1): 2225342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37343159

RESUMO

BACKGROUND: Although multiple myeloma is still incurable, an abundance of novel treatments have become available for relapsed and or refractory multiple myeloma (RRMM). Direct head-to-head comparisons between the novel treatments are lacking. We performed a network meta-analysis to evaluate immediate effects such as response quality of current novel-drugs combined therapeutic regimens, with the aim to identify treatments that could be more effective than others in RRMM. METHODS: We searched Cochrane Library, PubMed, Embase, and Web of Science for randomized controlled clinical trials receiving novel-drugs combined treatments as means of interventions. The primary endpoint was objective response rates (ORRs). We used the surface under the cumulative ranking curve (SUCRA) to sequence treatments. Totally, 22 randomized controlled trials were identified for final evaluation. With the aim to include all regimens within one network analysis, we divided the treatment schemes into 13 categories according to the use of novel drugs. RESULTS: Carfilzomib-, daratumumab-, and isatuximab-based treatments had better ORRs than bortezomib combined dexamethasone and lenalidomide combined dexamethasone. Daratumumab- and isatuximab-based treatments had better ORRs than pomalidomide combined dexamethasone. According to the SUCRA, daratumumab- and isatuximab-based triple-drug regimens had higher probabilities of achieving better ORRs, followed by carfilzomib, elotuzumab, venetoclax, selinexor, ixazomib, vorinostat, pomalidomide, panobinostat, lenalidomide. CONCLUSIONS: Our network meta-analysis performed a complete review of the ORRs of all current available novel-drugs based regimens for RRMM. By using the clinical data all from randomized controlled studies, daratumumab- and isatuximab-based treatments were identified to be the best treatments receiving better response quality.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Lenalidomida/uso terapêutico , Metanálise em Rede , Bortezomib/uso terapêutico , Dexametasona/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
5.
Bioresour Technol ; 373: 128751, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805829

RESUMO

To elevate the efficiency of acetone-butanol-ethanol (ABE) fermentation by the wild-type strain WK, an optimal co-utilization system (20 mM Fe3+ and 5 g/L butyrate) was established to bring about a 22.22% increment in the yield of ABE mixtures with a significantly enhanced productivity (0.32 g/L/h). With the heterologous introduction of the secondary alcohol dehydrogenase encoded gene (adh), more than 95% of acetone was eliminated to convert 4.5 g/L isopropanol with corresponding increased butanol and ethanol production by 21.08% and 65.45% in the modified strain WK::adh. Under the optimal condition, strain WK::adh was capable of producing a total of 25.46 g/L IBE biosolvents with an enhanced productivity of 0.35 g/L/h by 45.83% over the original conditions. This work for the first time successfully established a synergetic system of co-utilizing Fe(III) and butyrate to demonstrate a feasible and efficient manner for generating the value-added biofuels through the metabolically engineered solventogenic clostridial strain.


Assuntos
2-Propanol , Butanóis , Fermentação , Compostos Férricos , Acetona , Butiratos , 1-Butanol , Clostridium/genética , Etanol
6.
Nat Methods ; 19(9): 1076-1087, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36050488

RESUMO

A central problem in spatial transcriptomics is detecting differentially expressed (DE) genes within cell types across tissue context. Challenges to learning DE include changing cell type composition across space and measurement pixels detecting transcripts from multiple cell types. Here, we introduce a statistical method, cell type-specific inference of differential expression (C-SIDE), that identifies cell type-specific DE in spatial transcriptomics, accounting for localization of other cell types. We model gene expression as an additive mixture across cell types of log-linear cell type-specific expression functions. C-SIDE's framework applies to many contexts: DE due to pathology, anatomical regions, cell-to-cell interactions and cellular microenvironment. Furthermore, C-SIDE enables statistical inference across multiple/replicates. Simulations and validation experiments on Slide-seq, MERFISH and Visium datasets demonstrate that C-SIDE accurately identifies DE with valid uncertainty quantification. Last, we apply C-SIDE to identify plaque-dependent immune activity in Alzheimer's disease and cellular interactions between tumor and immune cells. We distribute C-SIDE within the R package https://github.com/dmcable/spacexr .


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica/métodos
7.
Adv Exp Med Biol ; 1288: 69-93, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453732

RESUMO

Cancer/testis (CT) antigens are proteins aberrantly overexpressed in various tumorigenic cells, but they can also be normally expressed in the mammalian germline. Most CT antigens are highly immunogenic and known to be involved in cancer cell proliferation and tumor metastasis. A recent genome-wide analysis systematically identified CT antigen expression in 19 cancer types, significantly expanding the repertoire of CT antigens by 5-fold, from over 200 to approximately 1000. However, their function and regulation in tumorigenesis remain poorly understood. The shared functional characteristics between germ cells and cancer cells, if methodically defined, offer a unique gateway to understanding the regulation of CT antigens in cancers by studying gametogenesis. Nonetheless, such studies also provide insightful information on the role of CT antigens in spermatogenesis. Herein, we analyzed publicly available next generation sequencing datasets generated from normal adult testes in rodents, primordial germ cells and cancer samples across a series of published studies and databases. Based on these analyses, we report that a subset of CT antigens belonged to the core fitness gene family. Furthermore, super-enhancers both in normal testes and various cancers controlled specific CT antigens. We found that DNA methylation of CT antigens, such as TEX101 and TAF7L, was inversely correlated with their expression in both normal primordial germ cells and various cancers, which was mediated at least partly by DNA methyltransferase1 (DNMT1). By analyzing data from a testis knockout model, we showed that TAF7L could further influence the expression of additional CT antigens, which also held true in tumors. These findings not only confirmed the previous notion that CT antigens regulate cancer dynamics, but also showed that understanding the regulation of CT antigens during gametogenesis can offer new insights for cancer research.


Assuntos
Antígenos de Neoplasias , Testículo , Animais , Antígenos de Neoplasias/genética , Carcinogênese/genética , Células Germinativas , Masculino , Roedores
8.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34301812

RESUMO

BACKGROUND: The efficacy of docetaxel-based chemotherapy is limited by the development of drug resistance. Recent studies demonstrated the efficacy of anti-programmed death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) immunotherapies in metastatic prostate cancer. The ataxia telangiectasia mutation (ATM) protein plays a crucial role in maintaining genome stability and function of mitosis. Here, we aimed to determine whether PD-1/PD-L1 signaling contributes to the resistance to DTX and to elucidate the mechanism underlying DTX-induced PD-L1 expression. METHODS: In this retrospective study, PD-L1 expression was analyzed in 33 tumor tissue samples from prostate cancer patients. Prostate cell lines were used to perform functional assays and examine underlying mechanisms in vitro. A fully mouse prostate cancer model and a humanized chimeric mouse bearing human prostate tumors and peripheral blood mononuclear cells were used for in vivo assays. RESULTS: We have shown that DTX, a chemotherapeutic drug which causing microtubule interference, could significantly induce the expression of PD-L1 in prostate cancer cells. This effect is blocked by the inhibition of ATM, suggesting that it plays an essential role in PD-L1 expression upregulated by DTX. Mechanistic studies have shown that ATM activity in cancer cells enhances the stability of the NF-κB essential modulator (NEMO), which leading to an increase in the NF-κB activity and PD-L1 expression. Using the mouse model, it was further demonstrated that a combination of ATM and NEMO inhibitors along with DTX augmented the antitumor efficacy of chemotherapy, which are comparable to that of PD-L1 antibody. CONCLUSIONS: Our findings have revealed that a previously unrecognized ATM-NEMO signaling which induced by DTX is capable of suppressing tumor immunity by activating the expression of PD-L1, suggesting that the ATM-NEMO-NF-κB axis can be exploited to restore the immune balance and overcome cancer resistance triggered by DTX.Graphic Abstract: supplementary file 1.


Assuntos
Antineoplásicos/uso terapêutico , Antígeno B7-H1/metabolismo , Docetaxel/uso terapêutico , Imunoterapia/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estudos Retrospectivos , Transdução de Sinais
9.
Am J Physiol Endocrinol Metab ; 314(2): E174-E190, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089336

RESUMO

The blood-testis barrier (BTB), conferred by Sertoli cells in the mammalian testis, is an important ultrastructure that supports spermatogenesis. Studies using animal models have shown that a disruption of the BTB leads to meiotic arrest, causing defects in spermatogenesis and male infertility. To better understand the regulation of BTB dynamics, we report findings herein to understand the role of ribosomal protein S6 (rpS6), a downstream signaling protein of mammalian target of rapamycin complex 1 (mTORC1), in promoting BTB disruption in the testis in vivo, making the barrier "leaky." Overexpression of wild-type rpS6 (rpS6-WT, the full-length cDNA cloned into the mammalian expression vector pCI-neo) and a constitutively active quadruple phosphomimetic mutant cloned into pCI-neo (p-rpS6-MT) vs. control (empty pCI-neo vector) was achieved by transfecting adult rat testes with the corresponding plasmid DNA using a Polyplus in vivo-jetPEI transfection reagent. On the basis of an in vivo functional BTB integrity assay, p-rpS6-MT was found to induce BTB disruption better than rpS6-WT did (and no effects in empty vector control), leading to defects in spermatogenesis, including loss of spermatid polarity and failure in the transport of cells (e.g., spermatids) and organelles (e.g., phagosomes), to be followed by germ exfoliation. More important, rpS6-WT and p-rpS6-MT exert their disruptive effects through changes in the organization of actin- and microtubule (MT)-based cytoskeletons, which are mediated by changes in the spatiotemporal expression of actin- and MT-based binding and regulatory proteins. In short, mTORC1/rpS6 signaling complex is a regulator of spermatogenesis and BTB by modulating the organization of the actin- and MT-based cytoskeletons.


Assuntos
Barreira Hematotesticular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Proteína S6 Ribossômica/fisiologia , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Permeabilidade , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Proteína S6 Ribossômica/genética , Transdução de Sinais/genética , Espermatogênese/genética , Testículo/fisiologia , Regulação para Cima/genética
10.
Sci Rep ; 7(1): 1110, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439067

RESUMO

PFOS (perfluorooctanesulfonate, or perfluorooctane sulfonic acid) is an anthropogenic fluorosurfactant widely used in consumer products. While its use in Europe, Canada and the U.S. has been banned due to its human toxicity, it continues to be used in China and other developing countries as a global pollutant. Herein, using an in vitro model of Sertoli cell blood-testis barrier (BTB), PFOS was found to induce Sertoli cell injury by perturbing actin cytoskeleton through changes in the spatial expression of actin regulatory proteins. Specifically, PFOS caused mis-localization of Arp3 (actin-related protein 3, a branched actin polymerization protein) and palladin (an actin bundling protein). These disruptive changes thus led to a dis-organization of F-actin across Sertoli cell cytosol, causing truncation of actin microfilament, thereby failing to support the Sertoli cell morphology and adhesion protein complexes (e.g., occludin-ZO-1, CAR-ZO-1, and N-cadherin-ß-catenin), through a down-regulation of p-Akt1-S473 and p-Akt2-S474. The use of SC79, an Akt1/2 activator [corrected], was found to block the PFOS-induced Sertoli cell injury by rescuing the PFOS-induced F-actin dis-organization. These findings thus illustrate PFOS exerts its disruptive effects on Sertoli cell function downstream through Akt1/2. As such, PFOS-induced male reproductive dysfunction can possibly be managed through an intervention on Akt1/2 expression.


Assuntos
Actinas/efeitos dos fármacos , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Microtúbulos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/patologia , Proteína 3 Relacionada a Actina/análise , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas do Citoesqueleto/análise , Masculino , Fosfoproteínas/análise , Ratos Sprague-Dawley
11.
Endocrinology ; 158(4): 963-978, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28323988

RESUMO

A local axis connects the apical ectoplasmic specialization (ES) at the Sertoli-spermatid interface, the basal ES at the blood-testis barrier (BTB), and the basement membrane across the seminiferous epithelium functionally in rat testes. As such, cellular events that take place simultaneously across the epithelium such as spermiation and BTB remodeling that occur at the apical ES and the basal ES, respectively, at stage VIII of the cycle are coordinated. Herein, laminin α2, a structural component of the basement membrane, was found to regulate BTB dynamics. Sertoli cells were cultured in vitro to allow the establishment of a tight junction (TJ) barrier that mimicked the BTB in vivo. Knockdown of laminin α2 by transfecting Sertoli cells with laminin α2-specific short hairpin RNA vs the nontargeting negative control was shown to perturb the Sertoli cell TJ barrier, illustrating laminin α2 was involved in regulating BTB dynamics. This regulatory effect was mediated through mammalian target of rapamycin complex 1 (mTORC1) signaling because the two mTORC1 downstream signaling molecules ribosomal protein S6 and Akt1/2 were activated and inactivated, respectively, consistent with earlier findings that mTORC1 is involved in promoting BTB remodeling. Also, laminin α2 knockdown induced F-actin and microtubule (MT) disorganization through changes in the spatial expression of F-actin regulators actin-related protein 3 and epidermal growth factor receptor pathway substrate 8 vs end-binding protein 1 (a MT plus-end tracking protein, +TIP). These laminin α2 knockdown-mediated effects on F-actin and MT organization was blocked by exposing Sertoli cells to rapamycin, an inhibitor of mTORC1 signaling, and also SC79, an activator of Akt. In summary, laminin α2-mediated regulation on Sertoli cell BTB dynamics is through mTORC1 signaling.


Assuntos
Actinas/metabolismo , Barreira Hematotesticular/metabolismo , Citoesqueleto/metabolismo , Laminina/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Acetatos/farmacologia , Animais , Benzopiranos/farmacologia , Barreira Hematotesticular/efeitos dos fármacos , Permeabilidade da Membrana Celular , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Microtúbulos/efeitos dos fármacos , Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
12.
Endocrinology ; 157(5): 2140-59, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26990065

RESUMO

Planar cell polarity (PCP) proteins confer polarization of a field of cells (eg, elongating/elongated spermatids) within the plane of an epithelium such as the seminiferous epithelium of the tubule during spermatogenesis. In adult rat testes, Sertoli and germ cells were found to express PCP core proteins (eg, Van Gogh-like 2 [Vangl2]), effectors, ligands, and signaling proteins. Vangl2 expressed predominantly by Sertoli cells was localized at the testis-specific, actin-rich ectoplasmic specialization (ES) at the Sertoli-spermatid interface in the adluminal compartment and also Sertoli-Sertoli interface at the blood-testis barrier (BTB) and structurally interacted with actin, N-cadherin, and another PCP/polarity protein Scribble. Vangl2 knockdown (KD) by RNA interference in Sertoli cells cultured in vitro with an established tight junction-permeability barrier led to BTB tightening, whereas its overexpression using a full-length cDNA construct perturbed the barrier function. These changes were mediated through an alteration on the organization actin microfilaments at the ES in Sertoli cells, involving actin-regulatory proteins, epidermal growth factor receptor pathway substrate 8, actin-related protein 3, and Scribble, which in turn affected the function of adhesion protein complexes at the ES during the epithelial cycle of spermatogenesis. Using Polyplus in vivo-jetPEI reagent as a transfection medium to silence Vangl2 in the testis in vivo by RNA interference with high efficacy, Vangl2 KD led to changes in F-actin organization at the ES in the epithelium, impeding spermatid and phagosome transport and spermatid polarity, meiosis, and BTB dynamics. For instance, step 19 spermatids remained embedded in the epithelium alongside with step 9 and 10 spermatids in stages IX-X tubules. In summary, the PCP protein Vangl2 is an ES regulator through its effects on actin microfilaments in the testis.


Assuntos
Citoesqueleto de Actina/metabolismo , Barreira Hematotesticular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Animais , Polaridade Celular/fisiologia , Células Cultivadas , Masculino , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Ratos , Células de Sertoli/citologia , Espermátides/citologia , Espermátides/metabolismo , Espermatogênese/fisiologia , Testículo/citologia , Proteínas Supressoras de Tumor/metabolismo
13.
Endocrinology ; 156(5): 1900-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25714812

RESUMO

In the seminiferous epithelium of rat testes, preleptotene spermatocytes residing in the basal compartment are transported across the blood-testis barrier (BTB) to enter the adluminal compartment at stage VIII of the epithelial cycle. This process involves redistribution of tight junction (TJ) proteins via reorganization of actin cytoskeleton in Sertoli cells that serves as attachment site for adhesion protein complexes. Ribosomal protein S6 (rpS6), a downstream molecule of mTORC1 (mammalian target of rapamycin complex 1), participates in this process via a yet-to-be defined mechanism. Here, we constructed an rpS6 quadruple phosphomimetic mutant by converting Ser residues at 235, 236, 240, and 244 to Glu via site-directed mutagenesis, making this mutant constitutively active. When this rpS6 mutant was overexpressed in Sertoli cells cultured in vitro with an established TJ barrier mimicking the BTB in vivo, it perturbed the TJ permeability by down-regulating and redistributing TJ proteins at the cell-cell interface. These changes are mediated by a reorganization of actin microfilaments, which was triggered by a redistribution of activated actin-related protein 3 (Arp3) as well as changes in Arp3-neuronal Wiskott-Aldrich Syndrome protein (N-WASP) interaction. This in turn induced reorganization of actin microfilaments, converting them from a "bundled" to an "unbundled/branched" configuration, concomitant with a reduced actin bundling activity, thereby destabilizing the TJ-barrier function. These changes were mediated by Akt (transforming oncogene of v-akt), because an Akt knockdown by RNA interference was able to mimic the phenotypes of rpS6 mutant overexpression at the Sertoli cell BTB. In summary, this study illustrates a mechanism by which mTORC1 signal complex regulates BTB function through rpS6 downstream by modulating actin organization via the Arp2/3 complex, which may be applicable to other tissue barriers.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Barreira Hematotesticular/metabolismo , Complexos Multiproteicos/metabolismo , Proteína S6 Ribossômica/genética , Células de Sertoli/metabolismo , Espermatócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Junções Íntimas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Técnicas de Silenciamento de Genes , Técnicas In Vitro , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Oncogênica v-akt/genética , Ratos , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA