Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Free Radic Biol Med ; 218: 190-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574977

RESUMO

Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.


Assuntos
Neurônios Dopaminérgicos , Ferroptose , Mitofagia , Doença de Parkinson , ATPase Trocadora de Sódio-Potássio , Animais , Mitofagia/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Camundongos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Humanos , Masculino , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Haploinsuficiência , Camundongos Knockout
2.
Artigo em Inglês | MEDLINE | ID: mdl-38591121

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers in the world, which is frequently diagnosed at a late stage. HCC patients have a poor prognosis due to the lack of an efficacious therapeutic strategy. Approved drug repurposing is a way for accelerating drug discovery and can significantly reduce the cost of drug development. Carfilzomib (CFZ) is a second-generation proteasome inhibitor, which is highly efficacious against multiple myeloma and has been reported to possess potential antitumor activities against multiple cancers. However, the underlying mechanism of CFZ on HCC is still unclear. Here, we show that CFZ inhibits the proliferation of HCC cells through cell cycle arrest at the G2/M phase and suppresses the migration and invasion of HCC cells by inhibiting epithelial-mesenchymal transition. We also find that CFZ promotes reactive oxygen species production to induce endoplasmic reticulum (ER) stress and activate JNK/p38 MAPK signaling in HCC cells, thus inducing cell death in HCC cells. Moreover, CFZ significantly inhibits HCC cell growth in a xenograft mouse model. Collectively, our study elucidates that CFZ impairs mitochondrial function and activates ER stress and JNK/p38 MAPK signaling, thus inhibiting HCC cell and tumor growth. This indicates that CFZ has the potential as a therapeutic drug for HCC.

3.
Comput Biol Med ; 173: 108307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547657

RESUMO

BACKGROUND: The functional relevance of cyclic adenosine monophosphate (cAMP)-response element-binding protein 5 (CREB5) in cancers remains elusive, despite its significance as a member of the CREB family. The current research aims to explore the role of CREB5 in multiple cancers. METHODS: Pan-cancer analysis was performed to explore the expression patterns, prognostic value, mutational landscape as well as single-cell omic, immunologic, and drug sensitivity profiles of CREB5. Furthermore, we incorporated five distinct machine learning algorithms and determined that the least absolute shrinkage and selection operator-COX (LASSO-COX) algorithm, which exhibited the highest C index, was the optimal selection. Subsequently, we constructed a prognostic model centered around CREB5-associated genes. To elucidate the biological function of CREB5 in glioma cells, several assays including cell counting kit-8 (CCK-8), wound healing, transwell, flow cytometric were performed. RESULTS: CREB5 was overexpressed in pan-cancer and was linked to unfavorable prognosis, particularly in glioma. Furthermore, genetic alterations were determined in various types of cancer, and modifications in the CREB5 gene were linked to the prognosis. The single-cell omics and enrichment analyses showed that CREB5 was predominantly expressed in malignant glioma cells and was critically involved in the regulation of various oncogenic processes. Elevated levels of CREB5 were strongly linked with the infiltration of cancer-associated fibroblasts and the Th1 subset of CD4+ T cells. The validated CREB5-associated prognostic model reliably predicted the prognosis and drug response of glioma patients. The in vitro experiments showed that CREB5 promoted glioma cell proliferation, invasion, migration, and gap phase 2/mitotic (G2/M) phase arrest and recruited M2 macrophages into glioma cells. CONCLUSION: CREB5 has the potential to act as an oncogene and a biological marker in multiple cancers, particularly glioma.


Assuntos
Proteína A de Ligação a Elemento de Resposta do AMP Cíclico , Glioma , Multiômica , Humanos , Biomarcadores , Glioma/diagnóstico , Glioma/genética , Imunoterapia , Prognóstico
4.
Radiother Oncol ; 195: 110259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548112

RESUMO

BACKGROUND AND AIMS: Radiotherapy is widely applied for lung adenocarcinoma (LUAD), while individualized differences led to different outcomes. This study aimed to establish a multi-gene risk scoring model to predict the benefits of LUAD patients from radiotherapy, based on different types of cell death respectively. RESULTS: Other than autophagy, pyroptosis, ferroptosis and Immunogenic cell death (ICD), the LUAD prognostic model based on apoptosis had the best performance, and the area under curves (AUCs) of the receiver operating curve (ROC) for 1-, 3-, and 5-year OS were 0.700,0.736,0.723,respectively. Such genes were involved as SLC7A5, EXO1, ABAT, NLRP1 and GAR1. Then patients were divided into high and low risk groups by the median apoptosis-LUAD risk score. For patients in the high-risk group, i.e., the radiotherapy-tolerant group, we screened adjuvant chemotherapy and found that besides the conventional first-line chemotherapy regimen, drugs such as Fludarabine, Pevonedistat, and Podophyllotoxin Bromide may also have potential therapeutic value. CONCLUSION: The multi-gene risk scoring model based on apoptosis might predict the radiotherapy benefits of LUAD patients and for those radioresistant patients classified by the model we also provided effective adjuvant chemicals, which would be used to guide clinical treatment.


Assuntos
Adenocarcinoma de Pulmão , Apoptose , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/radioterapia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Prognóstico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Tolerância a Radiação/genética , Morte Celular
5.
J Cancer Res Clin Oncol ; 149(13): 11411-11429, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382674

RESUMO

PURPOSE: The phenomenon of immunogenic cell death (ICD) is intricately linked to numerous antitumor treatments and exerts a profound regulatory function in the tumor immune microenvironment (TIME). We aimed to establish a prognostic signature from the ICD-related biomarkers to differentiate the TIME in hepatocellular carcinoma and predict diverse outcomes for patients with liver cancer. METHODS: ICD score-related genes (ICDSGs) were identified using the weighted gene co-expression network analysis (WGCNA). The ICD score-related signature (ICDSsig) was established by applying LASSO and Cox regression. Model precision was verified using the external datasets. We used independent prognostic variables in clinicopathologic factors to develop a nomogram. Further, clinical characteristics, immune and molecular landscapes, the responses of transcatheter arterial chemoembolization (TACE) and immunotherapy, and chemotherapy sensitivity were analyzed for high- and low-risk patients. RESULTS: ICD score-calculated using the single-sample gene set enrichment analysis (ssGSEA)-displayed strong associations with the TIME in HCC. We identified 34 ICDSGs after integrating the TCGA and GSE104580 datasets. Then, three novel ICDSGs (DNASE1L3, KLRB1, and LILRB1) were screened out to construct the ICDSsig; the prognostic signature performed well in the external databases. The high-risk patients had worse outcomes owing to their advanced pathological state, non-response of TACE, and immune-cold phenotype in the immune landscapes. The immune checkpoint genes, N6-methyladenosine-relevant genes, and microsatellite instability score were increased in the high-risk subgroup, thereby indicating a favorable sensitivity to immunotherapy. Common chemotherapy drugs were more effective in high-risk patients due to low half-maximal inhibitory concentration values. CONCLUSION: The ICDSsig can potentially predict outcomes and therapeutic responses for patients with liver cancer and may assist clinicians in designing individualized treatment strategies.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Prognóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Morte Celular Imunogênica , Imunoterapia , Microambiente Tumoral
6.
Adv Mater ; 35(20): e2211626, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905923

RESUMO

Immune cells exhibit great potential as carriers of nanomedicine, attributed to their high tolerance to internalized nanomaterials and targeted accumulation in inflammatory tissues. However, the premature efflux of internalized nanomedicine during systemic delivery and slow infiltration into inflammatory tissues have limited their translational applications. Herein, a motorized cell platform as a nanomedicine carrier for highly efficient accumulation and infiltration in the inflammatory lungs and effective treatment of acute pneumonia are reported. ß-Cyclodextrin and adamantane respectively modified manganese dioxide nanoparticles are intracellularly self-assembled into large aggregates mediated via host-guest interactions, to effectively inhibit the efflux of nanoparticles, catalytically consume/deplete H2 O2 to alleviate inflammation, and generate O2 to propel macrophage movement for rapid tissue infiltration. With curcumin loaded into MnO2 nanoparticles, macrophages carry the intracellular nano-assemblies rapidly into the inflammatory lungs via chemotaxis-guided, self-propelled movement, for effective treatment of acute pneumonia via immunoregulation induced by curcumin and the aggregates.


Assuntos
Curcumina , Pneumonia , Curcumina/farmacologia , Curcumina/uso terapêutico , Nanopartículas , Pneumonia/tratamento farmacológico , Quimiotaxia , Macrófagos
7.
J Clin Pathol ; 77(1): 61-67, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36319076

RESUMO

PURPOSE: Programmed cell death-ligand 1 (PD-L1) as a cell surface glycoprotein can inhibit T cell function when binding to its receptor, PD-1. The newly developed therapy of targeting PD-1/PD-L1 signal pathway has shown great promise for the treatment of non-small cell lung cancer as well as melanoma. Approved by Food and Drug Administration, atezolizumab has become the first new drug to treat advanced bladder cancer. The aim of this study is to evaluate whether PD-L1 is associated with the lymphocytes infiltration in the tumour microenvironment and to assess the prognostic value of PD-L1 expression. MATERIALS AND METHODS: Among 96 invasive bladder urothelial carcinomas, some were used to construct tissue-microarrays, and some cases with shallow infiltration or large heterogeneity were performed, respectively, for the following work. By means of immunohistochemistry and HE, PD-L1 expression and immune cell infiltration in the invasive front of urothelial carcinoma were analysed. RESULTS: We find that PD-L1 expression in tumour cells and lymphocytes are significantly associated with more tumour infiltrating lymphocytes (TILs) and more T cells. The integrated TILs, T-PD-L1 and I-PD-L1 are not significantly correlated with the overall survival (OS) of patients. However, the combination of T-PD-L1 and TILs, T-PD-L1 and I-PD-L1 is significantly correlated with the OS of patients. The T-PD-L1 (-)/TIL (-) group show the best prognosis and the T-PD-L1 (+)/I-PD-L1 (-) group show the worst prognosis. Furthermore, a multivariate analysis reveal that PD-L1 expression of lymphocytes is an independent prognostic factor for OS of patients. CONCLUSIONS: Our study reveal that PD-L1 of tumour cells are associated with the corresponding T cells infiltration and that the combination of T-PD-L1 and I-PD-L1, T-PD-L1 and TILs could be a relevant marker for the determination of the prognostic role of patients with the urothelial carcinoma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células de Transição , Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células de Transição/patologia , Neoplasias da Bexiga Urinária/patologia , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/patologia , Estimativa de Kaplan-Meier , Prognóstico , Linfócitos do Interstício Tumoral , Linfócitos T CD8-Positivos , Microambiente Tumoral
8.
Front Oncol ; 12: 1002781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158697

RESUMO

Liver carcinogenesis is a multiprocess that involves complicated interactions between genetics, epigenetics, and transcriptomic alterations. Aberrant chromatin regulator (CR) expressions, which are vital regulatory epigenetics, have been found to be associated with multiple biological processes. Nevertheless, the impression of CRs on tumor microenvironment remodeling and hepatocellular carcinoma (HCC) prognosis remains obscure. Thus, this study aimed to systematically analyze CR-related patterns and their correlation with genomic features, metabolism, cuproptosis activity, and clinicopathological features of patients with HCC in The Cancer Genome Atlas, International Cancer Genome Consortium-LIRI-JP cohort, and GSE14520 that utilized unsupervised consensus clustering. Three CR-related patterns were recognized, and the CRs phenotype-related gene signature (CRsscore) was developed using the least absolute shrinkage and selection operator-Cox regression and multivariate Cox algorithms to represent the individual CR-related pattern. Additionally, the CRsscore was an independent prognostic index that served as a fine predictor for energy metabolism and cuproptosis activity in HCC. Accordingly, describing a wide landscape of CR characteristics may assist us to illustrate the sealed association between epigenetics, energy metabolism, and cuproptosis activity. This study may discern new tumor therapeutic targets and exploit personalized therapy for patients.

9.
Arch Toxicol ; 96(9): 2589-2608, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35604417

RESUMO

Approximately 50 million people are suffering from epilepsy worldwide. Corals have been used for treating epilepsy in traditional Chinese medicine, but the mechanism of this treatment is unknown. In this study, we analyzed the transcriptome of the branching coral Acropora digitifera and obtained its Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG) and Gene Ontology (GO) annotation. Combined with multiple sequence alignment and phylogenetic analysis, we discovered three polypeptides, we named them AdKuz1, AdKuz2 and AdKuz3, from A. digitifera that showed a close relationship to Kunitz-type peptides. Molecular docking and molecular dynamics simulation indicated that AdKuz1 to 3 could interact with GABAA receptor but AdKuz2-GABAA remained more stable than others. The biological experiments showed that AdKuz1 and AdKuz2 exhibited an anti-inflammatory effect by decreasing the aberrant level of nitric oxide (NO), IL-6, TNF-α and IL-1ß induced by LPS in BV-2 cells. In addition, the pentylenetetrazol (PTZ)-induced epileptic effect on zebrafish was remarkably suppressed by AdKuz1 and AdKuz2. AdKuz2 particularly showed superior anti-epileptic effects compared to the other two peptides. Furthermore, AdKuz2 significantly decreased the expression of c-fos and npas4a, which were up-regulated by PTZ treatment. In addition, AdKuz2 reduced the synthesis of glutamate and enhanced the biosynthesis of gamma-aminobutyric acid (GABA). In conclusion, the results indicated that AdKuz2 may affect the synthesis of glutamate and GABA and enhance the activity of the GABAA receptor to inhibit the symptoms of epilepsy. We believe, AdKuz2 could be a promising anti-epileptic agent and its mechanism of action should be further investigated.


Assuntos
Antozoários , Animais , Antozoários/química , Antozoários/genética , Anticonvulsivantes/farmacologia , Glutamatos/genética , Humanos , Simulação de Acoplamento Molecular , Pentilenotetrazol , Peptídeos/genética , Filogenia , Receptores de GABA-A/genética , Transcriptoma , Peixe-Zebra/genética , Ácido gama-Aminobutírico
10.
Ecotoxicol Environ Saf ; 232: 113287, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149407

RESUMO

6-benzylaminopurine (6-BA), classified as a "plant hormone", is an important ingredient in production of "toxic bean sprouts". Although there is no direct evidence of adverse effects, its hazardous effects have received some attention and aroused furious debate between proponents and environmental regulators. In this study, potential adverse effects of 6-BA were investigated by exposing zebrafish in vivo to 0.2 - 25 mg 6-BA/L. Results indicated that, when exposure was limited to early-life stage (4-36 hpf), 20 mg 6-BA/L caused early hatching, abnormal spontaneous movement, and precocious hyperactivity in zebrafish embryos/larvae. While under a continuous exposure regime, 6-BA at 0.2 mg/L was able to cause hyperactive locomotion and transcription of genes related to neurogenesis (gnrh3 and nestin) and endocrine systems (cyp19a and fshb) in 5 dpf larvae. Quantification by use of LC/MS indicated bioaccumulation of 6-BA in zebrafish increased when exposed to 0.2 or 20 mg 6-BA/L. These results suggested that 6-BA could accumulate in aquatic organisms and disrupt neuro-endocrine systems. Accordingly, exposure to 0.2 mg 6-BA/L increased production of estradiol (E2) and consequently E2/T ratio in zebrafish larvae, which directly indicated 6-BA is estrogenic. In silico simulations demonstrated potential for binding of 6-BA to estrogen receptor alpha (ERa) and cytochrome P450 aromatase (CYP19A). Therefore, induction of estrogenic effects, via potential interactions with hormone receptors or disturbance of downstream transcription signaling, was possible mechanism underlying the toxicity of 6-BA. Taken together, these findings demonstrate endocrine disrupting properties of 6-BA, which suggest concerns about risks posed to endocrine systems.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Compostos de Benzil/toxicidade , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/toxicidade , Sistema Endócrino/metabolismo , Purinas , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
11.
Biochem Pharmacol ; 197: 114912, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032460

RESUMO

The roots of Glycine tabacina are used to treat rheumatoid arthritis (RA) and joint infection in folk medicine. Glytabastan B (GlyB), a newly reported coumestan isolated from this species, was found to significantly attenuate IL-1ß-induced inflammation in SW982 human synovial cells at 3 and 6 µM, as evidenced by the decreased levels of pro-inflammatory mediators and matrix metalloproteinases (MMPs). GlyB also suppressed RANKL-induced osteoclastogenesis, decreased the expression of osteoclastogenic markers (NFATc1, CTSK, MMP-9) and osteoclast-mediated bone resorption. Further, GlyB administration (12.5 and 25 mg/kg) significantly inhibited inflammation, osteoclast formation and disease progression in collagen-induced arthritis (CIA) mice. Integration of network pharmacology, quantitative phosphoproteomic and experimental pharmacology results revealed that these beneficial actions were closely associated with the blockade of GlyB on the activation of MAPK, PI3K/AKT and their downstream signals including NF-κB and GSK3ß/NFATc1. Drug affinity responsive target stability (DARTS) assay, cellular thermal shift (CETSA) assay and molecular docking analysis confirmed that there were direct interactions between GlyB and its target proteins ERK2, JNK1 and class Ⅰ PI3K catalytic subunit p110 (α, ß, δ and γ), which significantly contributed to the inhibition of activation of MAPK and PI3K/AKT pathways. In conclusion, these results strongly suggest GlyB is a promising multiple-target candidate for the development of agents for the prevention and treatment of RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Cumarínicos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sinoviócitos/efeitos dos fármacos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Células Cultivadas , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Relação Dose-Resposta a Droga , Fabaceae , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Sinoviócitos/metabolismo , Sinoviócitos/patologia
12.
Front Pharmacol ; 12: 763089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925021

RESUMO

PcActx peptide, identified from the transcriptome of zoantharian Palythoa caribaeorum, was clustered into the phylogeny of analgesic polypeptides from sea anemone Heteractis crispa (known as APHC peptides). APHC peptides were considered as inhibitors of transient receptor potential cation channel subfamily V member 1 (TRPV1). TRPV1 is a calcium-permeable channel expressed in epileptic brain areas, serving as a potential target for preventing epileptic seizures. Through in silico and in vitro analysis, PcActx peptide was shown to be a potential TRPV1 channel blocker. In vivo studies showed that the linear and oxidized PcActx peptides caused concentration-dependent increases in mortality of zebrafish larvae. However, monotreatment with PcActx peptides below the maximum tolerated doses (MTD) did not affect locomotor behavior. Moreover, PcActx peptides (both linear and oxidized forms) could effectively reverse pentylenetetrazol (PTZ)-induced seizure-related behavior in zebrafish larvae and prevent overexpression of c-fos and npas4a at the mRNA level. The excessive production of ROS induced by PTZ was markedly attenuated by both linear and oxidized PcActx peptides. It was also verified that the oxidized PcActx peptide was more effective than the linear one. In particular, oxidized PcActx peptide notably modulated the mRNA expression of genes involved in calcium signaling and γ-aminobutyric acid (GABA)ergic-glutamatergic signaling, including calb1, calb2, gabra1, grm1, gria1b, grin2b, gat1, slc1a2b, gad1b, and glsa. Taken together, PcActx peptide, as a novel neuroactive peptide, exhibits prominent anti-epileptic activity, probably through modulating calcium signaling and GABAergic-glutamatergic signaling, and is a promising candidate for epilepsy management.

13.
Aging (Albany NY) ; 13(23): 25256-25270, 2021 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-34864645

RESUMO

Doxorubicin (Dox), an important anthracycline, is a potent anticancer agent that is used for treating solid tumors and hematologic malignancies. However, its clinical use is hampered by cardiac cardiotoxicity. This study aimed to investigate the cardioprotective potential of miR-199a-3p. Continuous Dox treatment not only markedly induced cardiomyocyte senescence but also resulted in a growing number of senescence-associated secretory phenotype (SASP) cardiomyocytes, frequently leading to heart senescence. This study showed that miR-199a-3p was downregulated in cardiomyocytes when exposed to Dox. The cardiac-specific overexpression of miR-199a-3p promoted cell cycle re-entry and cell proliferation, resulting in relief from cardiac senescence. Also, the elevation of miR-199a-3p inhibited the generation of SASP, thus, hampering the spread of senescence. In cardiomyocytes, the modulation of miR-199a-3p changed the levels of senescence-related protein GATA4. The ectopic expression of GATA4 blunted the anti-senescence effect of miR-199a-3p. Together, the data supported a role for miR-199a-3p during Dox cardiotoxicity. The elevation of miR-199a-3p might provide a dual therapeutic advantage in Dox cardiotoxicity therapy by simultaneously preventing cardiac senescence and reducing the spread of senescence.


Assuntos
Envelhecimento/efeitos dos fármacos , Antibióticos Antineoplásicos/toxicidade , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/toxicidade , MicroRNAs/uso terapêutico , Comunicação Parácrina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Cardiotoxicidade/etiologia , Proliferação de Células/efeitos dos fármacos , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
J Exp Clin Cancer Res ; 40(1): 218, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193219

RESUMO

BACKGROUND: Liver cancer stem cells (LCSCs) play key roles in the metastasis, recurrence, and chemotherapeutic resistance of hepatocellular carcinoma (HCC). Our previous research showed that the POSTN gene is closely related to the malignant progression and poor prognosis of HCC. This study aimed to elucidate the role of POSTN in generating LCSCs and maintaining their stemness as well as the underlying mechanisms. METHODS: Human HCC tissues and matched adjacent normal tissues were obtained from 110 patients. Immunohistochemistry, western blotting (WB), and RT-PCR were performed to detect the expression of POSTN and stemness factors. The roles of transforming growth factor (TGF)-ß1 and AP-2α in the POSTN-induced stemness transformation of HCC cells were explored in vitro and in vivo using LCSCs obtained by CD133+ cell sorting. RESULTS: The high expression of POSTN was correlated with the expression of various stemness factors, particularly CD133, in our HCC patient cohort and in TCGA and ICGC datasets. Knockdown of POSTN expression decreased the abilities of HCC cell lines to form tumours in xenograft mouse models. Knockdown of POSTN expression also suppressed cell viability and clone formation, invasion, and sphere formation abilities in vitro. Knockdown of AP-2α attenuated the generation of CD133+ LCSCs and their malignant behaviours, indicating that AP-2α was a critical factor that mediated the POSTN-induced stemness transformation and maintenance of HCC cells. The role of AP-2α was verified by using a specific αvß3 antagonist, cilengitide, in vitro and in vivo. Activation of POSTN could release TGFß1 from the extracellular matrix and initiated POSTN/TGFß1 positive feedback signalling. Furthermore, we found that the combined use of cilengitide and lenvatinib suppressed the growth of HCC cells with high POSTN expression more effectively than the use of lenvatinib alone in the patient-derived xenograft (PDX) mouse model. CONCLUSIONS: The POSTN/TGFß1 positive feedback pathway regulates the expression of stemness factors and the malignant progression of HCC cells by regulating the transcriptional activation of AP-2α. This pathway may serve as a new target for targeted gene therapy in HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Moléculas de Adesão Celular/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição AP-2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Animais , Carcinoma Hepatocelular/patologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Retroalimentação Fisiológica , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia
15.
Neurotox Res ; 39(4): 1323-1337, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33999357

RESUMO

The present study aimed to evaluate the neuroprotective effects and underlying mechanisms of pinocembrin-7-methylether (PME), a natural bioflavonoid, in 6-hydroxydopamine (6-OHDA)-induced models of Parkinson's disease in vivo and in vitro. First, we found that PME decreased apoptosis in 6-OHDA-intoxicated SH-SY5Y cells. PME also blocked several 6-OHDA-induced mitochondrial apoptotic cascades, including loss of mitochondrial membrane potential, caspase 3 and PARP activation, and a decrease in the Bcl-2/Bax ratio. Also, PME suppressed 6-OHDA-induced oxidative stress while increasing antioxidant enzymatic activity. Further investigations indicated that PME significantly enhanced nuclear accumulation of Nrf2, improved ARE promoter activity, and upregulated HO-1 and NQO1 expression levels. In addition, siRNA-mediated Nrf2 knockdown abolished PME-induced anti-oxidative and anti-apoptotic effects. Interestingly, we found that PME promoted phosphorylation of AKT and ERK, whereas pharmacological inhibition of AKT or ERK pathways diminished PME-induced Nrf2 activation and protective actions. Moreover, PME attenuated 6-OHDA-induced loss of dopaminergic neurons and ameliorated locomotor deficiency in zebrafish, supporting the neuroprotective actions of PME in vivo. In summary, we found that PME conferred neuroprotection against 6-OHDA-induced neurotoxicity in PD models in vivo and in vitro. Taken together, our findings suggest that activation of Nrf2/ARE/HO-1 signaling cascades contributes to PME-induced anti-oxidative and neuroprotective actions, which are at least partially mediated by AKT and ERK pathways.


Assuntos
Flavanonas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/biossíntese , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Animais , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Flavanonas/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Peixe-Zebra
16.
Oncol Lett ; 21(2): 139, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552258

RESUMO

Senescence is activated in response to gemcitabine to prevent the propagation of cancer cells. However, there is little evidence on whether senescence is involved in gemcitabine resistance in pancreatic cancer. Increasing evidence has demonstrated that microRNAs (miRs) are potential regulators of cellular senescence. The present study aimed to investigate whether aberrant miR-7 expression modulated senescence to influence pancreatic cancer resistance to chemotherapy. In the present study, cell senescence assay, ALDEFLUOR™ assay, luciferase reporter assay, flow cytometry, quantitative PCR, immunohistochemistry and western blot analysis were performed to explore the association between senescence and gemcitabine therapy response, and to clarify the underlying mechanisms. The present study revealed that gemcitabine-induced chronically existing senescent pancreatic cells possessed stemness markers. Therapy-induced senescence led to gemcitabine resistance. Additionally, it was found that miR-7 expression was decreased in gemcitabine-resistant pancreatic cancer cells, and that miR-7 acted as an important regulator of cellular senescence by targeting poly (ADP-ribose) polymerase 1 (PARP1)/NF-κB signaling. When miR-7 expression was restored, it was able to sensitize pancreatic cancer cells to gemcitabine. In conclusion, the present study demonstrated that miR-7 regulated cellular senescence and relieved gemcitabine resistance by targeting the PARP1/NF-κB axis in pancreatic cancer cells.

17.
Biomed Pharmacother ; 137: 111312, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33524788

RESUMO

Berberine (BBR) is a promising anti-diabetic isoquinoline alkaloid from Rhizoma coptidis, while its bioavailability was extremely low. Here, the existing form and pharmacokinetics of BBR were comparatively characterized in conventional and antibiotic-induced pseudo germ-free (PGF) rats. Furthermore, we comparatively investigated the antidiabetic effect and potential mechanism of BBR and its intestinal oxidative metabolite oxyberberine (OBB) in STZ-induced diabetic rats. Results showed that BBR and OBB existed mainly as protein-bound form in blood, while protein-bound OBB was significantly depleted in PGF rats. Treatment with OBB and BBR effectively decreased clinical symptoms of diabetic rats, reduced blood glucose level, ameliorated the pancreatic damage, and mitigated oxidative stress and inflammatory markers. However, the anti-diabetes effect of BBR was obviously compromised by antibiotics. In addition, OBB exerted superior anti-diabetes effect to BBR of the same dose, significantly up-regulated the mRNA expression of Nrf2 signaling pathway and substantially promoted the pancreatic levels of PI3K/Akt signaling pathway. In conclusion, BBR and its absorbed oxidative metabolite OBB were mainly presented and transported in the protein-bound form in vivo. The gut microbiota may play an important role in the anti-diabetes effect of BBR through transforming itself into the superior hypoglycemic metabolite OBB. OBB possessed favorable hypoglycemic and pancreatic ß-cells protective effects, which may stand a huge potential to be further developed into a promising anti-diabetes candidate.


Assuntos
Berberina/análogos & derivados , Berberina/farmacologia , Hipoglicemiantes/farmacologia , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Proteína Oncogênica v-akt/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/patologia , Ratos , Ratos Sprague-Dawley
18.
Aging (Albany NY) ; 13(2): 2959-2981, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472169

RESUMO

Cholangiocarcinoma (CCA) is a fatal disease with dismal survival rates. Long non-coding RNA (lncRNA) expression profiling as potential prognostic biomarkers play critical roles in tumor initiation, development, and poor prognosis. Identifying specific lncRNA to predict the prognosis of CCA patients in the early stages is very important for improving a patient's survival. In the current study, we aimed to establish a novel risk-stratification lncRNA signature panel in CCA. The initial lncRNA discovery was identified in The Cancer Genome Atlas database (TCGA cohort). The Cox regression analysis was used to establish the lncRNA prognostic model and the receiver operating characteristic (ROC) curve analysis was performed to assess the specificity and sensitivity of the model. This was followed by independent validation of the lncRNA signature in the CCA patients from the First Affiliated Hospital of Wenzhou Medical University (WMU cohort). Furthermore, by using the Gene Ontology function and Kyoto Encyclopedia Gene and Genome pathway enrichment analysis, we explored the potential function of prognosis lncRNA. Finally, five lncRNA (HULC; AL359715.5; AC006504.8; AC090114.2; AP00943.4) were screened to establish the predictive model that significantly associated with poor overall survival(HR:4.879;95%CI,1.587-14.996;p=0.006). This five-lncRNA signature model showed excellent accuracy in the TCGA cohort (AUC=0.938), and also robustly predicted survival in the validation WMU cohort(AUC=0.816). Functional enrichment analysis suggested prognostic lncRNA was primarily associated with CCA-related biological processes. Our data established a novel lncRNA signature model for CCA risk-stratification and robust identification of CCA patients with poor molecular genotypes. Moreover, it revealed new molecular mechanisms of CCA.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , RNA Longo não Codificante/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais , Colangiocarcinoma/metabolismo , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Longo não Codificante/metabolismo , Taxa de Sobrevida
19.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115945

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have been an important therapeutic advancement in the field of cancer medicine. Recent reports provided greater insights into the cardiovascular adverse events, which prohibited the use of ICIs. Cardiovascular adverse events occur in different forms, such as myocarditis and cardiomyopathy, myocardial fibrosis, heart failure and pericardial disease. Cardiac aging overlapped with the occurrence of some cardiac diseases. Exosomes mediate cell-cell cross talk in cardiac diseases by transferring a variety of biomolecules, including microRNAs (miRs). miR-34a-5p is a well-known miR associated with the cardiac senescence. This study aimed to investigate whether cardiovascular adverse effects of the programmed cell death 1 (PD-1) inhibitor, a widely used ICI, were related to exosomal-transferred miR-34a-5p in cardiac senescence in a mouse model. METHODS AND RESULTS: The upregulation of miR-34a-5p in cardiomyocytes induced by exosomes derived from PD-1 inhibitor-treated macrophages, accompanied by cardiac senescence, caused cardiac injury in mouse hearts. miR-34a-5p was identified as an exosomal transfer RNA to induce cardiac senescence-related injury. Inhibiting miR-34a-5p in macrophages attenuated the exosomePD-1 inhibitor-induced pro-senescent effect in cardiomyocytes. TargetScan and luciferase assay showed that miR-34a-5p targeted the serine/threonine-protein phosphatase 1 regulatory subunit 10 (PNUTS) 3'-untranslated region. CONCLUSIONS: Exosomes derived from PD-1 inhibitor-treated macrophages exerted a pro-senescent effect by modulating the miR-34a-5p/PNUTS signaling pathway. The findings might supply new targets to ameliorate cardiac injury in patients with cancer receiving PD-1 inhibitor treatment.


Assuntos
Inibidores de Checkpoint Imunológico/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Transfecção
20.
Cell Death Dis ; 11(7): 575, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709878

RESUMO

Cancer immunotherapy has become a well-established treatment option for some cancers; however, its use is hampered by its cardiovascular adverse effects. Immune checkpoint inhibitors (ICIs)-related cardiac toxicity took place in kinds of different forms, such as myocarditis, acute coronary syndrome, and pericardial disease, with high mortality rates. This study aimed to investigate the roles of programmed death-1 (PD-1) inhibitor, one of widespread used ICIs, in the development of murine cardiac injury. PD-1 inhibitor is known to transduce immunoregulatory signals that modulate macrophages polarization to attack tumor cells. Hence, this study explored whether the cardiovascular adverse effects of PD-1 inhibitor were related to macrophage polarization. MicroRNA-34a (miR-34a), which appears to regulate the polarization of cultured macrophages to induce inflammation, is examined in cardiac injury and macrophage polarization induced by the PD-1 inhibitor. As a target of miR-34a, Krüppel-like factor 4 (KLF4) acted as an anti-inflammation effector to take cardiac protective effect. Further, it investigated whether modulating the miR-34a/KLF4-signaling pathway could influence macrophage polarization. The PD-1 inhibitor markedly induced M1 phenotype macrophage polarization with impaired cardiac function, whereas miR-34a inhibitor transfection treatment reversed M1 polarization and cardiac injury in vivo. In vitro, PD-1 inhibitor-induced M1 polarization was accompanied by an increase in the expression of miR-34a but a decrease in the expression of KLF4. TargetScan and luciferase assay showed that miR-34a targeted the KLF4 3'-untranslated region. Either miR-34a inhibition or KLF4 overexpression could abolish M1 polarization induced by the PD-1 inhibitor. The findings strongly suggested that the PD-1 inhibitor exerted its effect in promoting M1 polarization and cardiac injury by modulating the miR-34a/KLF4-signaling pathway and inducing myocardial inflammation. These findings might help us to understand the pathogenesis of cardiac injury during immunotherapy, and provide new targets in ameliorating cardiac injury in patients with cancer receiving PD-1 inhibitor treatment.


Assuntos
Polaridade Celular , Inibidores de Checkpoint Imunológico/efeitos adversos , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos/patologia , MicroRNAs/metabolismo , Miocárdio/patologia , Transdução de Sinais , Animais , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Testes de Função Cardíaca , Fator 4 Semelhante a Kruppel , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA