Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cryobiology ; 115: 104889, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513998

RESUMO

Chimeric antigen receptor (CAR) T-cell therapies are increasingly adopted as a commercially available treatment for hematologic and solid tumor cancers. As CAR-T therapies reach more patients globally, the cryopreservation and banking of patients' leukapheresis materials is becoming imperative to accommodate intra/inter-national shipping logistical delays and provide greater manufacturing flexibility. This study aims to determine the optimal temperature range for transferring cryopreserved leukapheresis materials from two distinct types of controlled rate freezing systems, Liquid Nitrogen (LN2)-based and LN2-free Conduction Cooling-based, to the ultracold LN2 storage freezer (≤-135 °C), and its impact on CAR T-cell production and functionality. Presented findings demonstrate that there is no significant influence on CAR T-cell expansion, differentiation, or downstream in-vitro function when employing a transfer temperature range spanning from -30 °C to -80 °C for the LN2-based controlled rate freezers as well as for conduction cooling controlled rate freezers. Notably, CAR T-cells generated from cryopreserved leukapheresis materials using the conduction cooling controlled rate freezer exhibited suboptimal performance in certain donors at transfer temperatures lower than -60 °C, possibly due to the reduced cooling rate of lower than 1 °C/min and extended dwelling time needed to reach the final temperatures within these systems. This cohort of data suggests that there is a low risk to transfer cryopreserved leukapheresis materials at higher temperatures (between -30 °C and -60 °C) with good functional recovery using either controlled cooling system, and the cryopreserved materials are suitable to use as the starting material for autologous CAR T-cell therapies.

2.
Cancer Immunol Res ; 12(3): 350-362, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38113030

RESUMO

The existing T cell-centered immune checkpoint blockade therapies have been successful in treating some but not all patients with cancer. Immunosuppressive myeloid cells, including myeloid-derived suppressor cells (MDSC), that inhibit antitumor immunity and support multiple steps of tumor development are recognized as one of the major obstacles in cancer treatment. Leukocyte Ig-like receptor subfamily B3 (LILRB3), an immune inhibitory receptor containing tyrosine-based inhibitory motifs (ITIM), is expressed solely on myeloid cells. However, it is unknown whether LILRB3 is a critical checkpoint receptor in regulating the activity of immunosuppressive myeloid cells, and whether LILRB3 signaling can be blocked to activate the immune system to treat solid tumors. Here, we report that galectin-4 and galectin-7 induce activation of LILRB3 and that LILRB3 is functionally expressed on immunosuppressive myeloid cells. In some samples from patients with solid cancers, blockade of LILRB3 signaling by an antagonistic antibody inhibited the activity of immunosuppressive myeloid cells. Anti-LILRB3 also impeded tumor development in myeloid-specific LILRB3 transgenic mice through a T cell-dependent manner. LILRB3 blockade may prove to be a novel approach for immunotherapy of solid cancers.


Assuntos
Células Supressoras Mieloides , Neoplasias , Camundongos , Animais , Humanos , Células Mieloides , Neoplasias/terapia , Linfócitos T , Receptores Imunológicos , Microambiente Tumoral , Antígenos CD
3.
Bioresour Technol ; 377: 128940, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958681

RESUMO

Low-temperature torrefaction assisted with solid-state KOH/urea applied onto wheat straw was proposed to break down the lignocellulosic material to enhance biomethane production in anaerobic digestion (AD). The optimization of key parameters applying the Box-Behnken design and response surface methodology showed that an addition of 0.1 g/gstraw KOH/urea at 180 °C while torrefying for 30 min was the optimal condition for producing biomethane. Results indicate that co-applying KOH and urea in torrefaction synergistically enhanced the biodegradability of straw by effectively removing lignin and largely retaining cellulose, giving rise to a 41 % increase in the cumulative methane production compared to untreated straw (213 mL/g-volatile solids (VSraw)) from batch AD. Additionally, the nitrogen- and potassium-rich digestates helped to improve soil fertility, thus achieving a zero-waste discharge. This study demonstrated the feasibility of using solid-state KOH/urea assisted low-temperature torrefaction as an effective pretreatment method to promote methane production during AD.


Assuntos
Triticum , Ureia , Anaerobiose , Temperatura , Metano , Biocombustíveis
4.
Front Immunol ; 13: 996026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211388

RESUMO

The current immune checkpoint blockade therapy has been successful in treating some cancers but not others. New molecular targets and therapeutic approaches of cancer immunology need to be identified. Leukocyte associated immunoglobulin like receptor 1 (LAIR1) is an immune inhibitory receptor expressing on most immune cell types. However, it remains a question whether we can specifically and actively block LAIR1 signaling to activate immune responses for cancer treatment. Here we report the development of specific antagonistic anti-LAIR1 monoclonal antibodies and studied the effects of LAIR1 blockade on the anti-tumor immune functions. The anti-LAIR1 antagonistic antibody stimulated the activities of T cells, natural killer cells, macrophages, and dendritic cells in vitro. The single-cell RNA sequencing analysis of intratumoral immune cells in syngeneic human LAIR1 transgenic mice treated with control or anti-LAIR1 antagonist antibodies indicates that LAIR1 signaling blockade increased the numbers of CD4 memory T cells and inflammatory macrophages, but decreased those of pro-tumor macrophages, regulatory T cells, and plasmacytoid dendritic cells. Importantly, the LAIR1 blockade by the antagonistic antibody inhibited the activity of immunosuppressive myeloid cells and reactivated T cells from cancer patients in vitro and impeded tumor metastasis in a humanized mouse model. Blocking LAIR1 signaling in immune cells represents a promising strategy for development of anti-cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunoterapia , Camundongos , Linfócitos T Reguladores
5.
Antib Ther ; 4(1): 16-33, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33928233

RESUMO

Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology-as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.

6.
Nat Cancer ; 2(11): 1170-1184, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35122056

RESUMO

Leukocyte immunoglobulin-like receptor B (LILRB), a family of immune checkpoint receptors, contributes to acute myeloid leukemia (AML) development, but the specific mechanisms triggered by activation or inhibition of these immune checkpoints in cancer is largely unknown. Here we demonstrate that the intracellular domain of LILRB3 is constitutively associated with the adaptor protein TRAF2. Activated LILRB3 in AML cells leads to recruitment of cFLIP and subsequent NF-κB upregulation, resulting in enhanced leukemic cell survival and inhibition of T-cell-mediated anti-tumor activity. Hyperactivation of NF-κB induces a negative regulatory feedback loop mediated by A20, which disrupts the interaction of LILRB3 and TRAF2; consequently the SHP-1/2-mediated inhibitory activity of LILRB3 becomes dominant. Finally, we show that blockade of LILRB3 signaling with antagonizing antibodies hampers AML progression. LILRB3 thus exerts context-dependent activating and inhibitory functions, and targeting LILRB3 may become a potential therapeutic strategy for AML treatment.


Assuntos
Leucemia Mieloide Aguda , NF-kappa B , Antígenos CD/metabolismo , Humanos , Imunidade , Receptores Imunológicos/metabolismo , Linfócitos T/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771992

RESUMO

BACKGROUND: Current immune checkpoint blockade strategies have been successful in treating certain types of solid cancer. However, checkpoint blockade monotherapies have not been successful against most hematological malignancies including multiple myeloma and leukemia. There is an urgent need to identify new targets for development of cancer immunotherapy. LILRB1, an immunoreceptor tyrosine-based inhibitory motif-containing receptor, is widely expressed on human immune cells, including B cells, monocytes and macrophages, dendritic cells and subsets of natural killer (NK) cells and T cells. The ligands of LILRB1, such as major histocompatibility complex (MHC) class I molecules, activate LILRB1 and transduce a suppressive signal, which inhibits the immune responses. However, it is not clear whether LILRB1 blockade can be effectively used for cancer treatment. METHODS: First, we measured the LILRB1 expression on NK cells from cancer patients to determine whether LILRB1 upregulated on NK cells from patients with cancer, compared with NK cells from healthy donors. Then, we developed specific antagonistic anti-LILRB1 monoclonal antibodies and studied the effects of LILRB1 blockade on the antitumor immune function of NK cells, especially in multiple myeloma models, in vitro and in vivo xenograft model using non-obese diabetic (NOD)-SCID interleukin-2Rγ-null mice. RESULTS: We demonstrate that percentage of LILRB1+ NK cells is significantly higher in patients with persistent multiple myeloma after treatment than that in healthy donors. Further, the percentage of LILRB1+ NK cells is also significantly higher in patients with late-stage prostate cancer than that in healthy donors. Significantly, we showed that LILRB1 blockade by our antagonistic LILRB1 antibody increased the tumoricidal activity of NK cells against several types of cancer cells, including multiple myeloma, leukemia, lymphoma and solid tumors, in vitro and in vivo. CONCLUSIONS: Our results indicate that blocking LILRB1 signaling on immune effector cells such as NK cells may represent a novel strategy for the development of anticancer immunotherapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Células Matadoras Naturais/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD
8.
Cell Mol Immunol ; 17(3): 302-304, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005951

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Cell Mol Immunol ; 17(3): 272-282, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31700117

RESUMO

We recently demonstrated that leukocyte Ig-like receptor 4 (LILRB4) expressed by monocytic acute myeloid leukemia (AML) cells mediates T-cell inhibition and leukemia cell infiltration via its intracellular domain. The cytoplasmic domain of LILRB4 contains three immunoreceptor tyrosine-based inhibitory motifs (ITIMs); the tyrosines at positions 360, 412, and 442 are phosphorylation sites. Here, we analyzed how the ITIMs of LILRB4 in AML cells mediate its function. Our in vitro and in vivo data show that Y412 and Y442, but not Y360, of LILRB4 are required for T-cell inhibition, and all three ITIMs are needed for leukemia cell infiltration. We constructed chimeric proteins containing the extracellular domain of LILRB4 and the intracellular domain of LILRB1 and vice versa. The intracellular domain of LILRB4, but not that of LILRB1, mediates T-cell suppression and AML cell migration. Our studies thus defined the unique signaling roles of LILRB4 ITIMs in AML cells.


Assuntos
Movimento Celular/imunologia , Tolerância Imunológica , Glicoproteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Receptores Imunológicos/imunologia , Linfócitos T/imunologia , Motivos de Aminoácidos , Animais , Movimento Celular/genética , Humanos , Leucemia Mieloide Aguda , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Neoplasias/genética , Receptores Imunológicos/genética , Linfócitos T/patologia , Células THP-1
10.
Nature ; 562(7728): 605-609, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333625

RESUMO

Immune checkpoint blockade therapy has been successful in treating some types of cancer but has not shown clinical benefits for treating leukaemia1. This result suggests that leukaemia uses unique mechanisms to evade this therapy. Certain immune inhibitory receptors that are expressed by normal immune cells are also present on leukaemia cells. Whether these receptors can initiate immune-related primary signalling in tumour cells remains unknown. Here we use mouse models and human cells to show that LILRB4, an immunoreceptor tyrosine-based inhibition motif-containing receptor and a marker of monocytic leukaemia, supports tumour cell infiltration into tissues and suppresses T cell activity via a signalling pathway that involves APOE, LILRB4, SHP-2, uPAR and ARG1 in acute myeloid leukaemia (AML) cells. Deletion of LILRB4 or the use of antibodies to block LILRB4 signalling impeded AML development. Thus, LILRB4 orchestrates tumour invasion pathways in monocytic leukaemia cells by creating an immunosuppressive microenvironment. LILRB4 represents a compelling target for the treatment of monocytic AML.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Evasão Tumoral/imunologia , Animais , Apolipoproteínas E/metabolismo , Arginase/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Movimento Celular , Proliferação de Células , Feminino , Humanos , Tolerância Imunológica/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores Imunológicos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Evasão Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Ther ; 26(10): 2487-2495, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30131301

RESUMO

To effectively improve treatment for acute myeloid leukemia (AML), new molecular targets and therapeutic approaches need to be identified. Chimeric antigen receptor (CAR)-modified T cells targeting tumor-associated antigens have shown promise in the treatment of some malignancies. However, CAR-T cell development for AML has been limited by lack of an antigen with high specificity for AML cells that is not present on normal hematopoietic stem cells, and thus will not result in myelotoxicity. Here we demonstrate that leukocyte immunoglobulin-like receptor-B4 (LILRB4) is a tumor-associated antigen highly expressed on monocytic AML cells. We generated a novel anti-LILRB4 CAR-T cell that displays high antigen affinity and specificity. These CAR-T cells display efficient effector function in vitro and in vivo against LILRB4+ AML cells. Furthermore, we demonstrate anti-LILRB4 CAR-T cells are not toxic to normal CD34+ umbilical cord blood cells in colony-forming unit assays, nor in a humanized hematopoietic-reconstituted mouse model. Our data demonstrate that anti-LILRB4 CAR-T cells specifically target monocytic AML cells with no toxicity to normal hematopoietic progenitors. This work thus offers a new treatment strategy to improve outcomes for monocytic AML, with the potential for elimination of leukemic disease while minimizing the risk for on-target off-tumor toxicity.


Assuntos
Antígenos de Neoplasias/genética , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T/administração & dosagem , Receptores de Superfície Celular/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/imunologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/imunologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Glicoproteínas de Membrana , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/imunologia , Receptores Imunológicos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
12.
J Hematol Oncol ; 11(1): 30, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482582

RESUMO

BACKGROUND: We recently identified the human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse ortholog-paired Ig-like receptor (PirB) as receptors for several angiopoietin-like proteins (Angptls). We also demonstrated that PirB is important for the development of acute myeloid leukemia (AML), but exactly how an inhibitory receptor such as PirB can support cancer development is intriguing. RESULTS: Here, we showed that the activation of Ca (2+)/calmodulin-dependent protein kinases (CAMKs) is coupled with PirB signaling in AML cells. High expression of CAMKs is associated with a poor overall survival probability in patients with AML. Knockdown of CAMKI or CAMKIV decreased human acute leukemia development in vitro and in vivo. Mouse AML cells that are defective in PirB signaling had decreased activation of CAMKs, and the forced expression of CAMK partially rescued the PirB-defective phenotype in the MLL-AF9 AML mouse model. The inhibition of CAMK kinase activity or deletion of CAMKIV significantly slowed AML development and decreased the AML stem cell activity. We also found that CAMKIV acts through the phosphorylation of one of its well-known target (CREB) in AML cells. CONCLUSION: CAMKs are essential for the growth of human and mouse AML. The inhibition of CAMK signaling may become an effective strategy for treating leukemia.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Imunológicos/metabolismo , Transdução de Sinais
13.
ACS Appl Mater Interfaces ; 9(33): 27402-27408, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28796477

RESUMO

MoS2 as atomically thin semiconductor is highly sensitive to ambient atmosphere (e.g., oxygen, moisture, etc.) in optical and electrical properties. Here we report a controlled gas molecules doping of monolayer MoS2 via atomic-layer-deposited Al2O3 films. The deposited Al2O3 films, in the shape of nanospheres, can effectively control the contact areas between ambient atmosphere and MoS2 that allows precise modulation of gas molecules doping. By analyzing photoluminescence (PL) emission spectra of MoS2 with different thickness of Al2O3, the doped carrier concentration is estimated at ∼2.7 × 1013 cm-2 based on the mass action model. Moreover, time-dependent PL measurements indicate an incremental stability of single layer MoS2 as the thicknesses of Al2O3 capping layer increase. Effective control of gas molecules doping in monolayer MoS2 provides us a valuable insight into the applications of MoS2 based optical and electrical devices.

14.
FEBS Lett ; 590(14): 2241-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27264719

RESUMO

SIRT2 plays important roles in multiple biological processes. It is unclear whether SIRT2 affects antioxidant capacity by modulating Nrf2, a key transcription factor for multiple antioxidant genes. By studying NADH-treated differentiated PC12 cells, we found that NADH induced a significant increase in the nuclear Nrf2, which was prevented by both SIRT2 siRNA and SIRT2 inhibitor, AGK2. SIRT2 siRNA also blocked the NADH-induced increases in glutamate cysteine ligase (GCL) and glutathione. Moreover, SIRT2 siRNA and AGK2 blocked NADH-induced Akt phosphorylation, and inhibition of Akt phosphorylation prevented NADH-induced increases in the nuclear Nrf2 and glutathione. Collectively, our study shows that SIRT2 regulates nuclear Nrf2 levels by modulating Akt phosphorylation, thus modulating the levels of GCL and total glutathione.


Assuntos
Núcleo Celular/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 2/metabolismo , Animais , Núcleo Celular/genética , Glutamato-Cisteína Ligase/genética , Glutationa/genética , NAD/farmacologia , Fator 2 Relacionado a NF-E2/genética , Células PC12 , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Sirtuína 2/genética
15.
Cancer Lett ; 378(1): 1-7, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157912

RESUMO

NADH shuttles, including malate-aspartate shuttle (MAS) and glycerol-3-phosphate shuttle, can shuttle the reducing equivalents of cytosolic NADH into mitochondria. It is widely accepted that the major function of NADH shuttles is to increase mitochondrial energy production. Our study tested the hypothesis that the novel major function of NADH shuttles in cancer cells is to maintain glycolysis by decreasing cytosolic NADH/NAD(+) ratios. We found that AOAA, a widely used MAS inhibitor, led to decreased intracellular ATP levels, altered cell cycle and increased apoptosis and necrosis of C6 glioma cells, without affecting the survival of primary astrocyte cultures. AOAA also decreased the glycolytic rate and the levels of extracellular lactate and pyruvate, without affecting the mitochondrial membrane potential of C6 cells. Moreover, the toxic effects of AOAA were completely prevented by pyruvate treatment. Collectively, our study has suggested that AOAA may be used to selectively decrease glioma cell survival, and the major function of MAS in cancer cells may be profoundly different from its major function in normal cells: The major function of MAS in cancer cells is to maintain glycolysis, instead of increasing mitochondrial energy metabolism.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Amino-Oxiacético/farmacologia , Antineoplásicos/farmacologia , Ácido Aspártico/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Glicólise/efeitos dos fármacos , Malatos/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo , Glioma/metabolismo , Glioma/patologia , Proteínas de Membrana Transportadoras/metabolismo , Necrose , Cultura Primária de Células , Ratos , Transdução de Sinais/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-28078052

RESUMO

Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.

17.
Cell Cycle ; 15(1): 25-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26636629

RESUMO

Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.


Assuntos
Genes cdc/imunologia , Neoplasias/imunologia , Receptores Imunológicos/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Humanos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/fisiologia
18.
Neurochem Res ; 40(6): 1311-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25998884

RESUMO

NADH shuttles mediate the transfer of the reducing equivalents of cytosolic NADH into mitochondria. Cumulating evidence has suggested that malate-aspartate shuttle (MAS), one of the two types of NADH shuttles, plays significant roles in such biological processes as glutamate synthesis in neurons. However, there has been no information regarding the roles of NADH shuttle in the survival and energy metabolism of microglia. In current study, using microglial BV2 cells as a cellular model, we determined the roles of MAS in the survival and energy metabolism of microglia by using aminooxyacetate acid (AOAA)-a widely used MAS inhibitor. Our study has suggested that AOAA can effectively inhibit the MAS activity of the cells. We also found that AOAA can induce both early- and late-stage apoptosis of resting microglia and lipopolysaccharides (LPS)-activated microglia. AOAA also induced mitochondrial depolarization, increases in the cytosolic Ca(2+) concentrations, and decreases in the intracellular ATP levels. Moreover, our study has excluded the possibility that the major nonspecific effect of AOAA-inhibition of GABA transaminase-is involved in theses effects of AOAA. Collectively, our study has provided first information suggesting significant roles of MAS in the survival and energy metabolism in both resting microglia and LPS-activated microglia.


Assuntos
Ácido Amino-Oxiacético/farmacologia , Apoptose/efeitos dos fármacos , Ácido Aspártico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Malatos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , 4-Aminobutirato Transaminase/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , L-Lactato Desidrogenase/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
19.
Curr Med Chem ; 22(10): 1239-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25666794

RESUMO

NAD(+) and NADH play crucial roles in a variety of biological processes including energy metabolism, mitochondrial functions, and gene expression. Multiple studies have indicated that NAD(+) administration can profoundly decrease oxidative cell death as well as ischemic and traumatic brain injury, suggesting NAD(+) metabolism as a promising therapeutic target for cerebral ischemia and head injury. Cumulating evidence has suggested that NAD(+) can produce its protective effects by multiple mechanisms, including preventing mitochondrial alterations, enhancing energy metabolism, preventing virtually all forms of cell death including apoptosis, necrosis and autophagy, inhibiting inflammation, directly increasing antioxidation capacity of cells and tissues, and activating SIRT1. Increasing evidence has also suggested that NADH metabolism is a potential therapeutic target for treating several neurological disorders. A number of studies have further indicated that multiple NAD(+)-dependent enzymes such as sirtuins, polymerase(ADP-ribose) polymerases (PARPs) and CD38 mediate cell death and multiple biological processes. In this article, an overview of the recent findings regarding the roles of NAD(+)/NADH and NAD(+)-dependent enzymes in cell death and ischemic brain injury is provided. These findings have collectively indicated that NAD(+)/NADH and NAD(+)-dependent enzymes play fundamental roles in oxidative stress-induced cell death and ischemic brain injury, which may become promising therapeutic targets for brain ischemia and multiple other neurological disorders.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo , Animais , Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Morte Celular , Humanos
20.
Neuroreport ; 26(2): 88-93, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25536118

RESUMO

It has been reported that inhibition of sirtuin 2 (SIRT2), a sirtuin family protein, can decrease cellular and tissue injuries in models of Parkinson's disease (PD) and Huntington's disease (HD); however, the mechanisms underlying these observations have remained unclear. Because inflammation plays key pathological roles in multiple major neurological disorders including PD and HD, in our current study we tested our hypothesis that SIRT2 plays an important role in microglial activation. We found that treatment of BV2 microglia with lipopolysaccharides led to significant increases in NO and inducible nitric oxide synthase mRNA levels, as well as increases in the levels of tumor necrosis factor-α and interleukin 6 mRNA, which indicated microglial activation. These increases were significantly decreased in the cells with SIRT2 silencing-produced decreases in the SIRT2 level. These observations suggest that SIRT2 is required for lipopolysaccharide-induced microglial activation. The findings also suggest that SIRT2 may be a therapeutic target for inhibiting the inflammatory responses in neurological disorders such as PD and HD.


Assuntos
Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 2/metabolismo , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Sirtuína 2/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA