Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(10)2018 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-30249030

RESUMO

Xanthine-based KMUP-1 was shown to inhibit phosphodiesterases (PDEs) and modulate G-protein coupled receptors (GPCRs) to lower hyperlipidemia and body weight. This study further investigated whether KMUP-1 affects adipogenesis and lipolysis in 3T3-L1 preadipocytes. KMUP-1 (1⁻40 µM) concentration-dependently attenuated Oil Red O (ORO) staining and decreased triglyceride (TG) accumulation, indicating adipogenesis inhibition in 3T3-L1 cells. In contrast, the ß-agonist ractopamine increased ORO staining and TG accumulation and adipogenesis. KMUP-1 (1⁻40 µM) also reduced MAPKs/Akt/PPARγ expression, PPARγ1/PPARγ2 mRNA, and p-ERK immunoreactivity at the adipogenesis stage, but enhanced hormone sensitive lipase (HSL) immunoreactivity at the lipolysis stage. Addition of protein kinase A (PKA) or protein kinase G (PKG) antagonist (KT5720 or KT5728) to adipocytes did not affect HSL immunoreactivity. However, KMUP-1 did increase HSL immunoreactivity and the effect was reduced by PKA or PKG antagonist. Simvastatin, theophylline, caffeine, and sildenafil, like KMUP-1, also enhanced HSL immunoreactivity. Phosphorylated HSL (p-HSL) was enhanced by KMUP-1, indicating increased lipolysis in mature 3T3-L1 adipocytes. Decreases of MAPKs/Akt/PPARγ during adipogenesis contributed to inhibition of adipocyte differentiation, and increases of PKA/PKG at lipolysis contributed to HSL activation and TG hydrolysis. Taken together, the data suggest that KMUP-1 can inhibit hyperadiposity in 3T3-L1 adipocytes.


Assuntos
Adipócitos/citologia , Adipogenia/efeitos dos fármacos , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo , Xantinas/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esterol Esterase/metabolismo
2.
Int J Mol Sci ; 17(8)2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27548140

RESUMO

KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) has been reported to cause hepatic fat loss. However, the action mechanisms of KMUP-1 in obesity-induced steatohepatitis remains unclear. This study elucidated the steatohepatitis via matrix metallopeptidase 9 (MMP-9) and tumor necrosis factor α (TNFα), and related lipolysis via hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) by KMUP-1. KMUP-1 on steatohepatitis-associated HSL/p-HSL/ATGL/MMP-9/TNFα/interleukin-10 (IL-10) and infiltration of M1/M2 macrophages in obese mice were examined. KMUP-1 was administered by oral gavage from weeks 1-14 in high-fat diet (HFD)-supplemented C57BL/6J male mice (protection group) and from weeks 8-14, for 6 weeks, in HFD-induced obese mice (treatment group). Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining of tissues, oil globules number and size, infiltration and switching of M1/M2 macrophages were measured to determine the effects on livers. IL-10 and MMP-9 proteins were explored to determine the effects of KMUP-1 on M1/M2 macrophage polarization in HFD-induced steatohepatitis. Long-term administration of KMUP-1 reversed HFD-fed mice increased in body weight, sGOT/sGPT, triglyceride (TG) and glucose. Additionally, KMUP-1 decreased MMP-9 and reactive oxygen species (ROS), and increased HSL/p-HSL and IL-10 in HFD mice livers. In conclusion, KMUP-1, a phosphodiesterase inhibitor (PDEI), was shown to reduce lipid accumulation in liver tissues, suggesting that it could be able to prevent or treat steatohepatitis induced by HFD.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Interleucina-10/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Piperidinas/química , Piperidinas/uso terapêutico , Esterol Esterase/metabolismo , Teofilina/química , Xantinas/química , Xantinas/uso terapêutico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Obesos , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/metabolismo
3.
J Lipid Res ; 56(11): 2070-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26351364

RESUMO

The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1-14 or 8-14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10(-7)∼10(-5) M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3',5'-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit (14)C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight.


Assuntos
Hiperlipoproteinemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Piperidinas/farmacologia , Xantinas/farmacologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Hiperlipoproteinemias/etiologia , Hipolipemiantes/uso terapêutico , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/fisiologia , Lipoproteínas HDL/sangue , Lipoproteínas LDL/metabolismo , Fígado/patologia , Masculino , Ácido Mevalônico/metabolismo , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Piperidinas/uso terapêutico , Receptores de LDL/metabolismo , Receptores Depuradores Classe B/metabolismo , Sistemas do Segundo Mensageiro , Esterol Esterase/metabolismo , Xantinas/uso terapêutico
4.
Molecules ; 20(6): 10435-49, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26056815

RESUMO

The signaling cascades of the mitogen activated protein kinase (MAPK) family, calcineurin/NFATc4, and PI3K/Akt/GSK3, are believed to participate in endothelin-1 (ET-1)-induced cardiac hypertrophy. The aim of this study was to investigate whether KMUP-1, a synthetic xanthine-based derivative, prevents cardiomyocyte hypertrophy induced by ET-1 and to elucidate the underlying mechanisms. We found that in H9c2 cardiomyocytes, stimulation with ET-1 (100 nM) for 4 days induced cell hypertrophy and enhanced expressions of hypertrophic markers, including atrial natriuretic peptide and brain natriuretic peptide, which were all inhibited by KMUP-1 in a dose-dependent manner. In addition, KMUP-1 prevented ET-1-induced intracellular reactive oxygen species generation determined by the DCFH-DA assay in cardiomyocytes. KMUP-1 also attenuated phosphorylation of ERK1/2 and Akt/GSK-3ß, and activation of calcineurin/NFATc4 and RhoA/ROCK pathways induced by ET-1. Furthermore, we found that the expression of heme oxygenase-1 (HO-1), a stress-response enzyme implicated in cardio-protection, was up-regulated by KMUP-1. Finally, KMUP-1 attenuated ET-1-stimulated activator protein-1 DNA binding activity. In conclusion, KMUP-1 attenuates cardiomyocyte hypertrophy induced by ET-1 through inhibiting ERK1/2, calcineurin/NFATc4 and RhoA/ROCK pathways, with associated cardioprotective effects via HO-1 activation. Therefore, KMUP-1 may have a role in pharmacological therapy of cardiac hypertrophy.


Assuntos
Calcineurina/metabolismo , Endotelina-1/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Heme Oxigenase-1/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Xantinas/farmacologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Ativação Enzimática , Glicogênio Sintase Quinase 3 beta , Hipertrofia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Miócitos Cardíacos/patologia , Ligação Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1
5.
J Cell Physiol ; 230(9): 2038-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25536014

RESUMO

Phosphodiesterase (PDE) inhibitors have been suggested as a possible candidate for the treatment of osteopenia, including osteoporosis. KMUP-1 is a novel xanthine derivative with inhibitory activities on the PDE 3, 4, and 5 iso-enzymes to suppress the degradation of cAMP and cGMP. This study aimed to investigate the effect of KMUP-1 on osteoblast differentiation and the underlying cellular and molecular mechanisms. Primary osteoblasts and osteoblastic MC3T3-E1 cells were examined. KMUP-1 enhanced alkaline phosphatase (ALP) activity and mineralization compared to untreated controls in primary osteoblasts and MC3T3-E1 cells. KMUP-1 also increased the mRNA expression of the osteoblastic differentiation markers, including collagen type 1a, ALP, osteocalcin, osteoprotegerin, BMP-2, and Runx2, a key transcription regulator for osteoblastic differentiation. The osteogenic effect of KMUP-1 was abolished by BMP signaling inhibitor, noggin. Furthermore, we found that KMUP-1 upregulated Smad1/5/8 phosphorylations with subsequent BRE-Luc activation confirmed by transient transfection assay. In addition, KMUP-1 inactivated glycogen synthase kinase-3ß (GSK-3ß), with associated nuclear translocation of ß-catenin. Co-treatment with H89 and KT5823, cAMP and cGMP pathway inhibitors, respectively, reversed the KMUP-1-induced activations of Smad1/5/8, ß-catenin, and Runx2. The findings demonstrate for the first time that KMUP-1 can promote osteoblast maturation and differentiation in vitro via BMP-2/Smad1/5/8 and Wnt/ß-catenin pathways. These effects are mediated, in part, by the cAMP and cGMP signaling. Thus, KMUP-1 may be a novel osteoblast activator and a potential new therapy for osteoporosis.


Assuntos
Proteína Morfogenética Óssea 2/biossíntese , Diferenciação Celular/efeitos dos fármacos , Piperidinas/administração & dosagem , Proteína Smad1/biossíntese , Proteína Smad5/biossíntese , Proteína Smad8/biossíntese , Xantinas/administração & dosagem , Animais , Proteína Morfogenética Óssea 2/genética , Calcificação Fisiológica , Linhagem Celular , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , RNA Mensageiro/biossíntese , Proteína Smad1/genética , Proteína Smad5/genética , Proteína Smad8/genética , Via de Sinalização Wnt
6.
Mol Pharm ; 11(5): 1621-31, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24669856

RESUMO

Neuropathic pain is characterized by spontaneous pain, hyperalgesia, and allodynia. The aim of this study was to investigate whether KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) could improve pain hypersensitivity and reduce inflammatory mediators, and also explore possible mechanisms in the rat sciatic nerve using bilateral chronic constriction injury (CCI) to induce neuropathic pain. Sprague-Dawley rats were randomly divided into four groups: Sham, Sham+KMUP-1, CCI, and CCI+KMUP-1. KMUP-1 (5 mg/kg/day) was injected intraperitoneally starting at day 1 after surgery. Mechanical and thermal responses were assessed before surgery and at days 3, 7, and 14 after CCI. Sciatic nerves around the injury site were isolated for Western blots and enzyme-linked immunosorbent assay to analyze protein and cytokine levels. The results show that thermal hyperalgesia and mechanical allodynia were reduced in the KMUP-1 treated group as compared to that in the CCI group. Inflammatory proteins (COX2, iNOS, and nNOS) and proinflammatory cytokines (TNF-α and IL-1ß) induced by CCI were decreased in the KMUP-1 treated group at day 7 after surgery. KMUP-1 also inhibited neuropathic pain-related mechanisms, including p38 and ERK activation, but not JNK. Furthermore, KMUP-1 blocked IκB phosphorylation (p-IκB) and phospho-nuclear factor κB (p-NF-κB) translocation to nuclei. Double immunofluorescent staining further demonstrated that p-IκB (an indicator of activated NFκB) and p-NFκB proteins were almost abolished by KMUP-1 in peripheral macrophages and spinal microglia cells at day 7 after surgery. On the basis of these findings, we concluded that KMUP-1 has antiinflammatory and antihyperalgesia properties in CCI-induced neuropathic pain via decreases in MAPKs and NF-κB activation.


Assuntos
Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Piperidinas/química , Piperidinas/uso terapêutico , Xantina/química , Xantinas/química , Xantinas/uso terapêutico , Animais , Western Blotting , Hiperalgesia , Imuno-Histoquímica , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Int J Urol ; 21(1): 87-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23692571

RESUMO

OBJECTIVES: To investigate whether 7-[2-[4-(2-chlorophenyl) piperazinyl] ethyl]-1,3-di-methylxanthine (KMUP-1) inhibits the effects of testosterone on the development of benign prostatic hyperplasia and sensitizes prostate contraction. METHODS: A benign prostatic hyperplasia animal model was established by subcutaneous injections of testosterone (3 mg/kg/day, s.c.) for 4 weeks in adult male Sprague-Dawley rats. Animals were divided into six groups: control, testosterone, testosterone with KMUP-1 (2.5, 5 mg/kg/day), sildenafil (5 mg/kg/day) or doxazosin (5 mg/kg/day). After 4 weeks, the animals were killed, and prostate tissues were prepared for isometric tension measurement and western blotting analysis. KMUP-1, Y27632, zaprinast, doxazosin or tamsulosin were used at various concentrations to determine the contractility sensitized by phenylephrine (10 µmol/L). RESULTS: KMUP-1 inhibited testosterone-induced phosphorylation of extracellular signal-regulated phosphorylated protein kinase and mitogen-activated protein kinase kinase and Rho kinase-II activation. Sildenafil and doxazosin significantly decreased benign prostatic hyperplasia-induced mitogen-activated protein kinase kinase and Rho kinase-II activation. The decreased expressions of soluble guanylate cyclase α1 was reversed by KMUP-1, doxazosin and sildenafil. Soluble guanylate cyclase ß1 and protein kinase G were increased by KMUP-1, doxazosin, and sildenafil in the testosterone-treated benign prostatic hyperplasia group. Phosphodiesterase-5A was increased by testosterone and inhibited by KMUP-1 (5 mg/kg/day) or sildenafil (5 mg/kg/day). KMUP-1 inhibited phenylephrine-sensitized prostate contraction of rats treated with testosterone. CONCLUSIONS: Mitogen-activated protein kinase 1/extracellular regulated protein kinases kinase, soluble guanylate cyclase/cyclic guanosine monophosphate, protein kinase/protein kinase G and Rho kinase-II are related to prostate smooth muscle tone and proliferation induced by testosterone. KMUP-1 inhibits testosterone-induced prostate hyper-contractility and mitogen-activated protein kinase 1/extracellular regulated protein kinases kinase-phosphorylation, and it inactivates Rho kinase-II by cyclic guanosine monophosphate, protein kinase and α1A-adenergic blockade. Thus, KMUP-1 might be a beneficial pharmacotherapy for benign prostatic hyperplasia.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Guanilato Ciclase/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Piperidinas/farmacologia , Hiperplasia Prostática/prevenção & controle , Receptores Citoplasmáticos e Nucleares/fisiologia , Xantinas/farmacologia , Quinases Associadas a rho/fisiologia , Animais , Proteínas Quinases Dependentes de GMP Cíclico/efeitos dos fármacos , Modelos Animais de Doenças , Guanilato Ciclase/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Guanilil Ciclase Solúvel , Quinases Associadas a rho/efeitos dos fármacos
8.
Pediatr Pulmonol ; 49(8): 734-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24167111

RESUMO

Pulmonary vascular remodeling, characterized by disordered proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a pathognomonic feature of pulmonary arterial hypertension. Thus, pharmacologic strategy targeting on anti-proliferation and anti-migration of PASMCs may have therapeutic implications for PAH. Here we investigated the effects and underlying mechanisms of B-type natriuretic peptide (BNP) on angiotensin II (Ang II)-induced proliferation and migration of PASMCs. Proliferation and migration of PASMCs cultured from Wistar rats were induced by Ang II, with or without BNP treatment. In addition, potential underlying mechanisms including cell cycle progression, Ca(2+) overload, reactive oxygen species (ROS) production, signal transduction of MAPK and Akt, and the cGMP/PKG pathway were examined. We found that BNP inhibited Ang II-induced PASMCs proliferation and migration dose dependently. BNP could also arrest the cell cycle progression in the G0/G1-phase. In addition, BNP attenuated intracellular calcium overload caused by Ang II. Moreover, Ang II-induced ROS production was mitigated by BNP, with associated down-regulation of NAD(P)H oxidase 1 (Nox1) and reduced mitochondrial ROS production. Finally, Ang II-activated MAPKs and Akt were also counteracted by BNP. Of note, all these effects of BNP were abolished by a PKG inhibitor (Rp-8-Br-PET-cGMPS). In conclusion, BNP inhibits Ang II-induced PASMCs proliferation and migration. These effects are potentially mediated by decreased calcium influx, reduced ROS production by Nox1 and mitochondria, and down-regulation of MAPK and Akt signal transduction, through the cGMP/PKG pathway. Therefore, this study implicates that BNP may have a therapeutic role in pulmonary vascular remodeling.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Natriuréticos/farmacologia , Peptídeo Natriurético Encefálico/farmacologia , Artéria Pulmonar/citologia , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Regulação para Baixo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , NADH NADPH Oxirredutases/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Vasoconstritores/farmacologia
9.
PLoS One ; 8(7): e69468, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936022

RESUMO

BACKGROUND: KMUP-1 is a xanthine derivative with inhibitory activities on the phosphodiesterase (PDE) 3,4 and 5 isoenzymes to suppress the degradation of cyclic AMP and cyclic GMP. However, the effects of KMUP-1 on osteoclast differentiation are still unclear. In this study, we investigated whether KMUP-1 inhibits osteoclastogenesis induced by RANKL in RAW 264.7 cells and bone loss induced by ovariectomy in mice, and the underlying mechanisms. PRINCIPAL FINDINGS: In vitro, KMUP-1 inhibited RANKL-induced TRAP activity, the formation of multinucleated osteoclasts and resorption-pit formation. It also inhibited key mediators of osteoclastogenesis including IL-1ß, IL-6, TNF-α and HMGB1. In addition, KMUP-1 inhibited RANKL-induced activation of signaling molecules (Akt, MAPKs, calcium and NF-κB), mRNA expression of osteoclastogensis-associated genes (TRAP, MMP-9, Fra-1, and cathepsin K) and transcription factors (c-Fos and NFATc1). Furthermore, most inhibitory effects of KMUP-1 on RANKL-mediated signal activations were reversed by a protein kinase A inhibitor (H89) and a protein kinase G inhibitor (KT5823). In vivo, KMUP-1 prevented loss of bone mineral content, preserved serum alkaline phosphate and reduced serum osteocalcin in ovariectomized mice. CONCLUSIONS: KMUP-1 inhibits RANKL-induced osteoclastogenesis in vitro and protects against ovariectomy-induced bone loss in vivo. These effects are mediated, at least in part, by cAMP and cGMP pathways. Therefore, KMUP-1 may have a role in pharmacologic therapy of osteoporosis.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Cálcio/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoporose/prevenção & controle , Ovariectomia , Piperidinas/farmacologia , Ligante RANK/genética , Xantinas/farmacologia , Animais , Densidade Óssea , Calcineurina/genética , Calcineurina/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais
11.
J Pharm Pharmacol ; 65(2): 300-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23278698

RESUMO

OBJECTIVES: Previous studies have shown eugenosedin-A, a 5-HT(1B/2A) and α(1)/α(2)/ß(1)-adrenergic blocker, is able to decrease cholesterol levels, hyperglycaemia and inflammation in hyperlipidaemic mice induced by high-fat diet (HFD). The aim of this study is to examine the effects of eugenosedin-A on the inhibition of adhesion molecules of platelets, the aorta and acyl-coenzymeA:cholesterol acyltransferase-1 (ACAT-1) of macrophages in a hyperlipidaemic rat model. METHODS: Six-week-old Sprague-Dawley rats were randomly divided into two control and treatment groups. The control rats received either a regular diet or HFD and the treatment groups were fed HFD with either 5 mg/kg eugenosedin-A or atorvastatin for a 10-week period. KEY FINDINGS: Compared with the two control groups, the HFD group had lower levels of high-density lipoprotein, higher concentrations of triglycerides, total cholesterol, low-density lipoprotein and insulin. The expression of adhesion molecules in platelets, aorta and monocyte-macrophage were enhanced by HFD. HFD also increased upstream proteins and their phosphorylated form in the aorta. In treatment groups, eugenosedin-A and atorvastatin improved HFD-induced hyperlipidaemia and levels of insulin. Eugenosedin-A reduced the upregulation of P-selectin, ICAM-1, ICAM-2, ICAM-3, VCAM, PECAM in platelets and inhibited E-selectin, ICAM-1, ICAM-2, ICAM-3, VCAM and PECAM protein levels in the aorta. Eugenosedin-A reduced the ACAT-1 protein expression of monocyte-macrophages. The expression of PKCα, MAPKs, IKKα and p65 and their phosphorylated form were reduced in treatment groups. CONCLUSIONS: Taken together, hyperlipidaemia enhances the expression of adhesion molecules and ACAT-1 protein, and eugenosedin-A ameliorates those increases. Through inhibition of MAPK- and p-65-mediated NF-κB pathway, eugenosedin-A decreases the quantity of adhesion molecules.


Assuntos
Moléculas de Adesão Celular/metabolismo , Dieta Hiperlipídica/efeitos adversos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Piperazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/antagonistas & inibidores , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Selectina E/metabolismo , Hiperlipidemias/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fator de Transcrição RelA/metabolismo
12.
Int J Biol Sci ; 10(1): 64-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391452

RESUMO

This study investigated whether KMUP-1, a xanthine-derivative K(+) channel opener, could prevent serotonin-induced hypertrophy in H9c2 cardiomyocytes via L-type Ca(2+) channels (LTCCs). Rat heart-derived H9c2 cells were incubated with serotonin (10 µM) for 4 days. The cell size increased by 155.5%, and this was reversed by KMUP-1 (≥1 µM), and attenuated by the LTCC blocker verapamil (1 µM) and the 5-HT2A antagonist ketanserin (0.1 µM), but unaffected by the 5-HT2B antagonist SB206553. A perforated whole-cell patch-clamp technique was used to investigate Ca(2+) currents through LTCCs in serotonin-induced H9c2 hypertrophy, in which cell capacitance and current density were increased. The LTCC current (ICa,L) increased ~2.9-fold in serotonin-elicited H9c2 hypertrophy, which was attenuated by verapamil and ketanserin, but not affected by SB206553 (0.1 µM). Serotonin-increased ICa,L was reduced by KMUP-1, PKA and PKC inhibitors (H-89, 1 µM and chelerythrine, 1 µM) while the current was enhanced by the PKC activator PMA, (1 µM) but not the PKA activator 8-Br-cAMP (100 µM), and was abolished by KMUP-1. In contrast, serotonin-increased ICa,L was blunted by the PKG activator 8-Br-cGMP (100 µM), but unaffected by the PKG inhibitor KT5823 (1 µM). Notably, KMUP-1 blocked serotonin-increased ICa,L but this was partially reversed by KT5823. In conclusion, serotonin-increased ICa,L could be due to activated 5-HT2A receptor-mediated PKA and PKC cascades, and/or indirect interaction with PKG. KMUP-1 prevents serotonin-induced H9c2 cardiomyocyte hypertrophy, which can be attributed to its PKA and PKC inhibition, and/or PKG stimulation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Serotonina/farmacologia , Xantina/farmacologia , Animais , Linhagem Celular , Ativação Enzimática , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Ratos
13.
J Pharm Pharmacol ; 63(6): 860-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21585385

RESUMO

OBJECTIVES: Eugenosedin-A has been found to ameliorate high-fat diet (HFD)-induced hyperglycaemia and hyperlipidaemia in C57BL/6J mice. This study aimed to investigate the mechanisms of action of eugenosedin-A on endothelial function and inflammation in hyperlipidaemic mice. METHODS: C57BL/6J mice were randomly divided into two control groups and two treatment groups. The control mice received either a regular diet or HFD, and the treatment groups were fed HFD with either 5 mg/kg eugenosedin-A or atorvastatin for eight weeks. KEY FINDINGS: Mice fed a HFD had higher concentrations of nitrate (NO) but not prostaglandin E2 (PGE2), increased tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) mRNA and inducible nitric oxide synthase (iNOS) proteins, but decreased endothelial nitric oxide synthase (eNOS) proteins. HFD-induced upregulation of iNOS is associated with p38, extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK), PI3K and Akt/IKKα/p65. Eugenosedin-A and atorvastatin reduced HFD-induced TNF-α and IFN-γ mRNA, NO generation, upregulation of iNOS protein, and down-regulation of eNOS protein. Both agents inhibited p38, ERK, JNK and Akt/IKKα/p65 protein levels in the aorta. However, eugenosedin-A did not significantly reduce p38 in the liver. CONCLUSIONS: Our results showed an association between obesity-induced inflammation and altered levels of TNF-α, IFN-γ, p38, ERK, JNK and Akt/IKKα/p65. Eugenosedin-A, like atorvastatin, could inhibit p38, ERK, JNK, Akt/IKKα/p65 proteins, as well as TNF-α and IFN-γ mRNA during the regulation of the obesity-induced inflammatory process.


Assuntos
Anti-Inflamatórios/uso terapêutico , Endotélio Vascular/efeitos dos fármacos , Ácidos Heptanoicos/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Piperazinas/uso terapêutico , Pirróis/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Atorvastatina , Gorduras na Dieta/efeitos adversos , Regulação para Baixo , Endotélio Vascular/metabolismo , Feminino , Ácidos Heptanoicos/farmacologia , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interferon gama/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Óxido Nítrico/metabolismo , Obesidade/complicações , Piperazinas/farmacologia , Pirróis/farmacologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Fator de Necrose Tumoral alfa/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-19339484

RESUMO

San-Huang-Xie-Xin-Tang (SHXT), composed of Coptidis rhizoma, Scutellariae radix and Rhei rhizoma, is a traditional Chinese herbal medicine used to treat gastritis, gastric bleeding and peptic ulcers. This study investigated the neuroprotective effects of SHXT on microglia-mediated neurotoxicity using co-cultured lipopolysaccharide (LPS)-activated microglia-like BV-2 cells with neuroblastoma SH-SY5Y cells. Effects of SHXT on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity were also examined in SH-SY5Y cells. Results indicated SHXT inhibited LPS-induced inflammation of BV-2 cells by downregulation of iNOS, NO, COX-2, PGE(2), gp91(phox), iROS, TNF-α, IL-1ß, inhibition of IκBα degradation and upregulation of HO-1. In addition, SHXT increased cell viability and down regulated nNOS, COX-2 and gp91(phox) of SH-SY5Y cells co-cultured with LPS activated BV-2 cells. SHXT treatment increased cell viability and mitochondria membrane potential (MMP), decreased expression of nNOS, COX-2, gp91(phox) and iROS, and inhibited IκBα degradation in 6-OHDA-treated SH-SY5Y cells. SHXT also attenuated LPS activated BV-2 cells- and 6-OHDA-induced cell death in differentiated SH-SY5Y cells with db-cAMP. Furthermore, SHXT-inhibited nuclear translocation of p65 subunit of NF-κB in LPS treated BV-2 cells and 6-OHDA treated SH-SY5Y cells. In conclusion, SHXT showed protection from activated microglia- and 6-OHDA-induced neurotoxicity by attenuating inflammation and oxidative stress.

15.
Vascul Pharmacol ; 53(5-6): 239-49, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20870034

RESUMO

KMUP-1 inhibits monocrotaline (MCT)-induced pulmonary artery (PA) proliferation by targeting serotonin (5-HT) receptors, inactivating RhoA and reducing phosphorylation of AKT/ERK. In MCT-treated rats, KMUP-1 f (5 mg/kg p.o.; 1mg/kg i.p.x 21 days) decreased proliferation (PCNA-positive) cells and 5-HTT-expression in lung and 5-HT levels in plasma. In isolated PA, KMUP-1 and simvastatin (0.1-100 µM) inhibited 5-HT (10 µM)-induced PA constriction. l-NAME-pretreatment reduced KMUP-1-induced relaxation. In pulmonary arterial smooth muscle cells (PASMCs), KMUP-1 (1-100 µM) and simvastatin (10 µM) inhibited 5-HT-induced cell migration and proliferation and KMUP-1 (1-100 µM) inhibited 5-HT-induced Ca²+ influx. Similar to Y27632, KMUP-1 (1-100 µM) inhibited 5-HT-induced RhoA/ROCK expression, while KMUP-1, Y27632 and simvastatin at 10 µM inhibited 5-HT-induced 5-HTT expression and KMUP-1 inhibited 5-HT-induced phosphorylation of AKT and ERK1/2 in PASMCs. In human pulmonary arterial endothelial cell (HPAEC), KMUP-1 (1-100 µM) increased the expression of eNOS and 5-HT(2B) and also at 10 µM augmented eNOS expression and production of nitric oxide (NO) in 5-HT-treated HPAEC. In radioligand binding, the IC50/K(i) values of KMUP-1 for 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors were 0.34/0.0971, 0.04/0.0254, and 0.408/0.214 µM respectively. In conclusion, KMUP-1 inhibits MCT-induced PA proliferation by binding to 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors, increasing endothelial eNOS/5-HT(2B) receptor expression and NO release and inhibiting 5-HTT/RhoA/ROCK expression and AKT/ERK phosphorylation. KMUP-1 is suggested to be useful in the treatment of 5-HT-induced pulmonary artery proliferation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Óxido Nítrico Sintase/metabolismo , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Xantinas/farmacologia , Quinases Associadas a rho/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Monocrotalina , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fosforilação , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Ratos , Ratos Wistar , Quinases Associadas a rho/antagonistas & inibidores
16.
Pediatr Pulmonol ; 45(11): 1076-85, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20658482

RESUMO

Endothelium-derived nitric oxide (NO) and endothelin (ET)-1 interact to regulate the vascular tone in pulmonary hypertension (PH). We investigated the protective effects of an orally active, dual endothelin converting enzyme (ECE)/neutral endopeptidase (NEP) inhibitor/CGS 26393 on pulmonary vascular remodeling and pulmonary expressions of ET-1 and endothelial nitric oxide synthase (eNOS) during the development of PH secondary to cardiac dysfunction. Significant increases in the mean pulmonary arterial pressure, pulmonary arteriolar medial thickness, and pulmonary expression of ET-1 were seen in rats subjected to aortic banding for 4 weeks, compared with sham-operated rats. Treatment with CGS 26393 (30 mg/kg, twice daily, p.o.) began on 1 day after aortic banding. CGS 26393 treated rats had lower mean pulmonary arterial pressure (15 ± 1 mmHg, mean ± SEM, P < 0.05) compared to vehicle-treated rats (37 ± 1 mmHg). It also normalized pulmonary arteriolar medial thickness and reduced the levels of pulmonary ET-1 and big ET-1 by 55% (P < 0.05) and 28% (P < 0.01), respectively, when compared with vehicle-treated animals. Meanwhile, the expressions of eNOS mRNA and eNOS protein and cGMP levels in the lung of CGS 26393-treated rats were increased by 62% (P < 0.05), 100% (P < 0.05), and 32% (P < 0.01), respectively, compared to the vehicle-treated rats. These results suggest that CGS 26393 could offer preventive effects on the development of PH by ameliorating pulmonary remodeling, decreasing ET-1 production, and up-regulating eNOS and cGMP in aorta-banded rats. However, the molecular mechanisms by which treatment with CGS 26393 results in altered expressions of eNOS and cGMP awaits further investigation.


Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Hipertensão Pulmonar/tratamento farmacológico , Metaloendopeptidases/antagonistas & inibidores , Neprilisina/antagonistas & inibidores , Organofosfonatos/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Tetrazóis/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Endotelina-1/análise , Enzimas Conversoras de Endotelina , Hipertensão Pulmonar/enzimologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/fisiopatologia , Óxido Nítrico Sintase Tipo III/análise , Artéria Pulmonar/química , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/enzimologia , Ratos , Ratos Wistar , Regulação para Cima
17.
Phytomedicine ; 17(10): 760-70, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20171070

RESUMO

Baicalin isolated from Scutellaria baicalensis is a traditional Chinese herbal medicine used for cardiovascular dysfunction. The ionic mechanism of the vasorelaxant effects of baicalin remains unclear. We investigated whether baicalin relaxes mesenteric arteries (MAs) via large-conductance Ca2+-activated K+ (BK(Ca)) channel activation and voltage-dependent Ca2+ channel (VDCC) inhibition. The contractility of MA was determined by dual wire myograph. BK(Ca) channels and VDCCs were measured using whole-cell recordings in single myocytes, enzymatically dispersed from rat MAs. Baicalin (10-100 microM) attenuated 80 mM KCl-contracted MA in a concentration-related manner. L-NAME (30 microM) and indomethacin (10 microM) little affected baicalin (100 microM)-induced vasorelaxations. Contractions induced by iberiotoxin (IbTX, 0.1 microM), Bay K8644 (0.1 microM) or PMA (10 microM) were abolished by baicalin 100 microM. In MA myocytes, baicalin (0.3-30 microM) enhanced BK(Ca) channel activity in a concentration-dependent manner. Increased BK(Ca) currents were abolished by IbTX (0.1 microM). Baicalin-mediated (30 microM) BK(Ca) current activation was significantly attenuated by an adenylate cyclase inhibitor (SQ 22536, 10 microM), a soluble guanylate cyclase inhibitor (ODQ, 10 microM), competitive antagonists of cAMP and cGMP (Rp-cAMP, 100 microM and Rp-cGMP, 100 microM), and cAMP- and cGMP-dependent protein kinase inhibitors (KT5720, 0.3 microM and KT5823, 0.3 microM). Perfusate with PMA (0.1 microM) abolished baicalin-enhanced BK(Ca) currents. Additionally, baicalin (0.3-30 microM) reduced the amplitude of VDCC currents in a concentration-dependent manner and abolished VDCC activator Bay K8644-enhanced (0.1 microM) currents. Baicalin produced MA relaxation by activating BK(Ca) and inhibiting VDCC channels by endothelium-independent mechanisms and by stimulating the cGMP/PKG and cAMP/PKA pathways.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Flavonoides/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/agonistas , Scutellaria baicalensis/química , Animais , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Flavonoides/isolamento & purificação , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
18.
Toxicology ; 268(1-2): 46-54, 2010 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19962417

RESUMO

Aging populations with neurodegenerative disorders will gradually become a greater problem for society. Serum deprivation-induced cell death is recognized as one of the standard models for the study of neurotoxicity. Increasing evidence indicates that cGMP/PKG pathway may play a rescue role in serum deprivation-induced toxicity. The aim of this study was to investigate protective effects of KMUP-1, an enhancer of cGMP/PKG signaling on serum deprivation-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Under normal serum condition, KMUP-1 enhanced protein expression of nNOS, PKG and sGCalpha1, increased intracellular cyclic GMP level, and attenuated PDE5 expression. KMUP-1 also increased expression of BDNF and Bcl-2, but it did not affect Bax expression. The phosphorylation of Akt and CREB induced by KMUP-1 was inhibited by tyrosine kinase (TrK) inhibitor K252a and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, respectively. Under serum deprivation condition, flow cytometric analysis using Annexin V showed KMUP-1 increased cell viability, but lacked protective effects in the presence of nitric oxide synthase inhibitor l-NAME, PKG inhibitor Rp-8-pCPT-cGMPS or LY294002. KMUP-1 not only enhanced expression of nNOS, sGCalpha1, PKG, p-CREB, p-Akt and Bcl-2, but also attenuated Bax expression in serum deprivation-treated cultures. In conclusion, cGMP/PKG, PI3K/Akt/CREB and Bcl-2/Bax signals play critical roles in the neuroprotective effects of KMUP-1 on serum deprivation-induced toxicity.


Assuntos
Meios de Cultura Livres de Soro , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Sistema Nervoso/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Xantinas/farmacologia , Proteína X Associada a bcl-2/metabolismo , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Humanos , Sistema Nervoso/enzimologia , Sistema Nervoso/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Toxicol Sci ; 111(2): 267-76, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19567884

RESUMO

Alcohol metabolism involves several enzymes and the individual genetic variations in the alcohol metabolism are related to the absorption, distribution, and elimination of alcohol and metabolites such as acetaldehyde. Therefore, the genetic variations of alcohol-metabolizing enzymes are responsible for the different toxicity of alcohol in several organs like liver and immunological systems. The purpose of this study was to evaluate if the life styles such as drinking and smoking and the genetic variations of alcohol-metabolizing enzymes (ADH2, ALDH2, CYP2E1, and CAT) were associated with the immunological biomarkers. In this study, 105 high-risk drinkers and 102 low-risk drinkers who were excluded from the immune-related diseases and other critical diseases were enrolled to evaluate the immunological functions. Counts of white blood cells, mononuclear cells, and lymphocyte subpopulations, and liver and immunological function tests were measured. Genotypes of alcohol-metabolizing enzymes were assayed by a real-time PCR and PCR-restriction fragment length polymorphism. Generally, the activity of aspartate aminotransferase (AST) was higher than that of alanine aminotransferase (ALT) in alcoholics; however, the activities of AST and ALT were simultaneously elevated in general hepatitis except for alcohol-induced hepatitis. Thus, the higher ratio of AST/ALT was used to be a marker for the alcohol-induced abnormal liver function. Glutamyltransferase (GGT) is produced by the liver cell microsomes and is a useful laboratory marker as an indicator of early liver cell damage. An increase in GGT concentration has been regarded as a marker of alcohol consumption or liver disease. In addition, the synergistic effects of smoking and drinking on the count of white blood cell (WBC) and mononuclear cells were found to be significant. Furthermore, there were higher OR to become high-risk drinkers in subjects with the combination of ALDH2 (*1/*1) genotype and either genotype of ADH2 or CYP2E1 than the others with other combinations of genotypes. Additionally, there were more abnormal immunological tests in the subjects with higher activity of ADH2 and lower activity of ALDH2. Our results suggested that the habits of drinking, smoking, and betel chewing, and genetic variations of alcohol metabolism were associated with the immunological biomarkers.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Enzimas/metabolismo , Etanol/metabolismo , Polimorfismo Genético , Adulto , Idoso , Consumo de Bebidas Alcoólicas/imunologia , Enzimas/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
20.
Prostate ; 69(6): 610-23, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19143029

RESUMO

BACKGROUND: KMUP-1 has been suggested to be beneficial in the treatment of benign prostatic hyperplasia. This study is aimed to further investigate whether KMUP-1 and doxazosin prevent from prostate cancer cell growth via androgen-dependent and -independent pathway in vivo and in vitro. METHODS: KMUP-1 was measured the activity on proliferation, apoptosis and cell cycle distribution in prostate cancer cells (LNCaP, DU-145, PC-3) by MTT assay, flow cytometry, Western Blotting and enzyme-linked immunosorbent assay (ELISA). The inhibition activities on androgen receptor (AR) and AR-targeting molecular prostate-specific antigen (PSA) expression by KMUP-1 and doxazosin were measured by RT-PCR, Western Blotting, and ELISA. Furthermore, we confirmed the effects of KMUP-1 on growth of LNCaP xenografts in nude mice. RESULTS: KMUP-1 significantly inhibited LNCaP cell growth and induced apoptosis in time- and dose-dependent manner. KMUP-1 and doxazosin further inhibited the expression of AR and PSA. Treatment of LNCaP cells with KMUP-1 resulted in cell cycle arrest and apoptotic activities, increasing p21 and p27 and decreasing expressions of cyclin D1, cyclin E, cyclin dependent kinase (CDK) 4, CDK2 and CDK6. Moreover, KMUP-1 activated p53, cleaved poly (ADP-ribose) polymerase and caspase-3, but reduced the expression of Bcl-2. Regular administration of KMUP-1 suppressed the LNCaP xenograft tumor growth in nude mice. CONCLUSION: These evidences indicate that KMUP-1 and doxazosin inhibit LNCaP cell growth and downregulate expression of AR and PSA. KMUP-1 might be used as a chemoprevention agent for preventing the development of prostate cancer without cardiovascular adverse effect of doxazosin.


Assuntos
Antagonistas Adrenérgicos alfa/farmacologia , Doxazossina/farmacologia , Piperidinas/farmacologia , Antígeno Prostático Específico/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Xantinas/farmacologia , Animais , Divisão Celular/efeitos dos fármacos , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-bcl-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA