Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
N Engl J Med ; 383(5): 426-439, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32726529

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is the dominant cause of severe lower respiratory tract infection in infants, with the most severe cases concentrated among younger infants. METHODS: Healthy pregnant women, at 28 weeks 0 days through 36 weeks 0 days of gestation, with an expected delivery date near the start of the RSV season, were randomly assigned in an overall ratio of approximately 2:1 to receive a single intramuscular dose of RSV fusion (F) protein nanoparticle vaccine or placebo. Infants were followed for 180 days to assess outcomes related to lower respiratory tract infection and for 364 days to assess safety. The primary end point was RSV-associated, medically significant lower respiratory tract infection up to 90 days of life, and the primary analysis of vaccine efficacy against the primary end point was performed in the per-protocol population of infants (prespecified criterion for success, lower bound of the 97.52% confidence interval [CI] of ≥30%). RESULTS: A total of 4636 women underwent randomization, and there were 4579 live births. During the first 90 days of life, the percentage of infants with RSV-associated, medically significant lower respiratory tract infection was 1.5% in the vaccine group and 2.4% in the placebo group (vaccine efficacy, 39.4%; 97.52% CI, -1.0 to 63.7; 95% CI, 5.3 to 61.2). The corresponding percentages for RSV-associated lower respiratory tract infection with severe hypoxemia were 0.5% and 1.0% (vaccine efficacy, 48.3%; 95% CI, -8.2 to 75.3), and the percentages for hospitalization for RSV-associated lower respiratory tract infection were 2.1% and 3.7% (vaccine efficacy, 44.4%; 95% CI, 19.6 to 61.5). Local injection-site reactions among the women were more common with vaccine than with placebo (40.7% vs. 9.9%), but the percentages of participants who had other adverse events were similar in the two groups. CONCLUSIONS: RSV F protein nanoparticle vaccination in pregnant women did not meet the prespecified success criterion for efficacy against RSV-associated, medically significant lower respiratory tract infection in infants up to 90 days of life. The suggestion of a possible benefit with respect to other end-point events involving RSV-associated respiratory disease in infants warrants further study. (Funded by Novavax and the Bill and Melinda Gates Foundation; ClinicalTrials.gov NCT02624947.).


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano , Infecções Respiratórias/prevenção & controle , Adolescente , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Hipóxia/etiologia , Imunoglobulina G/sangue , Lactente , Recém-Nascido , Doenças do Recém-Nascido/prevenção & controle , Injeções Intramusculares , Nanopartículas , Distribuição de Poisson , Gravidez , Terceiro Trimestre da Gravidez , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/imunologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Vacinação , Proteínas Virais de Fusão/imunologia , Adulto Jovem
2.
Front Immunol ; 10: 1243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231380

RESUMO

Signaling through Toll-like receptor 7 (TLR7) drives the production of type I IFN and promotes the activation of autoreactive B cells and is implicated in the pathogenesis of systemic lupus erythematosus (SLE). While TLR7 has been extensively studied in murine lupus, much less is known about its role in the pathogenesis of human SLE. Genetic studies support a link between the TLR7 rs3853839 C/G polymorphism, which affects TLR7 mRNA turnover, and SLE susceptibility; however, the effects of this polymorphism on B cells have not been studied. Here we determined how changes in TLR7 expression affect peripheral B cells and auto-Ab production in SLE patients. High TLR7 expression in SLE patients driven by TLR7 rs3853839 C/G polymorphism was associated with more active disease and upregulation of IFN-responsive genes. TLR7hi SLE patients showed an increase in peripheral B cells. Most notably, the percentage and numbers of CD19+CD24++CD38++ newly-formed transitional (TR) B cells were increased in TLR7hi SLE patients as compared to HCs and TLR7norm/lo SLE patients. Using auto-Ab arrays, we found an increase and enrichment of auto-Ab specificities in the TLR7hi SLE group, including the production of anti-RNA/RNP-Abs. Upon in vitro TLR7 ligand stimulation, TR B cells isolated from TLR7hi but not TLR7norm/lo SLE patients produced anti-nuclear auto-Abs (ANA). Exposure of TR B cells isolated from cord blood to IFNα induced the expression of TLR7 and enabled their activation in response to TLR7 ligation in vitro. Our study shows that overexpression of TLR7 in SLE patients drives the expansion of TR B cells. High TLR7 signaling in TR B cells promotes auto-Ab production, supporting a possible pathogenic role of TR B cells in human SLE.


Assuntos
Autoanticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Expressão Gênica , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Receptor 7 Toll-Like/genética , Autoimunidade , Suscetibilidade a Doenças , Feminino , Humanos , Imunofenotipagem , Interferon-alfa/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Masculino , Receptor 7 Toll-Like/metabolismo
3.
Clin Immunol ; 193: 24-32, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29842945

RESUMO

Integrin alpha4/beta7 on circulating lymphocytes identifies them as gut-tropic, and can be targeted by the humanized antibody vedolizumab to treat inflammatory bowel disease (IBD). We found lymphocytes expressing alpha4/beta7 were significantly more responsive to the pro-inflammatory cytokines IL-6, IL-7, and IL-21, and less responsive to the regulatory T cell (Treg)-supporting cytokine IL-2. Alpha4/beta7 was expressed by a smaller percent of FOXP3 + Helios+ thymically-derived Tregs (tTregs) than FOXP3 + Helios- peripherally-derived Tregs (pTregs) or FOXP3- effector T cells. Integrin alpha4/beta7+ CD4 T cells were also rare among cells expressing the Th2 marker CRTh2, but enriched in cells bearing the circulating T follicular helper cell marker CXCR5. Thus the effect of this anti-integrin therapy on the mucosal immune system may be more qualitative than quantitative, and selectively replace pro-inflammatory effector cells with Tregs and Th2 cells to facilitate immune tolerance in the mucosa without globally depleting lymphocytes from the intestinal mucosa.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Doenças Inflamatórias Intestinais/imunologia , Integrinas/metabolismo , Intestinos/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th2/imunologia , Adulto , Circulação Sanguínea , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Integrinas/imunologia , Masculino , Pessoa de Meia-Idade , Receptores CXCR5/metabolismo
4.
Science ; 360(6387): 436-439, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29449511

RESUMO

CRISPR-Cas12a (Cpf1) proteins are RNA-guided enzymes that bind and cut DNA as components of bacterial adaptive immune systems. Like CRISPR-Cas9, Cas12a has been harnessed for genome editing on the basis of its ability to generate targeted, double-stranded DNA breaks. Here we show that RNA-guided DNA binding unleashes indiscriminate single-stranded DNA (ssDNA) cleavage activity by Cas12a that completely degrades ssDNA molecules. We find that target-activated, nonspecific single-stranded deoxyribonuclease (ssDNase) cleavage is also a property of other type V CRISPR-Cas12 enzymes. By combining Cas12a ssDNase activation with isothermal amplification, we create a method termed DNA endonuclease-targeted CRISPR trans reporter (DETECTR), which achieves attomolar sensitivity for DNA detection. DETECTR enables rapid and specific detection of human papillomavirus in patient samples, thereby providing a simple platform for molecular diagnostics.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Clostridiales/enzimologia , Clivagem do DNA , DNA de Cadeia Simples/química , Endonucleases/química , Cinética , Especificidade por Substrato
5.
Immunity ; 47(2): 235-250.e4, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813657

RESUMO

Mechanisms by which interferon (IFN)-γ activates genes to promote macrophage activation are well studied, but little is known about mechanisms and functions of IFN-γ-mediated gene repression. We used an integrated transcriptomic and epigenomic approach to analyze chromatin accessibility, histone modifications, transcription-factor binding, and gene expression in IFN-γ-primed human macrophages. IFN-γ suppressed basal expression of genes corresponding to an "M2"-like homeostatic and reparative phenotype. IFN-γ repressed genes by suppressing the function of enhancers enriched for binding by transcription factor MAF. Mechanistically, IFN-γ disassembled a subset of enhancers by inducing coordinate suppression of binding by MAF, lineage-determining transcription factors, and chromatin accessibility. Genes associated with MAF-binding enhancers were suppressed in macrophages isolated from rheumatoid-arthritis patients, revealing a disease-associated signature of IFN-γ-mediated repression. These results identify enhancer inactivation and disassembly as a mechanism of IFN-γ-mediated gene repression and reveal that MAF regulates the macrophage enhancer landscape and is suppressed by IFN-γ to augment macrophage activation.


Assuntos
Artrite Reumatoide/imunologia , Montagem e Desmontagem da Cromatina , Interferon gama/metabolismo , Macrófagos/imunologia , Proteínas Proto-Oncogênicas c-maf/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Citocinas/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-maf/genética , Transcriptoma
6.
Clin Immunol ; 173: 171-180, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27816669

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the development of autoantibodies that drive disease pathogenesis. Genetic studies have associated nonsynonymous variants in the BANK1 B cell scaffolding gene with susceptibility to SLE and autoantibodies in lupus. To determine how the BANK1 SLE-risk variants contribute to the dysregulated B cell program in lupus, we performed genotype/phenotype studies in human B cells. Targeted phospho-proteomics were used to evaluate BCR/CD40 signaling in human B cell lines engineered to express the BANK1 risk or non-risk variant proteins. We found that phosphorylation of proximal BCR signaling molecules was reduced in B cells expressing the BANK1 risk protein compared to the non-risk protein. Similar to these findings, we observed decreased B cell signaling in primary B cells from genotyped healthy control subjects carrying the BANK1 risk haplotype, including blunted BCR- and CD40-dependent AKT activation. Consistent with decreased AKT activation, we found that BANK1 risk B cells expressed increased basal levels of FOXO1 protein and increased expression of FOXO1 target genes upon stimulation compared to non-risk B cells. Healthy subjects carrying the BANK1 risk haplotype were also characterized by an expansion of memory B cells. Taken together, our results suggest that the SLE susceptibility variants in the BANK1 gene may contribute to lupus by altering B cell signaling, increasing FOXO1 levels, and enhancing memory B cell development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Proteínas de Membrana/genética , Linhagem Celular , Proteína Forkhead Box O1/imunologia , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
7.
Sci Transl Med ; 8(356): 356ra119, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27629486

RESUMO

Interleukin-6 (IL-6) is a key pathogenic cytokine in multiple autoimmune diseases including rheumatoid arthritis and multiple sclerosis, suggesting that dysregulation of the IL-6 pathway may be a common feature of autoimmunity. The role of IL-6 in type 1 diabetes (T1D) is not well understood. We show that signal transducer and activator of transcription 3 (STAT3) and STAT1 responses to IL-6 are significantly enhanced in CD4 and CD8 T cells from individuals with T1D compared to healthy controls. The effect is IL-6-specific because it is not seen with IL-10 or IL-27 stimulation, two cytokines that signal via STAT3. An important determinant of enhanced IL-6 responsiveness in T1D is IL-6 receptor surface expression, which correlated with phospho-STAT3 levels. Further, reduced expression of the IL-6R sheddase ADAM17 in T cells from patients indicated a mechanistic link to enhanced IL-6 responses in T1D. IL-6-induced STAT3 phosphorylation was inversely correlated with time from diagnosis, suggesting that dysregulation of IL-6 signaling may be a marker of early disease. Finally, whole-transcriptome analysis of IL-6-stimulated CD4(+) T cells from patients revealed previously unreported IL-6 targets involved in T cell migration and inflammation, including lymph node homing markers CCR7 and L-selectin. In summary, our study demonstrates enhanced T cell responses to IL-6 in T1D due, in part, to an increase in IL-6R surface expression. Dysregulated IL-6 responsiveness may contribute to diabetes through multiple mechanisms including altered T cell trafficking and indicates that individuals with T1D may benefit from IL-6-targeted therapeutic intervention such as the one that is being currently tested (NCT02293837).


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Interleucina-6/imunologia , Receptores de Interleucina-6/metabolismo , Linfócitos T/imunologia , Adulto , Autoimunidade , Estudos de Casos e Controles , Movimento Celular/genética , Movimento Celular/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Pesquisa Translacional Biomédica , Adulto Jovem
8.
Biochem Biophys Res Commun ; 462(3): 251-6, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25956063

RESUMO

In eukaryotes, the Cu/Zn containing superoxide dismutase (SOD1) plays a critical role in oxidative stress protection as well as in signaling. We recently demonstrated a function for Saccharomyces cerevisiae Sod1p in signaling through CK1γ casein kinases and identified the essential proton ATPase Pma1p as one likely target. The connection between Sod1p and Pma1p was explored further by testing the impact of sod1Δ mutations on cells expressing mutant alleles of Pma1p that alter activity and/or post-translational regulation of this ATPase. We report here that sod1Δ mutations are lethal when combined with the T912D allele of Pma1p in the C-terminal regulatory domain. This "synthetic lethality" was reversed by intragenic suppressor mutations in Pma1p, including an A906G substitution that lies within the C-terminal regulatory domain and hyper-activates Pma1p. Surprisingly the effect of sod1Δ mutations on Pma1-T912D is not mediated through the Sod1p signaling pathway involving the CK1γ casein kinases. Rather, Sod1p sustains life of cells expressing Pma1-T912D through oxidative stress protection. The synthetic lethality of sod1Δ Pma1-T912D cells is suppressed by growing cells under low oxygen conditions or by treatments with manganese-based antioxidants. We now propose a model in which Sod1p maximizes Pma1p activity in two ways: one involving signaling through CK1γ casein kinases and an independent role for Sod1p in oxidative stress protection.


Assuntos
ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Superóxido Dismutase/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Substituição de Aminoácidos , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Genes Fúngicos , Modelos Biológicos , Modelos Moleculares , Mutação , Estresse Oxidativo , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase-1
9.
Inflamm Bowel Dis ; 21(1): 19-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437819

RESUMO

BACKGROUND: FOXP3 regulatory T cell prevent inflammation but are paradoxically increased in ulcerative colitis (UC). Local T-cell activation has been hypothesized to account for increased FOXP3 expression in colon lamina propria (LP) T cells. METHODS: To see if human FOXP3 LP T cells are an activated fraction of otherwise FOXP3 effector T cells and explore their clonal diversity in health and disease, we deep sequenced clonally unique T-cell receptor hypervariable regions of FOXP3 and FOXP3CD4 T-cell subpopulations from inflamed versus noninflamed colon LP or mesenteric lymph nodes of patients with or without UC. RESULTS: The clonal diversity of each LP T-cell population was not different between patients with versus without UC. Repertoire overlap was only seen between a minority of FOXP3 and FOXP3 cells, including recently activated CD38 cells and Th17-like CD161 effector T cells, but this repertoire overlap was not different between patients with versus without UC and was no larger than the overlap between Helios and Helios FOXP3 cells. CONCLUSIONS: Thus, at steady state, only a minority of FOXP3, and particularly Helios, T cells share a T-cell receptor sequence with FOXP3 effector populations in the colon LP, even in UC, revealing distinct clonal origins for LP regulatory T cell and effector T cells in humans.


Assuntos
Polipose Adenomatosa do Colo/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Colite Ulcerativa/imunologia , Fatores de Transcrição Forkhead/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T Reguladores/imunologia , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Adolescente , Adulto , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Estudos de Casos e Controles , Células Cultivadas , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Feminino , Seguimentos , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prognóstico , Análise de Sequência de DNA , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Adulto Jovem
10.
Immunity ; 39(3): 454-69, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24012417

RESUMO

Synergistic activation of inflammatory cytokine genes by interferon-γ (IFN-γ) and Toll-like receptor (TLR) signaling is important for innate immunity and inflammatory disease pathogenesis. Enhancement of TLR signaling, a previously proposed mechanism, is insufficient to explain strong synergistic activation of cytokine production in human macrophages. Rather, we found that IFN-γ induced sustained occupancy of transcription factors STAT1, IRF-1, and associated histone acetylation at promoters and enhancers at the TNF, IL6, and IL12B loci. This priming of chromatin did not activate transcription but greatly increased and prolonged recruitment of TLR4-induced transcription factors and RNA polymerase II to gene promoters and enhancers. Priming sensitized cytokine transcription to suppression by Jak inhibitors. Genome-wide analysis revealed pervasive priming of regulatory elements by IFN-γ and linked coordinate priming of promoters and enhancers with synergistic induction of transcription. Our results provide a synergy mechanism whereby IFN-γ creates a primed chromatin environment to augment TLR-induced gene transcription.


Assuntos
Montagem e Desmontagem da Cromatina , Citocinas/metabolismo , Interferon gama/metabolismo , Receptores Toll-Like/metabolismo , Acetilação , Células Cultivadas , Ativação Enzimática , Histonas/metabolismo , Humanos , Fator Regulador 1 de Interferon/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-6/metabolismo , Janus Quinases/antagonistas & inibidores , Macrófagos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Transcrição Gênica , Fatores de Necrose Tumoral/metabolismo
11.
Arthritis Rheum ; 65(4): 928-38, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335080

RESUMO

OBJECTIVE: The nonresolving character of synovial inflammation in rheumatoid arthritis (RA) is a conundrum. To identify the contribution of fibroblast-like synoviocytes (FLS) to the perpetuation of synovitis, we investigated the molecular mechanisms that govern the tumor necrosis factor α (TNFα)-driven inflammatory program in human FLS. METHODS: FLS obtained from the synovial tissues of patients with RA or osteoarthritis were stimulated with TNFα and assayed for gene expression and cytokine production by real-time quantitative reverse transcription-polymerase chain reaction analysis and enzyme-linked immunosorbent assay. NF-κB signaling was evaluated by Western blotting. Histone acetylation, chromatin accessibility, and NF-κB p65 and RNA polymerase II (Pol II) occupancy at the interleukin-6 (IL-6) promoter were measured by chromatin immunoprecipitation and restriction enzyme accessibility assays. RESULTS: In FLS, TNFα induced prolonged transcription of messenger RNA (mRNA) for IL-6 and progressive accumulation of IL-6 protein over 4 days. Similarly, induction of mRNA for CXCL8/IL-8, CCL5/RANTES, matrix metalloproteinase 1 (MMP-1), and MMP-3 after TNFα stimulation was sustained for several days. This contrasted with the macrophage response to TNFα, which characteristically involved a transient increase in the expression of proinflammatory genes. In FLS, TNFα induced prolonged activation of NF-κB signaling and sustained transcriptional activity, as indicated by increased histone acetylation, chromatin accessibility, and p65 and Pol II occupancy at the IL-6 promoter. Furthermore, FLS expressed low levels of the feedback inhibitors A20-binding inhibitor of NF-κB activation 3 (ABIN-3), IL-1 receptor-associated kinase M (IRAK-M), suppressor of cytokine signaling 3 (SOCS-3), and activating transcription factor 3 (ATF-3), which terminate inflammatory responses in macrophages. CONCLUSION: TNFα signaling is not effectively terminated in FLS, which leads to an uncontrolled inflammatory response. The results suggest that prolonged and sustained inflammatory responses by FLS in response to synovial TNFα contribute to the persistence of synovial inflammation in RA.


Assuntos
Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Estudos de Casos e Controles , Células Cultivadas , Citocinas/genética , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Perfilação da Expressão Gênica , Humanos , Inflamação/complicações , Inflamação/genética , Macrófagos/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Membrana Sinovial/citologia , Ativação Transcricional
12.
Nat Immunol ; 12(7): 607-15, 2011 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-21602809

RESUMO

Endotoxin tolerance, a key mechanism for suppressing excessive inflammatory cytokine production, is induced by prior exposure of macrophages to Toll-like receptor (TLR) ligands. Induction of cross-tolerance to endotoxin by endogenous cytokines has not been investigated. Here we show that prior exposure to tumor necrosis factor (TNF) induced a tolerant state in macrophages, with less cytokine production after challenge with lipopolysaccharide (LPS) and protection from LPS-induced death. TNF-induced cross-tolerization was mediated by suppression of LPS-induced signaling and chromatin remodeling. TNF-induced cross-tolerance was dependent on the kinase GSK3, which suppressed chromatin accessibility and promoted rapid termination of signaling via the transcription factor NF-κB by augmenting negative feedback by the signaling inhibitors A20 and IκBα. Our results demonstrate an unexpected homeostatic function for TNF and a GSK3-mediated mechanism for the prevention of prolonged and excessive inflammation.


Assuntos
Endotoxinas/imunologia , Quinase 3 da Glicogênio Sintase/imunologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/imunologia , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Feminino , Proteínas I-kappa B/imunologia , Proteínas I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , NF-kappa B/imunologia , NF-kappa B/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
13.
Proc Natl Acad Sci U S A ; 108(4): 1573-8, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21220349

RESUMO

Acute activation of cells by tumor necrosis factor (TNF) has been well characterized, but little is known about later phases of TNF responses that are relevant for cells exposed to TNF for several days during inflammation. We found that prolonged exposure of human macrophages to TNF resulted in a wave of delayed but sustained activation of c-Jun and nuclear factor κB (NF-κB) proteins and of calcium oscillations that became apparent 1-3 d after TNF stimulation. These signaling events culminated in the induction and activation of the calcium-dependent transcription factor, nuclear factor of activated T cells (NFAT)c1, which mediated a gene expression program leading to cell fusion and osteoclast differentiation. TNF-induced NFATc1 activity primed macrophages for enhanced osteoclastogenesis in response to RANKL. High NFATc1 expression was apparent in synovial macrophages in a subset of patients with TNF-driven inflammatory arthritis. Thus, long-term exposure to TNF activates calcium-dependent signaling and an NFATc1-mediated gene activation program important for cell fusion and osteoclastogenesis. These findings identify a signaling pathway activated by TNF that is important for myeloid cell differentiation and suggest a role for TNF-induced calcium and NFAT signaling in chronic inflammation and associated bone resorption.


Assuntos
Cálcio/metabolismo , Macrófagos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Necrose Tumoral/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Microscopia de Fluorescência , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo
14.
Immunity ; 29(5): 691-703, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18976936

RESUMO

Toll-like receptor (TLR) responses are regulated to avoid toxicity and achieve coordinated responses appropriate for the cell environment. We found that Notch and TLR pathways cooperated to activate canonical Notch target genes, including transcriptional repressors Hes1 and Hey1, and to increase production of canonical TLR-induced cytokines TNF, IL-6, and IL-12. Cooperation by these pathways to increase target gene expression was mediated by the Notch-pathway component and transcription factor RBP-J, which also contributed to lethality after endotoxin injection. TLR- and Notch-induced Hes1 and Hey1 attenuated IL-6 and IL-12 production. This Hes1- and Hey1-mediated feedback inhibitory loop was abrogated by interferon-gamma (IFN-gamma), which blocked TLR-induced activation of canonical Notch target genes by inhibiting Notch2 signaling and downstream transcription. These findings identify new immune functions for RBP-J, Hes, and Hey proteins and provide insights into mechanisms by which Notch, TLR, and IFN-gamma signals are integrated to modulate specific effector functions in macrophages.


Assuntos
Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Interferon gama/imunologia , Receptores Notch/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/imunologia , Interferon gama/metabolismo , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteínas Repressoras/metabolismo , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
15.
J Leukoc Biol ; 82(2): 237-43, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17502339

RESUMO

Macrophage phenotype and activation are regulated by cytokines that use the Jak-STAT signaling pathway, microbial recognition receptors that include TLRs, and immunoreceptors that signal via ITAM motifs. The amplitude and qualitative nature of macrophage activation are determined by crosstalk among these signaling pathways. Basal ITAM signaling restrains macrophage responses to TLRs and other activating ligands, whereas strong ITAM signals synergize with the same ligands to activate cells strongly. Similarly, basal ITAM signaling augments IFN signaling and function of receptor activator of NF-kappaB, but extensive ITAM activation inhibits Jak-STAT signaling. Thus, intensity and duration of ITAM signaling determine whether ITAM-coupled receptors augment or attenuate TLR and Jak-STAT responses. IFN-gamma synergizes with TLRs in part by suppressing TLR-induced feedback inhibition, mediated by IL-10 and Stat3, by a mechanism that depends on glycogen synthase kinase (GSK)3 regulation of AP-1 and CREB. IFN-gamma suppresses TLR2 and TLR4 induction/activation of AP-1 by overlapping mechanisms that include regulation of MAPKs, GSK3-dependent suppression of DNA binding, and decreased Fos and Jun protein expression and stability. IFN-gamma suppression of TLR-induced activation of AP-1 and downstream target genes challenges current concepts about the inflammatory role of AP-1 proteins in macrophage activation and is consistent with a role for AP-1 in the generation of noninflammatory osteoclasts. Jak-STAT, TLR, and ITAM pathways are basally active in macrophages and strongly induced during innate responses. Thus, signal transduction crosstalk is regulated in a dynamic manner, which differs under homeostatic and pathologic conditions, and dysregulation of signal transduction crosstalk may contribute to pathogenesis of chronic inflammatory diseases.


Assuntos
Motivos de Aminoácidos , Janus Quinases/metabolismo , Receptor Cross-Talk/fisiologia , Fatores de Transcrição STAT/metabolismo , Receptores Toll-Like/imunologia , Animais , Humanos , Janus Quinases/genética , Ativação de Macrófagos , Macrófagos/metabolismo , Modelos Imunológicos , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Fatores de Transcrição STAT/genética , Receptores Toll-Like/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA