Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 406, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195686

RESUMO

Tuberous Sclerosis Complex (TSC) is caused by TSC1 or TSC2 mutations, leading to hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and lesions  in multiple organs including lung (lymphangioleiomyomatosis) and kidney (angiomyolipoma and renal cell carcinoma). Previously, we found that TFEB is constitutively active in TSC. Here, we generated two mouse models of TSC in which kidney pathology is the primary phenotype. Knockout of TFEB rescues kidney pathology and overall survival, indicating that TFEB is the primary driver of renal disease in TSC. Importantly, increased mTORC1 activity in the TSC2 knockout kidneys is normalized by TFEB knockout. In TSC2-deficient cells, Rheb knockdown or Rapamycin treatment paradoxically increases TFEB phosphorylation at the mTORC1-sites and relocalizes TFEB from nucleus to cytoplasm. In mice, Rapamycin treatment normalizes lysosomal gene expression, similar to TFEB knockout, suggesting that Rapamycin's benefit in TSC is TFEB-dependent. These results change the view of the mechanisms of mTORC1 hyperactivation in TSC and may lead to therapeutic avenues.


Assuntos
Neoplasias Renais , Esclerose Tuberosa , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Sirolimo/farmacologia , Esclerose Tuberosa/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-35573871

RESUMO

DNA methylation-based copy number variation (CNV) calling software offers the advantages of providing both genetic (copy-number) and epigenetic (methylation) state information from a single genomic library. This method is advantageous when looking at large-scale chromosomal rearrangements such as the loss of the short arm of chromosome 3 (3p) in renal cell carcinoma and the codeletion of the short arm of chromosome 1 and the long arm of chromosome 19 (1p/19q) commonly seen in histologically defined oligodendrogliomas. Herein, we present MethylMasteR: a software framework that facilitates the standardization and customization of methylation-based CNV calling algorithms in a single R package deployed using the Docker software framework. This framework allows for the easy comparison of the performance and the large-scale CNV event identification capability of four common methylation-based CNV callers. Additionally, we incorporated our custom routine, which was among the best performing routines. We employed the Affymetrix 6.0 SNP Chip results as a gold standard against which to compare large-scale event recall. As there are disparities within the software calling algorithms themselves, no single software is likely to perform best for all samples and all combinations of parameters. The employment of a standardized software framework via creating a Docker image and its subsequent deployment as a Docker container allows researchers to efficiently compare algorithms and lends itself to the development of modified workflows such as the custom workflow we have developed. Researchers can now use the MethylMasteR software for their methylation-based CNV calling needs and follow our software deployment framework. We will continue to refine our methodology in the future with a specific focus on identifying large-scale chromosomal rearrangements in cancer methylation data.

3.
Mol Cell Biol ; 28(13): 4434-44, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18443039

RESUMO

Ydj1 is a Saccharomyces cerevisiae Hsp40 molecular chaperone that functions with Hsp70 to promote polypeptide folding. We identified Ydj1 as being important for maintaining steady-state levels of protein kinases after screening several chaperones and cochaperones in gene deletion mutant strains. Pulse-chase analyses revealed that a portion of Tpk2 kinase was degraded shortly after synthesis in a ydj1Delta mutant, while the remainder was capable of maturing but with reduced kinetics compared to the wild type. Cdc28 maturation was also delayed in the ydj1Delta mutant strain. Ydj1 protects nascent kinases in different contexts, such as when Hsp90 is inhibited with geldanamycin or when CDC37 is mutated. The protective function of Ydj1 is due partly to its intrinsic chaperone function, but this is minor compared to the protective effect resulting from its interaction with Hsp70. SIS1, a type II Hsp40, was unable to suppress defects in kinase accumulation in the ydj1Delta mutant, suggesting some specificity in Ydj1 chaperone action. However, analysis of chimeric proteins that contained the chaperone modules of Ydj1 or Sis1 indicated that Ydj1 promotes kinase accumulation independently of its client-binding specificity. Our results suggest that Ydj1 can both protect nascent chains against degradation and control the rate of kinase maturation.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico , Estabilidade Enzimática , Deleção de Genes , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA