RESUMO
Gastric cancer (GC) is one of the most lethal malignancies worldwide. Despite extensive efforts to develop novel therapeutic targets, effective drugs for GC remain limited. Recent studies have indicated that Lipocalin (LCN)2 abnormalities significantly impact GC progression; however, its regulatory network remains unclear. Our study investigates the functional role and regulatory mechanism of action of LCN2 in GC progression. We observed a positive correlation between LCN2 expression, lower GC grade, and better prognosis in patients with GC. LCN2 overexpression suppressed GC proliferation and metastasis both in vitro and in vivo. Transcriptome sequencing identified secreted protein acidic and rich in cysteine (SPARC) as a pivotal downstream target of LCN2. Mechanistically, c-Jun acted as a transcription factor inducing SPARC expression, and LCN2 downregulated SPARC by inhibiting the JNK/c-Jun pathway. Moreover, LCN2 bound to its receptor, 24p3R, via autocrine signaling, which directly inhibited JNK phosphorylation and then inhibited the JNK/c-Jun pathway. Finally, analysis of clinical data demonstrated that SPARC expression correlated negatively with lower GC grade and better prognosis, and that LCN2 expression correlated negatively with p-JNK, c-Jun, and SPARC expression in GC. These findings suggest that the LCN2/24p3R/JNK/c-Jun/SPARC axis is crucial in the malignant progression of GC, offering novel prognostic markers and therapeutic targets.
Assuntos
Progressão da Doença , Lipocalina-2 , Osteonectina , Neoplasias Gástricas , Humanos , Lipocalina-2/metabolismo , Lipocalina-2/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Osteonectina/metabolismo , Osteonectina/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Masculino , Camundongos Nus , Camundongos , Feminino , Comunicação Autócrina , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-jun/metabolismoRESUMO
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Assuntos
Imunoconjugados , Neoplasias , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , AnimaisRESUMO
The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics, but the underlying mechanism remains poorly understood. Here, we revealed that the transcriptional activation of interferon regulatory factor 1 (IRF1) in response to ionizing radiation, cytotoxic chemicals and SARS-CoV-2 viral infection determines the fate of structural cells and regulates communication between structural and immune cells. Radiation-induced leakage of mtDNA initiates the nuclear translocation of IRF1, enabling it to regulate the transcription of inflammation- and cell death-related genes. Novel posttranslational modification (PTM) sites in the nuclear localization sequence (NLS) of IRF1 were identified. Functional analysis revealed that mutation of the acetylation site and the phosphorylation sites in the NLS blocked the transcriptional activation of IRF1 and reduced cell death in response to ionizing radiation. Mechanistically, reciprocal regulation between the single-stranded DNA sensors SSBP1 and IRF1, which restrains radiation-induced and STING/p300-mediated PTMs of IRF1, was revealed. In addition, genetic deletion or pharmacological inhibition of IRF1 tempered radiation-induced inflammatory cell death, and radiation mitigators also suppressed SARS-CoV-2 NSP-10-mediated activation of IRF1. Thus, we revealed a novel cytoplasm-oriented mechanism of IRF1 activation in structural cells that promotes inflammation and highlighted the potential effectiveness of IRF1 inhibitors against immune disorders.
Assuntos
Morte Celular , Inflamação , Fator Regulador 1 de Interferon , Processamento de Proteína Pós-Traducional , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Humanos , Morte Celular/efeitos da radiação , Inflamação/patologia , Animais , Camundongos , SARS-CoV-2 , COVID-19/imunologia , Fosforilação , Radiação Ionizante , Células HEK293 , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Sinais de Localização Nuclear , Ativação TranscricionalRESUMO
The pancreas exerts endocrine and exocrine functions in energy balance. The neural innervation and immune milieu are both crucial in supporting pancreatic homeostasis. The neuronal network connects the pancreas with the central nervous system (CNS) and the enteric nervous system (ENS) and sustains metabolic activities. The nerves in the pancreas are categorized as spinal sensory afferent fibers, vagal sensory afferent nerves, autonomic fibers of both sympathetic and parasympathetic divisions, and fibers from the ENS and intrapancreatic ganglia. They innervate different regions and various cell types, which collectively determine physiological functions. Studies have established that the diverse pathological conditions, including pancreatitis, diabetes, and pancreatic tumor, are attributed to aberrant immune reactions; however, it is largely not clear how the neuronal network may influence the disease conditions. Enlightened by the recent advances illuminating the organ-wide neuronal architecture and the dysfunctions in pancreatic disorders, this review will highlight emerging opportunities to explore the cellular interrelationship, particularly the neuroimmune components in pancreatic health and diseases.
RESUMO
BACKGROUND: The role of tumor-draining lymph nodes in the progression of malignant tumors, including stage III colorectal cancer (CRC), is critical. However, the prognostic and predictive value of the number of examined lymph nodes (ELNs) are not fully understood. METHODS: This population-based study retrospectively analyzed data from 106,843 patients with stage III CRC who underwent surgical treatment and registered in three databases from 2004 to 2021. The Surveillance, Epidemiology, and End Results (SEER) cohort was divided using into training and test cohorts at a ratio of 3:2. We employed restricted cubic spline (RCS) curves to explore nonlinear relationships between overall survival (OS) and ELNs counts and performed Cox regression to evaluate hazard ratios across different ELNs count subtypes. Additional validation cohorts were utilized from the First Affiliated Hospital, Sun Yat-sen University and The Cancer Genome Atlas (TCGA) under the same criteria. Outcomes measured included OS, cancer-specific survival (CSS), and progression-free survival (PFS). Molecular analyses involved differential gene expression using the "limma" package and immune profiling through CIBERSORT. Tissue microarray slides and multiplex immunofluorescence (MIF) were used to assess protein expression and immune cell infiltration. RESULTS: Patients with higher ELNs counts (≥ 17) demonstrated significantly better long-term survival outcomes across all cohorts. Enhanced OS, CSS, and PFS were notably evident in the LN-ELN group compared to those with fewer ELNs. Cox regression models underscored the prognostic value of higher ELNs counts across different patient subgroups by age, sex, tumor differentiation, and TNM stages. Subtype analysis based on ELNs count revealed a marked survival benefit in patients treated with adjuvant chemotherapy in the medium and large ELNs counts (≥ 12), whereas those with fewer ELNs showed negligible benefits. RNA sequencing and MIF indicated elevated immune activation in the LN-ELN group, characterized by increased CD3+, CD4+, and CD8 + T cells within the tumor microenvironment. CONCLUSIONS: The number of ELNs independently predicts survival and the immunological landscape at the tumor site in stage III CRC, underscoring its dual prognostic and predictive value.
Assuntos
Neoplasias Colorretais , Linfonodos , Estadiamento de Neoplasias , Humanos , Masculino , Feminino , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/imunologia , Estudos Retrospectivos , Linfonodos/patologia , Linfonodos/cirurgia , Pessoa de Meia-Idade , Taxa de Sobrevida , Prognóstico , Idoso , Seguimentos , Programa de SEER , Metástase Linfática , Valor Preditivo dos TestesRESUMO
Liquid fermentation is an efficient culture for obtaining polysaccharides from edible mushrooms. In this study, the polysaccharide content and biomass were examined by introducing microorganisms into the Wolfiporia cocos fermentation system. Three edible mushroom co-fermentation systems were established, among which the Wolfiporia cocos-Ganoderma lucidum co-fermentation system significantly increased the mycelial biomass of the system by 57.71% compared to Wolfiporia cocos alone and 91.22% compared to Ganoderma lucidum alone, and the intracellular polysaccharide content was significantly increased. Physiological activities of polysaccharides showed that mycelial polysaccharides in the Wolfiporia cocos-Ganoderma lucidum system had stronger anti-tumor cell value-adding and anti-tumor cell migration activities compared with Wolfiporia cocos and Ganoderma lucidum fermentation alone. The transcriptomic study of Wolfiporia cocos mycelium induced by exogenous substances suggested that the exogenous substances could enhance the intracellular polysaccharide content of Wolfiporia cocos through the upregulation of the expression of α-glycosyltransferase encoded by ALG10 and the downregulation of α-glycosidases encoded by MAN1B in the glycolytic metabolism of Wolfiporia cocos. This study provides a new direction for the transformation of polysaccharides from Wolfiporia cocos and Ganoderma lucidum into functional foods and new product development, and provides an experimental basis.
RESUMO
Surgical navigation systems involve various technologies of segmentation, calibration, registration, tracking, and visualization. These systems aim to superimpose multisource information in the surgical field and provide surgeons with a composite overlay (augmented-reality) view, improving the operative precision and experience. Surgical 3-D tracking is the key to build these systems. Unfortunately, surgical 3-D tracking is still a challenge to endoscopic and robotic navigation systems and easily gets trapped in image artifacts, tissue deformation, and inaccurate positional (e.g., electromagnetic) sensor measurements. This work explores a new monocular endoscope hybrid 3-D tracking method called spatially constrained adaptive differential evolution that combines two spatial constraints with observation-recall adaptive propagation and observation-based fitness computing for stochastic optimization. Specifically, we spatially constraint inaccurate electromagnetic sensor measurements to the centerline of anatomical tubular structures to keep them physically locating inside the tubes, as well as interpolate these measurements to reduce jitter errors for smooth 3-D tracking. We then propose observation-recall adaptive propagation with fitness computing to precisely fuse the constrained sensor measurements, preoperative images, and endoscopic video sequences for accurate hybrid 3-D tracking. Additionally, we also propose a new marker-free hybrid registration strategy to precisely align positional sensor measurements to preoperative images. Our new framework was evaluated on a large amount of clinical data acquired from various surgical endoscopic procedures, with the experimental results showing that it certainly outperforms current surgical 3-D approaches. In particular, the position and rotation errors were significantly reduced from (6.55, 11.4) to (3.02 mm, 8.54 °).
RESUMO
BACKGROUND: Cyprodinil is a widely used fungicide with broad-spectrum activity, but it has been associated with cardiac abnormalities. (-)-Epicatechin gallate (ECG), a natural polyphenolic compound, has been shown to possess protective properties in cardiac development. METHODS: In this study, we investigated whether ECG could mitigate cyprodinil-induced heart defects using zebrafish embryos as a model. Zebrafish embryos were exposed to cyprodinil with or without ECG. RESULTS: Our results demonstrated that ECG significantly improved the survival rate, embryo movement, and hatching delay induced by cyprodinil. Furthermore, ECG effectively ameliorated cyprodinil-induced cardiac developmental toxicity, including pericardial anomaly and impairment of cardiac function. Mechanistically, ECG attenuated the cyprodinil-induced alterations in mRNA expression related to cardiac development, such as amhc, vmhc, tbx5, and gata4, as well as calcium ion channels, such as ncx1h, atp2a2a, and cdh2. Additionally, ECG was found to inhibit the activity of the aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. CONCLUSIONS: In conclusion, our findings provide evidence for the protective effects of ECG against cyprodinil-induced cardiac developmental toxicity, mediated through the inhibition of AhR activity. These findings contribute to a better understanding of the regulatory mechanisms and safe utilization of pesticide, such as cyprodinil.
Assuntos
Catequina , Coração , Receptores de Hidrocarboneto Arílico , Peixe-Zebra , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Coração/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Cardiopatias Congênitas/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacosRESUMO
To validate the feasibility of a fiber-optic pressure sensor-based pressure measurement device for monitoring intrarenal pressure and to analyze the effects of ureteral acess sheath (UAS) type, surgical location, perfusion flow rate, and measurement location on intrarenal pressure (IRP). The measurement deviations and response times to transient pressure changes were compared between a fiber-optic pressure sensing device and a urodynamic device IRP in an in vitro porcine kidney and in a water tank. Finally, pressure measurements were performed in anesthetized female pigs using fiber-optic pressure sensing device with different UAS, different perfusion flow rates, and different surgical positions at different renal calyces and ureteropelvic junctions (UPJ). According to our operation, the result is fiber optic pressure sensing devices are highly accurate and sensitive. Under the same conditions, IRP varied among different renal calyces and UPJ (P < 0.05). IRP was lowest at 50 ml/min and highest at 150 ml/min (P < 0.05). Surgical position had a significant effect on IRP (P < 0.05). 12/14 Fr UAS had a lower IRP than 11/13 Fr UAS. Therefore fiber optic pressure sensing devices are more advantageous for IRP measurements. In ureteroscopy, the type of ureteral sheath, the surgical position, the perfusion flow rate, and the location of the measurement all affect the intrarenal pressure value.
Assuntos
Tecnologia de Fibra Óptica , Rim , Pressão , Ureteroscopia , Animais , Tecnologia de Fibra Óptica/instrumentação , Suínos , Feminino , Rim/fisiologia , Ureteroscopia/instrumentação , Ureteroscopia/métodos , Fibras Ópticas , UrodinâmicaRESUMO
The extensive application of nuclear technology has increased the potential of uncontrolled radiation exposure to the public. Since skin is the largest organ, radiation-induced skin injury remains a serious medical concern. Organisms evolutionally develop distinct strategies to protect against environment insults and the related research may bring novel insights into therapeutics development. Here, 26 increased peptides are identified in skin tissues of frogs (Pelophylax nigromaculatus) exposed to electron beams, among which four promoted the wound healing of irradiated skin in rats. Specifically, radiation-induced frog skin peptide-2 (RIFSP-2), from histone proteolysis exerted membrane permeability property, maintained cellular homeostasis, and reduced pyroptosis of irradiated cells with decreased TBK1 phosphorylation. Subsequently, stearyl-CoA desaturase 1 (SCD1) is identified, a critical enzyme in biogenesis of monounsaturated fatty acids (MUFAs) as a direct target of RIFSP-2 based on streptavidin-biotin system. The lipidomic analysis further assured the restrain of MUFAs biogenesis by RIFSP-2 following radiation. Moreover, the decreased MUFA limited radiation-induced and STING-mediated inflammation response. In addition, genetic depletion or pharmacological inhibition of STING counteracted the decreased pyroptosis by RIFSP-2 and retarded tissue repair process. Altogether, RIFSP-2 restrains radiation-induced activation of SCD1-MUFA-STING axis. Thus, the stress-induced amphibian peptides can be a bountiful source of novel radiation mitigators.
Assuntos
Inflamação , Pele , Animais , Pele/metabolismo , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Ratos , Inflamação/metabolismo , Protetores contra Radiação/farmacologia , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Peptídeos/farmacologia , Peptídeos/metabolismo , Ranidae/metabolismo , Modelos Animais de Doenças , Cicatrização/efeitos dos fármacos , Anuros/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genéticaRESUMO
PURPOSE: Fumarate hydratase-deficient renal cell carcinoma (FH-deficient RCC) is a rare and lethal subtype of kidney cancer. However, the optimal treatments and molecular correlates of benefits for FH-deficient RCC are currently lacking. EXPERIMENTAL DESIGN: A total of 91 patients with FH-deficient RCC from 15 medical centers between 2009 and 2022 were enrolled in this study. Genomic and bulk RNA-sequencing (RNA-seq) were performed on 88 and 45 untreated FH-deficient RCCs, respectively. Single-cell RNA-seq was performed to identify biomarkers for treatment response. Main outcomes included disease-free survival (DFS) for localized patients, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) for patients with metastasis. RESULTS: In the localized setting, we found that a cell-cycle progression signature enabled to predict disease progression. In the metastatic setting, first-line immune checkpoint inhibitor plus tyrosine kinase inhibitor (ICI+TKI) combination therapy showed satisfactory safety and was associated with a higher ORR (43.2% vs. 5.6%), apparently superior PFS (median PFS, 17.3 vs. 9.6 months, P = 0.016) and OS (median OS, not reached vs. 25.7 months, P = 0.005) over TKI monotherapy. Bulk and single-cell RNA-seq data revealed an enrichment of memory and effect T cells in responders to ICI plus TKI combination therapy. Furthermore, we identified a signature of memory and effect T cells that was associated with the effectiveness of ICI plus TKI combination therapy. CONCLUSIONS: ICI plus TKI combination therapy may represent a promising treatment option for metastatic FH-deficient RCC. A memory/active T-cell-derived signature is associated with the efficacy of ICI+TKI but necessitates further validation.
Assuntos
Carcinoma de Células Renais , Fumarato Hidratase , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Fumarato Hidratase/deficiência , Fumarato Hidratase/genética , Masculino , Feminino , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/imunologia , Neoplasias Renais/mortalidade , Neoplasias Renais/terapia , Pessoa de Meia-Idade , Idoso , Adulto , Ativação Linfocitária/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Memória Imunológica , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Imunoterapia/métodos , Células T de Memória/imunologia , Linfócitos T/imunologiaRESUMO
BACKGROUND: To compare clinicopathologic, molecular features, and treatment outcome between fumarate hydratase-deficient renal cell carcinoma (FH-dRCC) and type 2 papillary renal cell carcinoma (T2 pRCC). METHODS: Data of T2 pRCC patients and FH-dRCC patients with additional next-generation sequencing information were retrospectively analyzed. The cancer-specific survival (CSS) and disease-free survival (DFS) were primary endpoint. RESULTS: A combination of FH and 2-succino-cysteine (2-SC) increased the rate of negative predictive value of FH-dRCC. Compared with T2 pRCC cases, FH-dRCC cases displayed a greater prevalence in young patients, a higher frequency of radical nephrectomy. Seven FH-dRCC and two T2 pRCC cases received systemic therapy. The VEGF treatment was prescribed most frequently, with an objective response rate (ORR) of 22.2% and a disease control rate (DCR) of 30%. A combined therapy with VEGF and checkpoint inhibitor reported an ORR of 40% and a DCR of 100%. FH-dRCC cases showed a shortened CSS (P = 0.042) and DFS (P < 0.001). The genomic sequencing revealed 9 novel mutations. CONCLUSIONS: Coupled with genetic detection, immunohistochemical biomarkers (FH and 2-SC) can distinguish the aggressive FH-dRCC from T2 pRCC. Future research is awaited to illuminate the association between the novel mutations and the clinical phenotypes of FH-dRCC in the disease progression.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Neoplasias Cutâneas , Neoplasias Uterinas , Humanos , Feminino , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/diagnóstico , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular , Leiomiomatose/diagnóstico , Leiomiomatose/genética , Leiomiomatose/patologia , Resultado do Tratamento , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Neoplasias Cutâneas/genéticaRESUMO
This study was aimed to integrate tumor size with other prognostic factors into a prognostic nomogram to predict cancer-specific survival (CSS) in locally advanced (≥pT3a Nany M0) renal cell carcinoma (RCC) patients. Based on the Surveillance, Epidemiology, and End Results (SEER) database, 10,800 patients diagnosed with locally advanced RCC were collected. They were randomly divided into a training cohort (n = 7,056) and a validation cohort (n = 3,024). X-tile program was used to identify the optimal cut-off value of tumor size and age. The cut-off of age at diagnosis was 65 years old and 75 years old. The cut-off of tumor size was 54 mm and 119 mm. Univariate and multivariate Cox regression analyses were performed in the training cohort to identify independent prognostic factors for construction of nomogram. Then, the nomogram was used to predict the 1-, 3- and 5-year CSS. The performance of nomogram was evaluated by using concordance index (C-index), area under the Subject operating curve (AUC) and decision curve analysis (DCA). Moreover, the nomogram and tumor node metastasis (TNM) staging system (AJCC 8th edition) were compared. 10 variables were screened to develop the nomogram. The area under the receiver operating characteristic (ROC) curve (AUC) indicated satisfactory ability of the nomogram. Compared with the AJCC 8th edition of TNM stage, DCA showed that the nomogram had improved performance. We developed and validated a nomogram for predicting the CSS of patients with locally advanced RCC, which was more precise than the AJCC 8th edition of TNM staging system.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Segunda Neoplasia Primária , Humanos , Idoso , Nomogramas , Bases de Dados Factuais , Análise Multivariada , Estadiamento de Neoplasias , PrognósticoRESUMO
BACKGROUND: Gastric cancer (GC) is a common malignancy with its morbidity increasing worldwide. Hence, it is imperative to develop effective treatments. Studies have shown that metformin has potential antitumor effects. The objective of this study was to probe the antitumor mechanism of metformin in GC. METHODS: The expression of ADAMTS12 in GC tissues and its enrichment pathways were analyzed by bioinformatics methods. ADAMTS12 expression in GC cells was assessed by qRT-PCR. Cell viability and proliferation were analyzed by CCK-8 and colony formation assays, respectively. Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of GC cells in different treatment groups were analyzed by Seahorse XP 96, and glycolysis metabolites were detected by corresponding kits. Western blot was employed to analyze the level of glycolysis pathway related protein HK-2, and cell functional assays were conducted to verify the functions of metformin on GC cells. A xenograft model was constructed to validate the inhibitory role of metformin in GC. RESULTS: ADAMTS12 expression was elevated in GC tissues/cells and concentrated in glycolysis pathway. Cell functional assays found that ADAMTS12 promoted the proliferation and glycolysis of GC cells. Rescue experiments showed that metformin could reduce the promoting effect of ADAMTS12 overexpression on the proliferation and glycolysis of GC cells. In vivo studies confirmed that metformin suppressed the proliferation and glycolysis process via ADAMTS12 in GC cells. CONCLUSION: Metformin can repress the proliferation and glycolysis of GC cells via ADAMTS12. The results suggest the potential of ADAMTS12 being a target for the metformin therapy of GC.
RESUMO
Gasdermin (GSDM) family members are involved in numerous biological processes, including pyroptosis, as well as in the initiation and progression of various types of cancer. However, the specific role of GSDM genes in clear cell renal cell carcinoma (ccRCC) has yet to be fully clarified. The present study investigated the differential expression and genetic alterations GSDM genes, their effects on prognosis and immune modulation, and their functional enrichment in ccRCC. Several bioinformatics databases were used, including UALCAN, The Cancer Genome Atlas, Gene Expression Profiling Interactive Analysis, Metascape, Tumor Immune Estimation Resource, GSCALite and cBioPortal. The results revealed that the expression levels of GSDMA, GSDMB, GSDMC and GSDMD were significantly upregulated in cancer tissues compared with those in paracancerous tissues in patients with ccRCC, whereas the expression of DFNB59 exhibited the opposite trend. The results were experimentally validated in patients with ccRCC, and it was confirmed that the expression levels of GSDMA, GSDMB, GSDMC, GSDMD and GSDME (DFNA5) were significantly enhanced, whereas (PJVK, DFNB59) expression was reduced. In addition, elevated GSDMB, GSDMD and DFNA5 expression levels were clearly associated with worse pathological characteristics of ccRCC, including a high pathological stage and high tumor grade. Furthermore, the high expression levels of GSDMB, GSDMC, GSDMD, DFNA5 and PJVK were shown to be associated with worse overall survival (OS) and progression-free interval in patients with ccRCC. Both univariate and multivariate analyses indicated that the expression of GSDMB was independently associated with the OS of patients with ccRCC. Additionally, a high mutation rate of GSDM genes (33%) was observed in patients with ccRCC, and GSDM gene mutations were also significantly associated with a poor OS in patients with ccRCC. Significant associations between GSDM genes and ccRCC immunoprofiling and drug sensitivity were also determined. In conclusion, the findings of the present study indicated that GSDMB, GSDMD and DFNA5 may be considered promising therapeutic agents and potential biomarkers for patients with ccRCC. Furthermore, GSDMB could act as an independent predictor for the OS of patients with ccRCC.
RESUMO
The mammalian target of rapamycin (mTOR) inhibitors, everolimus (but not dactolisib), is frequently associated with lung injury in clinical therapies. However, the underlying mechanisms remain unclear. Endothelial cell barrier dysfunction plays a major role in the pathogenesis of the lung injury. This study hypothesizes that everolimus increases pulmonary endothelial permeability, which leads to lung injury. We tested the effects of everolimus on human pulmonary microvascular endothelial cell (HPMEC) permeability and a mouse model of intraperitoneal injection of everolimus was established to investigate the effect of everolimus on pulmonary vascular permeability. Our data showed that everolimus increased human pulmonary microvascular endothelial cell (HPMEC) permeability which was associated with MLC phosphorylation and F-actin stress fiber formation. Furthermore, everolimus induced an increasing concentration of intracellular calcium Ca2+ leakage in HPMECs and this was normalized with ryanodine pretreatment. In addition, ryanodine decreased everolimus-induced phosphorylation of PKCα and MLC, and barrier disruption in HPMECs. Consistent with in vitro data, everolimus treatment caused a visible lung-vascular barrier dysfunction, including an increase in protein in BALF and lung capillary-endothelial permeability, which was significantly attenuated by pretreatment with an inhibitor of PKCα, MLCK, and ryanodine. This study shows that everolimus induced pulmonary endothelial hyper-permeability, at least partly, in an MLC phosphorylation-mediated EC contraction which is influenced in a Ca2+-dependent manner and can lead to lung injury through mTOR-independent mechanisms.
Assuntos
Células Endoteliais , Lesão Pulmonar , Animais , Camundongos , Humanos , Células Endoteliais/metabolismo , Everolimo/farmacologia , Everolimo/metabolismo , Lesão Pulmonar/patologia , Endotélio Vascular , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/farmacologia , Rianodina/metabolismo , Rianodina/farmacologia , Pulmão/metabolismo , Fosforilação , Células Cultivadas , Serina-Treonina Quinases TOR/metabolismo , MamíferosRESUMO
The m6a demethyltransferase ALKBH5 dynamically modulates gene expression and intracellular metabolic molecules by modifying RNA m6a in cancer cells. However, ALKBH5's function in gastric cancer (GC) has remained controversial. This study demonstrates that ALKBH5 is highly expressed in GC. Silencing ALKBH5 hampers proliferation, and metastatic potential, and induces cell death in GC cells. Through a comprehensive analysis of the transcriptome and m6A sequencing, alterations in certain ALKBH5 target genes, including CHAC1, were identified. ALKBH5's demethylation effect regulates CHAC1 RNA stability, leading to reduced CHAC1 expression. Moreover, CHAC1 modulates intracellular ROS levels, influencing the chemotherapy sensitivity of gastric cancer. In summary, our study unveils the pivotal role of the ALKBH5-CHAC1-ROS axis and highlights the significance of m6A methylation in gastric cancer.
RESUMO
Temsirolimus is a first-generation mTOR inhibitor commonly used in the clinical treatment of cancers that is associated with lung injury. However, the mechanism underlying this adverse effect remains elusive. Endothelial barrier dysfunction plays a pivotal role in the infiltration of neutrophils into the pulmonary alveoli, which eventually induces lung injury. The present study demonstrates that temsirolimus induces the aberrant expression of adhesion molecules in endothelial cells, leading to enhanced neutrophil infiltration and subsequent lung injury. Results of a mouse model revealed that temsirolimus disrupted capillary-alveolar barrier function and facilitated neutrophil transmigration across the endothelium within the alveolar space. Consistent with our in vivo observations, temsirolimus impaired intercellular barrier function within monolayers of human lung endothelial cells, resulting in increased neutrophil infiltration. Furthermore, we demonstrated that temsirolimus-induced neutrophil transendothelial migration was mediated by platelet endothelial cell adhesion molecule-1 (PECAM-1) in both in vitro and in vivo experiments. Collectively, these findings highlight that temsirolimus induces endothelial barrier dysfunction via PECAM-1-dependent pathway both in vitro and in vivo, ultimately leading to neutrophil infiltration and subsequent pulmonary injury.
Assuntos
Lesão Pulmonar , Animais , Camundongos , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Neutrófilos/metabolismo , Células Endoteliais/metabolismo , Migração Transendotelial e Transepitelial , Movimento Celular , Endotélio Vascular/metabolismoRESUMO
Sepsis, a common and life-threatening condition in critically ill patients, is a leading cause of death in intensive care units. Over the past few decades, there has been significant improvement in the understanding and management of sepsis. However, the mortality rate remains unacceptably high, posing a prominent challenge in modern medicine and a significant global disease burden. A total of 295 patients with sepsis admitted to the hospital from January 2021 to December 2022 were collected and divided into survival group and death group according to their 28-day survival status. The differences in general clinical data and laboratory indicators between the 2 groups were compared. Receiver operating characteristic curve analysis was used to evaluate the predictive value of platelet (PLT) and procalcitonin (PCT) for the prognosis of sepsis patients within 28 days. A total of 295 patients were diagnosed with sepsis, and 79 died, with a mortality rate of 26.78%. The PLT level in the death group was lower than that in the survival group; the PCT level in the death group was higher than that in the survival group. The receiver operating characteristic curve showed that the area under the curve of PCT and PLT for evaluating the prognosis of sepsis patients were 0.808 and 0.804, respectively. Kaplan-Meier survival analysis showed that the 28-day survival rate of the low PLT level group was 19.0% and that of the high PLT level group was 93.1% at the node of 214.97 × 109/L, and the difference between the 2 groups was statistically significant (χ2 = 216.538, P < .001). The 28-day survival rate of the low PCT level group was 93.4% and that of the high PCT level group was 51.7% at the node of 2.85 ng/mL, and the difference between the 2 groups was statistically significant (χ2 = 63.437, P < .001). There was a negative correlation between PCT level and PLT level (r = -0.412, P < .001). Platelet combined with serum procalcitonin detection has high predictive value for judging the 28-day prognosis of sepsis, and it can be used as an index for evaluating the patient's condition and prognosis, and is worthy of clinical promotion and application.