Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cancer Cell Int ; 24(1): 195, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835070

RESUMO

BACKGROUND: Investigating the unexplored territory of lncRNA m6A modification in colorectal cancer (CRC) vasculature, this study focuses on LINC01106 and YTHDF1. METHODS: Clinical assessments reveal upregulated LINC01106 promoting vascular generation via the miR-449b-5p-VEGFA pathway. RESULTS: YTHDF1, elevated in CRC tissues, emerges as an adverse prognostic factor. Functional experiments showcase YTHDF1's inhibitory effects on CRC cell dynamics. Mechanistically, Me-CLIP identifies m6A-modified LINC01106, validated as a YTHDF1 target through Me-RIP. CONCLUSIONS: This study sheds light on the YTHDF1-mediated m6A modification of LINC01106, presenting it as a key player in suppressing CRC vascular generation.

3.
Immunology ; 170(3): 388-400, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37501391

RESUMO

It is well known that chimeric antigen receptor T-cell immunotherapy (CAR-T-cell immunotherapy) has excellent therapeutic effect in haematological tumours, but it still faces great challenges in solid tumours, including inefficient T-cell tumour infiltration and poor functional persistence. Flap structure-specific endonuclease 1 (FEN1), highly expressed in a variety of cancer cells, plays an important role in both DNA replication and repair. Previous studies have reported that FEN1 inhibition is an effective strategy for cancer treatment. Therefore, we hypothesized whether FEN1 inhibitors combined with CAR-T-cell immunotherapy would have a stronger killing effect on solid tumours. The results showed that low dose of FEN1 inhibitors SC13 could induce an increase of double-stranded broken DNA (dsDNA) in the cytoplasm. Cytosolic dsDNA can activate the cyclic GMP-AMP synthase-stimulator of interferon gene signalling pathway and increase the secretion of chemokines. In vivo, under the action of FEN1 inhibitor SC13, more chemokines were produced at solid tumour sites, which promoted the infiltration of CAR-T cells and improved anti-tumour immunity. These findings suggest that FEN1 inhibitors could enable CAR-T cells to overcome poor T-cell infiltration and improve the treatment of solid tumours.


Assuntos
Neoplasias , Humanos , Transdução de Sinais , DNA , Linfócitos T/metabolismo , Nucleotidiltransferases/genética , Quimiocinas , Endonucleases Flap/genética , Endonucleases Flap/metabolismo
4.
Front Immunol ; 14: 1175920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359558

RESUMO

Chimeric antigen receptor T cell therapy has become an important immunotherapeutic tool for overcoming cancers. However, the efficacy of CAR-T cell therapy in solid tumors is relatively poor due to the complexity of the tumor microenvironment and inhibitory immune checkpoints. TIGIT on the surface of T cells acts as an immune checkpoint by binding to CD155 on the tumor cells' surface, thereby inhibiting tumor cell killing. Blocking TIGIT/CD155 interactions is a promising approach in cancer immunotherapy. In this study, we generated anti-MLSN CAR-T cells in combination with anti-α-TIGIT for solid tumors treatment. The anti-α-TIGIT effectively enhanced the efficacy of anti-MLSN CAR-T cells on the killing of target cells in vitro. In addition, we genetically engineered anti-MSLN CAR-T cells with the capacity to constitutively produce TIGIT-blocking single-chain variable fragments. Our study demonstrated that blocking TIGIT significantly promoted cytokine release to augment the tumor-killing effect of MT CAR-T cells. Moreover, the self-delivery of TIGIT-blocking scFvs enhanced the infiltration and activation of MT CAR-T cells in the tumor microenvironments to achieve better tumor regression in vivo. These results suggest that blocking TIGIT effectively enhances the anti-tumor effect of CAR-T cells and suggest a promising strategy of combining CAR-T with immune checkpoints blockade in the treatment of solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia/métodos , Linfócitos T , Imunoterapia Adotiva/métodos , Microambiente Tumoral , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
5.
Clin Transl Oncol ; 25(10): 2972-2982, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37079211

RESUMO

OBJECTIVE: Great success has been achieved in CAR-T cell immunotherapy in the treatment of hematological tumors. However, it is particularly difficult in solid tumors, because CAR-T is difficult to enter interior and exert long-term stable immune effects. Dendritic cells (DCs) can not only present tumor antigens but also promote the infiltration of T cells. Therefore, CAR-T cells with the help of DC vaccines are a reliable approach to treat solid tumors. METHODS: To test whether DC vaccine could promote CAR-T cell therapy in solid tumors, DC vaccine was co-cultured with MSLN CAR-T cells. The in vitro effects of DC vaccine on CAR-T were assessed by measuring cell proliferation, cell differentiation, and cytokine secretion. Effects of DC vaccine on CAR-T were evaluated using mice with subcutaneous tumors in vivo. The infiltration of CAR-T was analyzed using immunofluorescence. The persistence of CAR-T in mouse blood was analyzed using real-time quantitative PCR. RESULTS: The results showed that DC vaccine significantly enhanced the proliferation potential of MSLN CAR-T cells in vitro. DC vaccines not only promoted the infiltration of CAR-T cells, but also significantly improved the persistence of CAR-T in solid tumors in vivo. CONCLUSION: In conclusion, this study has demonstrated that DC vaccine can promote CAR-T therapy in solid tumors, which provides the possibility of widespread clinical application of CAR-T cells in the future.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Vacinas , Camundongos , Animais , Linfócitos T , Exaustão das Células T , Neoplasias/terapia , Imunoterapia Adotiva/métodos
6.
Front Pharmacol ; 14: 1136076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895947

RESUMO

Background: Brucea javanica (L.) Merr, has a long history to be an anti-dysentery medicine for thousand of years, which is commonly called "Ya-Dan-Zi" in Chinese. The common liquid preparation of its seed, B. javanica oil (BJO) exerts anti-inflammatory action in gastrointestinal diseases and is popularly used as an antitumor adjuvant in Asia. However, there is no report that BJO has the potential to treat 5-Fluorouracil (5-FU)-induced chemotherapeutic intestinal mucosal injury (CIM). Aim of the study: To test the hypothesis that BJO has potential intestinal protection on intestinal mucosal injury caused by 5-FU in mice and to explore the mechanisms. Materials and methods: Kunming mice (half male and female), were randomly divided into six groups: normal group, 5-FU group (5-FU, 60 mg/kg), LO group (loperamide, 4.0 mg/kg), BJO group (0.125, 0.25, 0.50 g/kg). CIM was induced by intraperitoneal injection of 5-FU at a dose of 60 mg/kg/day for 5 days (from day 1 to day 5). BJO and LO were given orally 30 min prior to 5-FU administration for 7 days (from day 1 to day 7). The ameliorative effects of BJO were assessed by body weight, diarrhea assessment, and H&E staining of the intestine. Furthermore, the changes in oxidative stress level, inflammatory level, intestinal epithelial cell apoptosis, and proliferation, as well as the amount of intestinal tight junction proteins were evaluated. Finally, the involvements of the Nrf2/HO-1 pathway were tested by western blot. Results: BJO effectively alleviated 5-FU-induced CIM, as represented by the improvement of body weight, diarrhea syndrome, and histopathological changes in the ileum. BJO not only attenuated oxidative stress by upregulating SOD and downregulating MDA in the serum, but also reduced the intestinal level of COX-2 and inflammatory cytokines, and repressed CXCL1/2 and NLRP3 inflammasome activation. Moreover, BJO ameliorated 5-FU-induced epithelial apoptosis as evidenced by the downregulation of Bax and caspase-3 and the upregulation of Bcl-2, but enhanced mucosal epithelial cell proliferation as implied by the increase of crypt-localized proliferating cell nuclear antigen (PCNA) level. Furthermore, BJO contributed to the mucosal barrier by raising the level of tight junction proteins (ZO-1, occludin, and claudin-1). Mechanistically, these anti-intestinal mucositis pharmacological effects of BJO were relevant for the activation of Nrf2/HO-1 in the intestinal tissues. Conclusion: The present study provides new insights into the protective effects of BJO against CIM and suggests that BJO deserves to be applied as a potential therapeutic agent for the prevention of CIM.

7.
Transl Res ; 259: 1-12, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36977441

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy has limited efficacy for treating glioma because of the infiltrative nature of the blood-brain barrier (BBB) and T cell exhaustion. Conjugation with rabies virus glycoprotein (RVG) 29 enhances the brain-related efficacy of various agents. Here we assess whether RVG enhances the ability of CAR-T cells to cross the BBB and improves their immunotherapy. We generated 70R CAR-T cells (anti-CD70 CAR-T modified with RVG29) and validated their tumor-killing efficacy in vitro and in vivo. We validated their effects on tumor regression in a human glioma mouse orthotopic xenograft model as well as in patient-derived orthotopic xenograft (PDOX) models. The signaling pathways activated in 70R CAR-T cells were revealed by RNA sequencing. The 70R CAR-T cells we generated showed effective antitumor function against CD70+ glioma cells both in vitro and in vivo. 70R CAR-T cells were better able to cross the BBB into the brain than CD70 CAR-T cells under the same treatment conditions. Moreover, 70R CAR-T cells significantly promote the regression of glioma xenografts and improve the physical characteristics of mice without causing overt adverse effects. RVG modification enables CAR-T cells to cross the BBB, and stimulation with glioma cells induces 70R CAR-T cells to expand in a resting state. The modification of RVG29 has a positive impact on CAR-T therapy for brain tumors and may have potential in CAR-T therapy for glioma.


Assuntos
Glioma , Vírus da Raiva , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Glioma/terapia , Glioma/metabolismo , Glicoproteínas , Imunoterapia Adotiva , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
8.
Phytomedicine ; 108: 154521, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334387

RESUMO

BACKGROUND: Berberrubine (BRB), one of the major metabolites of berberine (BBR), exerts an anti-hyperuricemic effect even superior to BBR. Liver is an important location for drug transformation. Nevertheless, there are few studies on the bioactivities and metabolites of BRB. PURPOSE: We investigated whether oxyberberrubine (OBR), a liver metabolite of BRB, exerted urate-lowering and reno-protective effects in hyperuricemic mice. METHODS: Liver microsomes were used to incubate BRB for studying its biotransformation. We isolated and identified its new metabolite OBR, and investigated its anti-hyperuricemic and reno-protective effects. In this work, the hyperuricemic mice model was established by receiving potassium oxonate (PO) and hypoxanthine (HX) for 7 consecutive days. 1 h after modeling, different dosages of OBR (5, 10 and 20 mg/kg), BRB (20 mg/kg) or febuxostat (Fex, 5 mg/kg) were given mice by gavage. RESULTS: Results showed that OBR possessed potent anti-hyperuricemic and reno-protective effects in hyperuricemic mice. Serum uric acid (UA) level was lowered, and the activities of xanthine oxidase (XOD) as well as adenosine deaminase (ADA) in the liver were suppressed after treatment with OBR. Hepatic expressions of XOD were remarkably decreased at mRNA and protein levels by OBR treatment. In addition, OBR prominently alleviated renal injury, embodied in markedly reduced serum creatinine and blood urea nitrogen (BUN) levels, decreased inflammatory mediators (TNF-α, IL-1ß, IL-6 and IL-18) levels, mRNA expression of CYP27B1 and repairment of renal tissues damage. Besides, OBR down-regulated renal expression of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), NOD-like receptor 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), and caspase-1 at mRNA and protein levels. CONCLUSIONS: In short, our study indicated that OBR possessed superior anti-hyperuricemic and reno-protective effects, at least in part, through the inhibition of XOD, URAT1, GLUT9 and NLRP3 inflammasome signaling pathway in the kidney.


Assuntos
Berberina , Hiperuricemia , Camundongos , Animais , Ácido Úrico , Berberina/farmacologia , Berberina/uso terapêutico , Microssomos Hepáticos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Xantina Oxidase/metabolismo , Rim , Ácido Oxônico , RNA Mensageiro/metabolismo
9.
Cancer Immunol Immunother ; 72(2): 409-425, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35925286

RESUMO

Recently, chimeric antigen receptor T cell (CAR-T) therapy has received increasing attention as an adoptive cellular immunotherapy that targets tumors. However, numerous challenges remain for the effective use of CAR-T to treat solid tumors, including ovarian cancer, which is an aggressive and metastatic cancer with a poor therapeutic response. We screened for an effective anti-MSLN single-chain Fv antibody with comparable binding activity and non-off-target properties using human phage display library. A second-generation of anti-MSLN CAR was designed and generated. We demonstrated the efficacy of our anti-MSLN CAR-T cells for ovarian cancer treatment in an in vitro experiment to kill ovarian tumor cell lines. The anti-MSLN CAR-T cells impeded MSLN-positive tumor growth concomitant with a significant increase in cytokine levels compared with the control. Then, we demonstrated the efficacy of anti-MSLN CAR-T cells in an in vivo experiment against ovarian cancer cell-derived xenografts. Furthermore, we herein report three cases with ovarian cancer who were treated with autologous anti-MSLN CAR-T cells and evaluate the safety and effectiveness of adoptive cell therapy. In this investigator-initiated clinical trials, no patients experienced cytokine release syndrome or neurological symptoms over 2 grads. Disease stabilized in two patients, with progression-free survival times of 5.8 and 4.6 months. Transient CAR expression was detected in patient blood after infusion each time. The tumor partially subsided, and the patient's condition was relieved. In conclusion, this work proves the efficacy of the anti-MSLN CAR-T treatment strategy in ovarian cancer and provides preliminary data for the development of further clinical trials.


Assuntos
Imunoterapia Adotiva , Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Feminino , Humanos , Linhagem Celular Tumoral , Proteínas Ligadas por GPI , Imunoterapia , Neoplasias Ovarianas/terapia , Animais
10.
J Ethnopharmacol ; 301: 115775, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36198377

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Palmatine (Pal) is a major bioactive alkaloid originated from ancient Chinese herbal medicine Cortex Phellodendri Amurensis (CPA), which has long been applied to treat hyperuricemia (HUA)-related diseases. Pal possesses potent anti-inflammatory and anti-oxidant effects against metabolic diseases. However, its potential beneficial effect against PO (potassium oxonate)/HX (hypoxanthine)-induced HUA remains elusive. AIM OF THE STUDY: This study aimed to investigate the potential pharmacological effect and mechanism of Pal on PO/HX-induced HUA in mice. MATERIAL AND METHODS: A mouse model of HUA was established by co-administration of PO/HX once daily for 7 consecutive days. The HUA mice were orally given three doses (25, 50 and 100 mg/kg) of Pal daily for a week. Febuxostat (Feb, 5 mg/kg) was given as a positive control. At the scheduled termination of the experiment, the whole blood, liver and kidney were collected for subsequent analyses. The concentrations of uric acid (UA), creatinine (CRE) and blood urea nitrogen (BUN), and activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) were evaluated. Histopathological alterations of the kidney were detected by H&E staining. The inflammatory and oxidative stress status was detected by assay kits. Additionally, key proteins involved in the urate transporter, Keap1-Nrf2 and TXNIP/NLRP3 signaling pathways were evaluated by immunohistochemistry and Western blotting. Finally, molecular docking was employed to probe the binding characteristics of Pal and target proteins Keap1, NLRP3, URAT1 and HO-1. RESULTS: Administration of Pal substantially decreased the elevated kidney weight, lowered UA, CRE and BUN levels, and attenuated abnormal histopathological alterations. Meanwhile, treatment with Pal also dramatically lowered hepatic XOD and ADA activities. Besides, Pal treatment effectively mitigated the renal inflammatory and oxidative stress markers. Further mechanistic investigation indicated Pal distinctly downregulated the protein levels of GLUT9 and URAT1, while up-regulated the expression levels of OAT1 and ABCG2. Pal also restored Nrf2 activation, promoted subsequent expression of anti-oxidative enzymes, and downregulated the expressions of TXNIP, NLRP3, apoptosis-associated speck-like (ASC), caspase-1, IL-1ß and IL-18. Molecular docking analysis also indicated Pal firmly bound with Keap1, NLRP3, URAT1 and HO-1. CONCLUSIONS: These findings indicated that Pal exhibited favorable anti-HUA effect via modulating the expressions of transporter-related proteins and suppressing XOD activity. Furthermore, Pal also alleviated HUA-induced kidney injury, which was at least partially related to restoring Keap1-Nrf2 pathway and inhibiting TXNIP/NLRP3 inflammasome. Our investigation was envisaged to provide experimental support for the traditional application of CPA and CPA-containing classical herbal formulas in the management of HUA-related diseases and might provide novel dimension to the clinical application of Pal.


Assuntos
Hiperuricemia , Ácido Úrico , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Xantina Oxidase/metabolismo , Rim , Creatinina
11.
Drug Des Devel Ther ; 16: 4365-4383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583113

RESUMO

Background: Berberine (BBR) is the primary active component of Phellodendri Chinensis Cortex (PCC), which has been traditionally used to treat inflammatory diseases. However, the discrepancy between its low bioavailability and significant therapeutic effect remains obscure. The purpose of this study was to explore the previously unsolved enigma of the low bioavailability of BBR and its appreciable anti-inflammatory effect to reveal the action mechanism of BBR and PCC. Methods: The quantitative analysis of BBR and its metabolite oxyberberine (OBB) in blood and tissues was performed using high-performance liquid chromatography to investigate the conversion and distribution of BBR/OBB mediated by erythrocytes. Routine blood tests and immunohistochemical staining were used to explore the potential relationship between the amounts of monocyte/macrophage and the drug concentration in erythrocytes and tissues (liver, heart, spleen, lung, kidney, intestine, muscle, brain and pancreas). To comparatively explore the anti-inflammatory effects of BBR and OBB, the acetic acid-induced vascular permeability mice model and lipopolysaccharide-induced RAW 264.7 macrophages were employed. Results: Nearly 92% of BBR existed in the erythrocytes in rats. The partition coefficient of BBR between plasma and erythrocytes (Kp/b) decreased with time. OBB was found to be the oxidative metabolite of BBR in erythrocytes. Proportion of BBR/OBB in erythrocytes changed from 9.38% to 16.30% and from 13.50% to 46.24%, respectively. There was a significant relationship between the BBR/OBB concentration in blood and monocyte depletion after a single administration of BBR. BBR/OBB was transported via erythrocytes to various tissues (liver, kidney, spleen, lung, and heart, etc), with the liver achieving the highest concentration. OBB exhibited similar anti-inflammatory effect in vitro and in vivo as BBR with much smaller dosage. Conclusion: BBR was prodominantly found in erythrocytes, which was critically participated in the biodistribution, pharmacokinetics, metabolism and target delivery of BBR and its metabolite. The anti-inflammatory activity of BBR and PCC was intimately associated with the metabolism into the active congener OBB and the targeted delivery to monocytes/macrophages mediated by the erythrocytes.


Assuntos
Berberina , Camundongos , Ratos , Animais , Distribuição Tecidual , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Macrófagos , Eritrócitos
12.
Biomed Pharmacother ; 156: 113941, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411660

RESUMO

Coptisine, one of the main active components of Rhizoma Coptidis, possesses anti-inflammatory, antioxidant, anti-apoptosis and renoprotective effects. In this study, we investigated the protective effect of coptisine against hyperuricemia induced renal injury in vitro and in vivo, and determined the underlying mechanism. In the in vivo experiment, a mouse model of hyperuricemia induced acute renal injury was established using potassium oxonate (PO)/ hypoxanthine (HX), and in the in vitro experiment, HK-2 cells injury was induced by uric acid (UA). Results showed that coptisine treatment significantly attenuated the acute renal injury via reducing kidney weight and coefficient, UA, creatinine (CRE), blood urea nitrogen (BUN), and histological damages. Meanwhile, coptisine treatment significantly suppressed hyperuricemia induced oxidant stress, inflammatory injury and apoptosis through promoting superoxide dismutase (SOD) activity, restraining reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor (TNF)-α, interleukin (IL)- 1ß, IL-18 levels, down-regulating protein expressions of cleaved-caspase 3, apoptosis-inducing factor (AIF), cyto-CytC, cleaved poly ADP-ribose polymerase (PARP) and Bcl-2-associated X protein (Bax), and up-regulating protein expressions of Bcl-2 and p-Bad. Additionally, mitochondrial structure damage and ATP depletion in renal tissue and HK-2 cells were observably alleviated. Of note, coptisine treatment remarkably ameliorated hyperuricemia induced phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (PKB/Akt) signaling pathway inhibition. When interference with Akt, the protective effect of coptisine against UA-induced injury in HK2 cells was reversed. All the results suggested that coptisine could protect against hyperuricemia induced renal inflammatory damage, oxidative stress and mitochondrial apoptosis via regulating PI3K/Akt signaling pathway.


Assuntos
Injúria Renal Aguda , Hiperuricemia , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase , Hiperuricemia/complicações , Hiperuricemia/tratamento farmacológico , Ácido Úrico , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Estresse Oxidativo , Inflamação/tratamento farmacológico
13.
Eur J Pharmacol ; 933: 175234, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058289

RESUMO

Nutrient excess caused by excessive fructose intake can lead to insulin resistance and dyslipidemia, which further causes the development of metabolic syndrome. Metformin is a well-known AMPK activator widely used for the treatment of metabolic syndrome, while the mechanism of AMPK activation remains unclear. The present study aimed to investigate the pharmacological effects of metformin on fructose-induced insulin resistance rat, and the potential mechanism underlying AMPK activation in skeletal muscle tissue. Results indicated that metformin significantly ameliorated features of insulin resistance, including body weight, Lee's index, hyperinsulinemia, dyslipidemia, insulin intolerance and pancreatic damage. Moreover, treatment with metformin attenuated the inflammatory response in serum and enhanced the antioxidant capacity in skeletal muscle tissue. The therapeutic effects of metformin on fructose-induced insulin resistance may be related to the activation of AMPK to regulate Nrf2 pathway and mitochondrial abnormality. Additionally, metformin suppressed the expression of adenosine monophosphate deaminase 1 (AMPD1) and up-regulated the expression of adenylosuccinate synthetase (ADSS) in the purine nucleotide cycle (PNC), which facilitated the increase of AMP level and the ratio of AMP/ATP. Therefore, we proposed a novel mechanism that metformin activated AMPK via increasing AMP by regulating the expression of AMPD1 and ADSS in PNC pathway.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Adenilossuccinato Sintase/metabolismo , Animais , Antioxidantes/farmacologia , Dieta , Frutose , Insulina/metabolismo , Síndrome Metabólica/metabolismo , Metformina/uso terapêutico , Músculo Esquelético , Fator 2 Relacionado a NF-E2/metabolismo , Nucleotídeos de Purina/metabolismo , Nucleotídeos de Purina/farmacologia , Ratos
14.
Artigo em Inglês | MEDLINE | ID: mdl-35677366

RESUMO

Berberine (BBR), a major active constituent of Rhizoma coptidis, was reported to exert beneficial effects on intestinal mucositis (IM) induced by 5-fluorouracil (5-FU). However, the bioavailability of BBR is extremely low, and its metabolites were perceived to contribute to its prominent pharmacological activities. Oxyberberine (OBB) is a gut metabolite of BBR, which has been reported to have a superior anti-inflammatory effect in experimental colitis. However, its anti-inflammatory effects against 5-FU-induced IM mice have not yet been investigated. Hence, the purpose of this study was to reveal the protective effects of OBB on IM induced by 5-FU and investigate its potential underlying mechanism. The IM mice model was induced by receiving 5-FU (60 mg/kg, i.p.) for five days. Meanwhile, BBR (50 mg/kg) and OBB (12.5, 25, and 50 mg/kg) were given prior to 30 min intraperitoneal injection of 5-FU for seven days. Results indicated that OBB ameliorated body weight loss, anorexia, diarrhea, and histopathological damage in 5-FU-induced IM mice. After OBB administration, the amounts of MDA, SOD, and GSH altered by IM were remarkably restored. OBB was also observed to dramatically decrease the levels of TNF-α, IL-8, IL-6, COX-2, and iNOS and promote the release of IL-10. Besides, OBB distinctly upregulated the mRNA expressions of PCNA, ZO-1, occludin, and mucin-1, which could improve intestinal homeostasis in IM mice. OBB also blocked the activation of the upstream TLR4/MyD88 signaling pathway, and then it inhibited the phosphorylation of the NF-κB and MAPK pathways. Importantly, compared with BBR, OBB displayed a superior therapeutic effect to BBR in alleviating 5-FU-induced IM mice. These results indicated that OBB has considerable potential to become a novel candidate drug against IM.

15.
Ann Neurol ; 92(3): 512-526, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35700120

RESUMO

OBJECTIVE: Oculopharyngodistal myopathy (OPDM) is an adult-onset neuromuscular disease characterized by progressive ptosis, dysarthria, ophthalmoplegia, and distal muscle weakness. Recent studies revealed that GGC repeat expansions in 5'-UTR of LRP12, GIPC1, and NOTCH2NLC are associated with OPDM. Despite these advances, approximately 30% of OPDM patients remain genetically undiagnosed. Herein, we aim to investigate the genetic basis for undiagnosed OPDM patients in two unrelated Chinese Han families. METHODS: Parametric linkage analysis was performed. Long-read sequencing followed by repeat-primed polymerase chain reaction and amplicon length polymerase chain reaction were used to determine the genetic cause. Targeted methylation sequencing was implemented to detect epigenetic changes. The possible pathogenesis mechanism was investigated by quantitative polymerase chain reaction, immunoblotting, RNA fluorescence in situ hybridization, and immunofluorescence staining of muscle biopsy samples. RESULTS: The disease locus was mapped to 12q24.3. Subsequently, GGC repeat expansion in the promoter region of RILPL1 was identified in six OPDM patients from two families, findings consistent with a founder effect, designated as OPDM type 4. Targeted methylation sequencing revealed hypermethylation at the RILPL1 locus in unaffected individuals with ultralong expansion. Analysis of muscle samples showed no significant differences in RILPL1 mRNA or RILPL1 protein levels between patients and controls. Public CAGE-seq data indicated that alternative transcription start sites exist upstream of the RefSeq-annotated RILPL1 transcription start site. Strand-specific RNA-seq data revealed bidirectional transcription from the RILPL1 locus. Finally, fluorescence in situ hybridization/immunofluorescence staining showed that both sense and antisense transcripts formed RNA foci, and were co-localized with hnRNPA2B1 and p62 in the intranuclear inclusions of OPDM type 4 patients. INTERPRETATION: Our findings implicate abnormal GGC repeat expansions in the promoter region of RILPL1 as a novel genetic cause for OPDM, and suggest a methylation mechanism and a potential RNA toxicity mechanism are involved in OPDM type 4 pathogenesis. ANN NEUROL 2022;92:512-526.


Assuntos
Distrofias Musculares , Adulto , Humanos , Hibridização in Situ Fluorescente , Corpos de Inclusão Intranuclear/patologia , Distrofias Musculares/genética , Linhagem , RNA , Expansão das Repetições de Trinucleotídeos/genética
16.
Eur J Pharmacol ; 912: 174592, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34699754

RESUMO

Phellodendri Chinensis Cortex (PC) is a traditional medicinal material used to treat gout and hyperuricemia (HUA) in China. Berberine (BBR), the main component of PC, possesses anti-hyperuricemic and anti-gout effects. However, BBR exhibits low bioavailability due to its extensive metabolism and limited absorption. Thus, the metabolites of BBR are believed to be the potential active forms responsible for its in vivo biological activities. Berberrubine (BRB), one of the major metabolites of BBR, exhibits appreciable biological activities even superior to BBR. In this work, the anti-hyperuricemic efficacy of BRB was investigated in HUA model mice induced by co-administration with intraperitoneal potassium oxonate (PO) and oral hypoxanthine (HX) for 7 days. Results showed that administration with BRB (6.25, 12.5, and 25.0 mg/kg) significantly decreased the serum levels of uric acid (UA) by 49.70%, 75.35%, and 75.96% respectively, when compared to the HUA group. In addition, BRB sharply decreased the levels of blood urea nitrogen (BUN) (by 19.62%, 28.98%, and 38.72%, respectively) and serum creatinine (CRE) (by 16.19%, 25.07%, and 52.08%, respectively) and reversed the PO/HX-induced renal histopathological damage dose-dependently. Additionally, BRB lowered the hepatic XOD activity, downregulated the expressions of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1), upregulated expressions of organic anion transporter 1/3 (OAT1/3) and ATP-binding cassette transporter subfamily G member 2 (ABCG2) at both protein and mRNA levels, and suppressed the activation of the JAK2/STAT3 signaling pathway. In addition, BRB significantly decreased the levels of inflammatory mediators (IL-1ß, IL-6, and TNF-α). In conclusion, our study indicated that BRB exerted anti-hyperuricemic effect, at least in part, via regulating the urate transporter expressions and suppressing the JAK2/STAT3 signaling pathway. BRB was believed to be promising for further development into a potential therapeutic agent for HUA treatment.


Assuntos
Berberina/análogos & derivados , Hiperuricemia/tratamento farmacológico , Janus Quinase 2/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Substâncias Protetoras/farmacologia , Fator de Transcrição STAT3/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Nitrogênio da Ureia Sanguínea , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Creatinina/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hiperuricemia/induzido quimicamente , Hipoxantina/toxicidade , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Nefropatias/patologia , Nefropatias/prevenção & controle , Masculino , Camundongos , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ácido Oxônico/toxicidade , Substâncias Protetoras/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Ácido Úrico/sangue , Xantina Oxidase/metabolismo
17.
Front Pharmacol ; 12: 698219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483901

RESUMO

Sonneratia apetala Buch-Ham., an exotic mangrove species with antidiabetic, antibacterial, and antioxidant capacities, mainly distributes in the southeast coastal areas in China. The present work investigated the protective effects of Sonneratia apetala leaves and branches extraction (SAL) on hyperuricemia (HUA) in mice. Potassium oxonate (PO) and hypoxanthine (HX) were used to establish the HUA model by challenge for consecutive 7 days. Results revealed that SAL inhibited the increases in kidney weight and index compared to the vehicle group. Meanwhile, SAL significantly decreased the levels of uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN) in serum. Additionally, SAL inhibited the activity of xanthine oxidase (XOD) in the liver. SAL ameliorated PO- and HX-induced histopathological changes. Moreover, it regulated oxidative stress markers including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) activity, and glutathione (GSH) content. Also, SAL inhibited the increases in renal levels of interleukin-6 (IL-6), interleukin-18 (IL-18), interleukin-1ß (IL-1ß), tumor necrosis factor (TNF-α), monocyte chemotactic protein 1 (MCP-1), and transforming growth factor-ß (TGF-ß). SAL remarkably reduced suppressor of cytokine signaling 3 (SOCS3), Janus kinase 2 (JAK2), and subsequent phosphorylation of signal transducer and activator of transcription 3 (STAT3) expression. In addition, SAL inhibited the activation of nuclear factor kappa-B (NF-κB) in the kidney. Furthermore, SAL protected against HUA by regulating renal UA transporters of organic anion transporter (OAT1), urate reabsorption transporter 1 (URAT1), and glucose transporter 9 (GLUT9). These findings suggested that SAL ameliorated HUA by inhibiting the production of uric acid and enhancing renal urate excretion, which are related to oxidative stress and inflammation, and the possible molecular mechanisms include its ability to inhibit the JAK/STAT signaling pathway. Thus, SAL might be developed into a promising agent for HUA treatments.

18.
BMC Complement Med Ther ; 21(1): 240, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563177

RESUMO

BACKGROUND: As a prevalent type of cryptogenic fibrotic disease with high mortality, idiopathic pulmonary fibrosis (IPF) still lacks effective therapeutic drugs. The compounds extracted from buds and flowers of Chrysanthemum indicum Linné with supercritical-carbon dioxide fluid (CISCFE) has been confirmed to have antioxidant, anti-inflammatory, and lung-protective effects. This paper aimed to clarify whether CISCFE could treat IPF induced by bleomycin (BLM) and elucidate the related mechanisms. METHODS: Rats (Sprague-Dawley, male) were separated into the following groups: normal, model, pirfenidone (50 mg/kg), CISCFE-L, -M, and -H (240, 360, and 480 mg/kg/d, i.g., respectively, for 4 weeks). Rats were given BLM (5 mg/kg) via intratracheal installation to establish the IPF model. A549 and MRC-5 cells were stimulated by Wnt-1 to establish a cell model and then treated with CISCFE. Haematoxylin-eosin (H&E) and Masson staining were employed to observe lesions in the lung tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) were performed to observe changes in genes and proteins connected with the Wnt/ß-catenin pathway. RESULTS: CISCFE inhibited the proliferation of MRC-5 cells (IC50: 2.723 ± 0.488 µg/mL) and A549 cells (IC50: 2.235 ± 0.229 µg/mL). In rats, A549 cells, and MRC-5 cells, BLM and Wnt-1 obviously induced the protein expression of α-smooth muscle actin (α-SMA), vimentin, type I collagen (collagen-I), and Nu-ß-catenin. The mRNA levels of matrix metalloproteinase-3 (MMP-3) and - 9 (MMP-9), two enzymes that degrade and reshape the extracellular matrix (ECM) were also increased while those of tissue inhibitor of metalloproteinase 1 (TIMP-1) were decreased. However, CISCFE reversed the effects of BLM and Wnt-1 on the expression pattern of these proteins and genes. CONCLUSION: These findings showed that CISCFE could inhibit IPF development by activating the Wnt/ß-catenin pathway and may serve as a treatment for IPF after further investigation.


Assuntos
Dióxido de Carbono/administração & dosagem , Chrysanthemum/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/efeitos adversos , Bleomicina/efeitos adversos , Masculino , Metaloproteinases da Matriz/metabolismo , Extratos Vegetais/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley
19.
J Hematol Oncol ; 14(1): 152, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556152

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy has shown tremendous success in eradicating hematologic malignancies. However, this success has not yet been extrapolated to solid tumors due to the limited infiltration and persistence of CAR-T cells in the tumor microenvironment (TME). In this study, we screened a novel anti-CD70 scFv and generated CD70 CAR-T cells that showed effective antitumor functions against CD70+ renal carcinoma cells (RCCs) both in vitro and in vivo. We further evaluated the effect and explored the molecular mechanism of a PARP inhibitor (PARPi) in CAR-T cell immunotherapy by administering the PARPi to mouse xenografts model derived from human RCC cells. Treatment with the PARPi promoted CAR-T cell infiltration by stimulating a chemokine milieu that promoted CAR-T cell recruitment and the modulation of immunosuppression in the TME. Moreover, our data demonstrate that PARPi modulates the TME by activating the cGAS-STING pathway, thereby altering the balance of immunostimulatory signaling and enabling low-dose CAR-T cell treatment to induce effective tumor regression. These data demonstrate the application of CD70 CAR-T cell therapeutic strategies for RCC and the cross-talk between targeting DNA damage responses and antitumor CAR-T cell therapy. These findings provide insight into the mechanisms of PARPis in CAR-T cell therapy for RCC and suggest a promising adjuvant therapeutic strategy for CAR-T cell therapy in solid tumors.


Assuntos
Ligante CD27/antagonistas & inibidores , Carcinoma de Células Renais/terapia , Imunoterapia Adotiva/métodos , Neoplasias Renais/terapia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico , Animais , Ligante CD27/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Proteínas de Membrana/imunologia , Camundongos , Nucleotidiltransferases/imunologia , Transdução de Sinais
20.
Drug Des Devel Ther ; 15: 3241-3254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349501

RESUMO

PURPOSE: Berberine (BBR) is an active component of Phellodendri Cortex (PC), which is a traditional Chinese medicine that has been prescribed clinically for hyperuricemia (HUA) for hundreds of years. Many studies reported the anti-inflammatory and nephroprotective properties of BBR and PC; however, the therapeutic effects of BBR on HUA have not been explored. This study aims to investigate the efficacy and mechanism of BBR for treating HUA. METHODS: The mechanism of BBR in the treatment of HUA were predicted by network pharmacology. A mouse model of HUA established by potassium oxonate and hypoxanthine was used to verify the prediction. The levels of serum uric acid (UA), urea nitrogen (BUN) and creatinine (CRE) were determined by biochemical test kits. Hematoxylin and eosin staining of kidney tissues was used to observe the kidney damage. ELISA kits were applied to detect the levels of interleukin (IL)-1ß and IL-18 in serum and kidney tissues. Quantitative real-time PCR and Western blotting were adopted to analyze the expression of NLRP3, ASC, Caspase1, IL-1ß and URAT1. The expressions of URAT1 in the kidney tubules were visualized by immunohistochemical staining. Molecular docking was used to assess the interaction between URAT1 and BBR. RESULTS: The network pharmacology screened out 82 genes and several inflammation-related signaling pathways related to the anti-hyperuricemia effect of BBR. In the in vivo experiment, BBR substantially decreased the level of UA, BUN and CRE, and alleviated the kidney damage in mice with HUA. BBR reduced IL-1ß and IL-18, and downregulated expressions of NLRP3, ASC, Caspase1 and IL-1ß. BBR also inhibited expression of URAT1 and exhibited strong affinity with this target in silico docking. CONCLUSION: BBR exerts anti-HUA and nephroprotective effects via inhibiting activation of NLRP3 inflammasome and correcting the aberrant expression of URAT1 in kidney. BBR might be a novel therapeutic agent for treating HUA.


Assuntos
Berberina/uso terapêutico , Hiperuricemia/tratamento farmacológico , Nefropatias/tratamento farmacológico , Farmacologia em Rede , Animais , Berberina/farmacologia , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Transportadores de Ânions Orgânicos/análise , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Ácido Úrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA