Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cosmet Investig Dermatol ; 17: 1133-1144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774812

RESUMO

The endoplasmic reticulum (ER) is the main site of protein synthesis, transport, and modification. Its abnormal status has now emerged as an established cause of many pathological processes, such as tumors and autoimmune diseases. Recent studies also demonstrated that the defective functions of ER may lead to pigmentary diseases. Vitiligo is a depigmenting ailment skin disorder whose pathogenesis is now found to be associated with ER. However, the detailed mechanism is still unclear. In this review, we try to link the association between ER with its inter- and intra-organellar interactions in vitiligo pathogenesis and focus on the function, mechanism, and clinical potential of ER with vitiligo. Expand ER is found in melanocytes of vitiligo and ER stress (ERS) might be a bridge between oxidative stress and innate and adaptive immunity. Meanwhile, the tight association between ER and mitochondria or melanosomes in organelles levels, as well as genes and cytokines, is the new paradigm in the pathogenesis of vitiligo. This undoubtedly adds a new aspect to the understanding of vitiligo, facilitating the design of targeted therapies for vitiligo.

3.
Environ Toxicol ; 39(1): 277-288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705238

RESUMO

Deoxynivalenol (DON) is a mycotoxin frequently occurring in human and animal food worldwide, which raises increasing public health concerns. In the present study, we used human keratinocytes (HaCaT cells) as an in vitro model to explore the cytotoxic effect of DON. The results showed that the cells exhibited varying degrees of damage, including decreased cell number and viability, cell shrinkage and floating, when treated with 0.125, 0.25, and 0.5 µg/mL DON for 6, 12, and 24 h, respectively. Furthermore, exposure to DON for 24 h significantly increased the lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS), and prominently decreased the superoxide dismutase (SOD) and catalase (CAT) activity. Additionally, DON exposure induced mitochondrial damage and cell apoptosis through reducing mitochondrial membrane potential. Then, we performed RNA-sequencing to investigate the molecular changes in HaCaT cells after DON exposure. The RNA-sequencing results revealed that DON exposure altered the gene expression involved in apoptosis, MAPK signaling pathway, and PI3K/Akt signaling pathway. Moreover, DON exposure significantly decreased the mRNA and protein expression of Bcl-2, and increased the mRNA and protein expression of Bax, Caspase 3 and COX-2, the protein expression of PI3K, and the phosphorylation levels of Akt, ERK, p38, and JNK. Taken together, these findings suggest that DON exposure could induce cell damage, oxidative stress, and apoptosis in HaCaT cells through the activation of PI3K/Akt and MAPK pathways.


Assuntos
Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Antioxidantes/metabolismo , Apoptose , Queratinócitos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Tricotecenos/efeitos adversos
4.
Biomacromolecules ; 24(6): 2790-2803, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37125731

RESUMO

Cyclic dinucleotides (CDNs) are a promising class of immune agonists that trigger the stimulator of interferon genes (STING) to activate both innate and acquired immunity. However, the efficacy of CDNs is limited by drug delivery barriers. Therefore, we developed a combined immunotherapy strategy based on injectable reactive oxygen species (ROS)-responsive hydrogels, which sustainably release 5,6-dimethylxanthenone-4-acetic acid (DMXAA) as known as a STING agonist and indocyanine green (ICG) by utilizing a high level of ROS in the tumor microenvironment (TME). The STING agonist combined with photothermal therapy (PTT) can improve the biological efficacy of DMXAA, transform the immunosuppressive TME into an immunogenic and tumoricidal microenvironment, and completely kill tumor cells. In addition, this bioreactive gel can effectively leverage local ROS to facilitate the release of immunotherapy drugs, thereby enhancing the efficacy of combination therapy, improving the TME, inhibiting tumor growth, inducing memory immunity, and protecting against tumor rechallenge.


Assuntos
Quitosana , Neoplasias , Humanos , Imunoterapia , Proteínas de Membrana , Neoplasias/tratamento farmacológico , Terapia Fototérmica , Espécies Reativas de Oxigênio , Microambiente Tumoral
5.
Acta Pharm Sin B ; 12(11): 4204-4223, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36386474

RESUMO

As a promising modality for cancer therapy, photodynamic therapy (PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorate such a situation, we rationally designed and prepared cascade two-stage re-oxygenation and immune re-sensitization BSA-MHI148@SRF nanoparticles via hydrophilic and hydrophobic self-assembly strategy by using near-infrared photodynamic dye MHI148 chemically modified bovine serum albumin (BSA-MHI148) and multi-kinase inhibitor Sorafenib (SRF) as a novel tumor oxygen and immune microenvironment regulation drug. Benefiting from the accumulation of SRF in tumors, BSA-MHI148@SRF nanoparticles dramatically enhanced the PDT efficacy by promoting cascade two-stage tumor re-oxygenation mechanisms: (i) SRF decreased tumor oxygen consumption via inhibiting mitochondria respiratory. (ii) SRF increased the oxygen supply via inducing tumor vessel normalization. Meanwhile, the immunosuppression micro-environment was also obviously reversed by two-stage immune re-sensitization as follows: (i) Enhanced immunogenic cell death (ICD) production amplified by BSA-MHI148@SRF induced reactive oxygen species (ROS) generation enhanced T cell infiltration and improve its tumor cell killing ability. (ii) BSA-MHI148@SRF amplified tumor vessel normalization by VEGF inhibition also obviously reversed the tumor immune-suppression microenvironment. Finally, the growth of solid tumors was significantly depressed by such well-designed BSA-MHI148@SRF nanoparticles, which could be potential for clinical cancer therapy.

6.
Adv Mater ; 34(41): e2206121, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36017886

RESUMO

Currently, the role of the lysosome, endoplasmic reticulum, or dictyosome in the transcription and translation of programmed cell death ligand 1 (PD-L1) is well revealed, but the role and function of mitochondria in the PD-L1 expression in tumors is still not fully researched, making it hard to offer a novel PD-L1 regulation strategy. In this research, it is newly revealed that mitochondria oxidative phosphorylation (OXPHOS) depression can be used as an effective PD-L1 down-regulation method. To offer an ideal and high-effective tumor mitochondria-targeted OXPHOS depression nanosystem, IR-LND is prepared by conjugating mitochondria-targeted heptamethine cyanine dye IR-68 with mitochondrial complexes I and II depression agent lonidamine (LND), which then further self-assembled with albumin (Alb) to form IR-LND@Alb nanoparticles. By doing this, PD-L1 expression in tumors is selectively and effectively depressed by IR-LND@Alb nanoparticles. As expected, the anti-tumor efficacy of such a PD-L1 depression strategy is superior to conventional anti-PD-L1 monoclonal antibodies. Interestingly, IR-LND can also be served as a novel ideal promising photodynamic therapy (PDT) drug with self-oxygen and self-PD-L1 regulation capacity. All in all, this tumor-selective metabolic reprogramming platform to reactivate immunotherapy and sensitize for PDT effect, would open a new window for mitochondrial immunotherapy for cancer patients.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Albuminas , Anticorpos Monoclonais , Antígeno B7-H1/metabolismo , Carbocianinas , Linhagem Celular Tumoral , Depressão , Humanos , Fatores Imunológicos , Imunoterapia , Ligantes , Neoplasias/tratamento farmacológico , Oxigênio , Receptor de Morte Celular Programada 1/metabolismo , Estudos Prospectivos
7.
Carbohydr Polym ; 277: 118869, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893274

RESUMO

After regular chemotherapy, the expression of programmed cell death ligand 1 (PD-L1) in almost all kinds of cancers is significantly increased, leading to reduced efficacy of T cell mediated immune killing in tumors. To solve this, a lot of PD-L1 antibodies were produced and used, but their high cost and serious toxic side effects still limit its usage. Recently, small molecule compounds that could effectively regulate PD-L1 expression possess the edges to solve the problems of PD-L1 antibodies. Chitosan oligosaccharide (COS), a biomaterial derived from the N-deacetylation product of chitin, has a broad spectrum of biological activities in treating tumors. However, the mechanism of its anti-cancer effect is still not well understood. Here, for the first time, we clearly identified that COS could inhibit the upregulated PD-L1 expression induced by interferon γ (IFN-γ) in various tumors via the AMPK activation and STAT1 inhibition. Besides, COS itself significantly restricted the growth of CT26 tumors by enhancing the T cell infiltration in tumors. Furthermore, we observed that combining COS with Gemcitabine (GEM), one of the typical chemotherapeutic drugs, leaded to a more remarkable tumor remission. Therefore, it was demonstrated that COS could be used as a useful way to improve the efficacy of existing chemotherapies by effective PD-L1 downregulation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Quitosana/farmacologia , Neoplasias do Colo/terapia , Imunoterapia , Oligossacarídeos/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Animais , Antineoplásicos/química , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Neoplasias do Colo/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Oligossacarídeos/química , Fator de Transcrição STAT1/metabolismo
8.
J Nanobiotechnology ; 19(1): 375, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794446

RESUMO

BACKGROUND: Mild-temperature photothermal therapy (mild-PTT) has emerged as a highly promising antitumor strategy by triggering immunogenic cell death (ICD) to elicit both innate and adaptive immune responses for tumor control. However, mild-PTT still leads to the risk of tumor recurrence or metastasis because it could hardly completely eradicate tumors due to its impaired immunological efficacy owing to the enhanced PD-L1 expression in tumor cells after treatment. RESULTS: In this study, we described a hydrogen peroxide (H2O2) responsive manganese dioxide mineralized albumin nanocomposite loading with mitochondria function inhibitor phenformin (PM) and near-infrared photothermal dye indocyanine green (ICG) by modified two-step biomineralization method. In combination with ICG induced mild-PTT and PM mediated mitochondria dysfunction, PD-L1 expression was obviously down-regulated and the generated immunological responses was able to effectively attack the remaining tumor cells. Meanwhile, the risk of tumor metastasis was effectively inhibited by reducing the expression of tumor invasion-related signal molecules (TGF-ß and vimentin) after combining treatment. CONCLUSION: Such a strategy offers novel insight into the development of nanomedicine for mild-PTT as well as cancer immunotherapy, which can provide protection against tumor relapse post elimination of their initial and metastatic tumors.


Assuntos
Antígeno B7-H1 , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Fenformin , Terapia Fototérmica , Albuminas/química , Animais , Antineoplásicos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomineralização/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Peróxido de Hidrogênio , Verde de Indocianina , Compostos de Manganês , Camundongos , Óxidos , Fenformin/química , Fenformin/farmacologia
9.
Biomacromolecules ; 22(12): 5339-5348, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34813280

RESUMO

Combined therapy provides a more effective method in the treatment of tumors and becomes a research hotspot. To improve treatment outcomes and reduce serious side effects, hydrogel-based local delivery was developed herein to form a drug depot in suit to eliminate tumors. Indocyanine green and imiquimod were coencapsulated in the novel temperature-sensitive chitosan hydrogel. After intratumoral injection of the hydrogel, indocyanine green that accumulated in the tumor area could induce thermal ablation of primary tumors under laser irradiation. In the presence of imiquimod, the immune effects increased the probability of complete ablation of primary tumors and inhibition of metastases. Combined with cyclophosphamide, the enhanced immunological responses would further inhibit tumors and prolong the survival time. In a word, this work offered an excellent local delivery platform that enabled a remarkable combined antitumor strategy and achieved synergistic therapeutic effects.


Assuntos
Quitosana , Hipertermia Induzida , Neoplasias , Quitosana/farmacologia , Humanos , Hidrogéis/farmacologia , Injeções , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA