Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Resist Updat ; 75: 101099, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850692

RESUMO

Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.

2.
Biomed Pharmacother ; 176: 116878, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843588

RESUMO

Tumor metastasis occurs in hepatocellular carcinoma (HCC), leading to tumor progression and therapeutic failure. Anoikis is a matrix detachment-induced apoptosis, also known as detachment-induced cell death, and mechanistically prevents tumor cells from escaping their native extracellular matrix to metastasize to new organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat HCC. Several natural and synthetic products induce anoikis in HCC cells and in vivo models. Here, we first briefly summarize the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in HCC metastasis. Then we discuss the therapeutic potential of pharmacological induction of anoikis as a potential treatment against HCC. Finally, we discuss the key limitations of this therapeutic paradigm and propose possible strategies to overcome them. Cumulatively this review suggests that the pharmacological induction of anoikis can be used a promising therapeutic modality against HCC.

3.
Nat Commun ; 15(1): 4148, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755149

RESUMO

Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.


Assuntos
Células Epiteliais Alveolares , Plasticidade Celular , Fator Nuclear 1 de Tireoide , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/citologia , Fator Nuclear 1 de Tireoide/metabolismo , Fator Nuclear 1 de Tireoide/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular , Epigênese Genética , Camundongos Endogâmicos C57BL , Lesão Pulmonar/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/genética , Regeneração , Vírus Sendai/genética , Vírus Sendai/fisiologia , Proliferação de Células , Camundongos Knockout , Pulmão/metabolismo
4.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766251

RESUMO

Bronchopulmonary dysplasia (BPD), a prevalent and chronic lung disease affecting premature newborns, results in vascular rarefaction and alveolar simplification. Although the vasculature has been recognized as a main player in this disease, the recently found capillary heterogeneity and cellular dynamics of endothelial subpopulations in BPD remain unclear. Here, we show Cap2 cells are damaged during neonatal hyperoxic injury, leading to their replacement by Cap1 cells which, in turn, significantly decline. Single-cell RNA-seq identifies the activation of numerous p53 target genes in endothelial cells, including Cdkn1a (p21). While global deletion of p53 results in worsened vasculature, endothelial-specific deletion of p53 reverses the vascular phenotype and improves alveolar simplification during hyperoxia. This recovery is associated with the emergence of a transitional EC state, enriched for oxidative stress response genes and growth factors. These findings implicate the p53 pathway in EC type transition during injury-repair and highlights the endothelial contributions to BPD.

6.
Nature ; 627(8004): 656-663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418883

RESUMO

Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.


Assuntos
Adenocarcinoma de Pulmão , Diferenciação Celular , Células Epiteliais , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Aneuploidia , Carcinógenos/toxicidade , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Organoides/efeitos dos fármacos , Organoides/metabolismo , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Taxa de Sobrevida , Produtos do Tabaco/efeitos adversos , Produtos do Tabaco/toxicidade
7.
Drug Resist Updat ; 72: 101018, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979442

RESUMO

Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.


Assuntos
Cobre , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Morte Celular , Ionóforos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Apoptose
8.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917008

RESUMO

Cell type-specific use of the same DNA blueprint generates diverse cell types. Such diversity must also be executed via differential deployment of the same subcellular machinery. However, our understanding of the size, distribution, and dynamics of subcellular machinery in native tissues and their connection to cellular diversity remains limited. We generate and characterize an inducible tricolor reporter mouse, dubbed "Kaleidoscope," for simultaneous imaging of lysosomes, mitochondria, and microtubules in any cell type and at a single-cell resolution. The expected subcellular compartments are labeled in culture and in tissues with no impact on cellular and organismal viability. Quantitative and live imaging of the tricolor reporter captures cell type-specific organelle features and kinetics in the lung, as well as their changes after Sendai virus infection. Yap/Taz mutant lung epithelial cells undergo accelerated lamellar body maturation, a subcellular manifestation of their molecular defects. A comprehensive toolbox of reporters for all subcellular structures is expected to transform our understanding of cell biology in tissues.


Assuntos
Lisossomos , Microtúbulos , Mitocôndrias , Animais , Camundongos , Células Epiteliais/citologia , Cinética
9.
Signal Transduct Target Ther ; 8(1): 449, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072908

RESUMO

Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.


Assuntos
Antineoplásicos , Ferroptose , Nefropatias , Pneumopatias , Neoplasias , Humanos , Ferroptose/genética , Processamento de Proteína Pós-Traducional/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Metilação de DNA , Epigênese Genética/genética , Antineoplásicos/uso terapêutico , Pneumopatias/tratamento farmacológico , Pneumopatias/genética
10.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873326

RESUMO

Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.

11.
Mol Cancer ; 22(1): 102, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391814

RESUMO

Divergent N6-methyladenosine (m6A) modifications are dynamic and reversible posttranscriptional RNA modifications that are mediated by m6A regulators or m6A RNA methylation regulators, i.e., methyltransferases ("writers"), demethylases ("erasers"), and m6A-binding proteins ("readers"). Aberrant m6A modifications are associated with cancer occurrence, development, progression, and prognosis. Numerous studies have established that aberrant m6A regulators function as either tumor suppressors or oncogenes in multiple tumor types. However, the functions and mechanisms of m6A regulators in cancer remain largely elusive and should be explored. Emerging studies suggest that m6A regulators can be modulated by epigenetic modifications, namely, ubiquitination, SUMOylation, acetylation, methylation, phosphorylation, O-GlcNAcylation, ISGylation, and lactylation or via noncoding RNA action, in cancer. This review summarizes the current roles of m6A regulators in cancer. The roles and mechanisms for epigenetic modification of m6A regulators in cancer genesis are segregated. The review will improve the understanding of the epigenetic regulatory mechanisms of m6A regulators.


Assuntos
Neoplasias , Oncogenes , Humanos , Neoplasias/genética , Acetilação , Epigênese Genética , RNA
12.
Eur J Med Chem ; 257: 115529, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269670

RESUMO

A series of novel stilbene-based derivatives were designed and synthesized as tubulin/HDAC dual-target inhibitors. Among forty-three target compounds, compound II-19k not only exhibited considerable antiproliferative activity in the hematological cell line K562 with IC50 value of 0.003 µM, but also effectively inhibited the growth of various solid tumor cell lines with IC50 values ranging from 0.005 to 0.036 µM. The mechanism studies demonstrated that II-19k could inhibit microtubules and HDACs at the cellular level, block cell cycle arrest at G2 phase, induce cell apoptosis, and reduce solid tumor cells metastasis. What's more, the vascular disrupting effects of compound II-19k were more pronounced than the combined administration of parent compound 8 and HDAC inhibitor SAHA. The in vivo antitumor assay of II-19k also showed the superiority of dual-target inhibition of tubulin and HDAC. II-19k significantly suppressed the tumor volume and effectively reduced tumor weight by 73.12% without apparent toxicity. Overall, the promising bioactivities of II-19k make it valuable for further development as an antitumor agent.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Apoptose
13.
Bioorg Med Chem ; 79: 117156, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640595

RESUMO

A series of novel 9-N-substituted-13-alkylberberine derivatives from Chinese medicine were designed and synthesized with improved anti-hepatocellular carcinoma (HCC) activities. The optimal compound 4d showed strong activities against HepG2, Sk-Hep-1, Huh-7 and Hep3B cells with IC50 values of 0.58-1.15 µM, which were superior to positive reference cisplatin. Interestingly, 4d exhibited over 40-fold more potent activity against cisplatin-resistant HepG2/DPP cells while showing lower cytotoxicity in normal LX-2 cells. The mechanism studies revealed 4d greatly stabilized G-quadruplex DNA leading to intracellular c-MYC expression downregulation, blocked G2/M-phase cell cycle by affecting related p-cdc25c, cdc2 and cyclin B1 expressions, and induced apoptosis by a ROS-promoted PI3K/Akt-mitochondrial pathway. Furthermore, 4d possessed good pharmacokinetic properties and significantly inhibited the tumor growth in the H22 liver cancer xenograft mouse model without obvious toxicity. Altogether, the remarkably biological profiles of 4d both in vitro and in vivo would make it a promising candidate for HCC therapy.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Cisplatino/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Medicina Tradicional Chinesa , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Hep G2 , Apoptose , Proliferação de Células , Linhagem Celular Tumoral
14.
Drug Resist Updat ; 66: 100916, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610291

RESUMO

Development of resistance to chemotherapy in cancer continues to be a major challenge in cancer management. Ferroptosis, a unique type of cell death, is mechanistically and morphologically different from other forms of cell death. Ferroptosis plays a pivotal role in inhibiting tumour growth and has presented new opportunities for treatment of chemotherapy-insensitive tumours in recent years. Emerging studies have suggested that ferroptosis can regulate the therapeutic responses of tumours. Accumulating evidence supports ferroptosis as a potential target for chemotherapy resistance. Pharmacological induction of ferroptosis could reverse drug resistance in tumours. In this review article, we first discuss the key principles of chemotherapeutic resistance in cancer. We then provide a brief overview of the core mechanisms of ferroptosis in cancer chemotherapeutic drug resistance. Finally, we summarise the emerging data that supports the fact that chemotherapy resistance in different types of cancers could be subdued by pharmacologically inducing ferroptosis. This review article suggests that pharmacological induction of ferroptosis by bioactive compounds (ferroptosis inducers) could overcome chemotherapeutic drug resistance. This article also highlights some promising therapeutic avenues that could be used to overcome chemotherapeutic drug resistance in cancer.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias , Humanos , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular
15.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L123-L140, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537711

RESUMO

Hyperoxia disrupts lung development in mice and causes bronchopulmonary dysplasia (BPD) in neonates. To investigate sex-dependent molecular and cellular programming involved in hyperoxia, we surveyed the mouse lung using single cell RNA sequencing (scRNA-seq), and validated our findings in human neonatal lung cells in vitro. Hyperoxia-induced inflammation in alveolar type (AT) 2 cells gave rise to damage-associated transient progenitors (DATPs). It also induced a new subpopulation of AT1 cells with reduced expression of growth factors normally secreted by AT1 cells, but increased mitochondrial gene expression. Female alveolar epithelial cells had less EMT and pulmonary fibrosis signaling in hyperoxia. In the endothelium, expansion of Car4+ EC (Cap2) was seen in hyperoxia along with an emergent subpopulation of Cap2 with repressed VEGF signaling. This regenerative response was increased in females exposed to hyperoxia. Mesenchymal cells had inflammatory signatures in hyperoxia, with a new distal interstitial fibroblast subcluster characterized by repressed lipid biosynthesis and a transcriptomic signature resembling myofibroblasts. Hyperoxia-induced gene expression signatures in human neonatal fibroblasts and alveolar epithelial cells in vitro resembled mouse scRNA-seq data. These findings suggest that neonatal exposure to hyperoxia programs distinct sex-specific stem cell progenitor and cellular reparative responses that underpin lung remodeling in BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Recém-Nascido , Masculino , Feminino , Animais , Camundongos , Humanos , Displasia Broncopulmonar/metabolismo , Transcriptoma/genética , Hiperóxia/metabolismo , Animais Recém-Nascidos , Pulmão/metabolismo , Modelos Animais de Doenças
16.
Front Pharmacol ; 14: 1336216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313077

RESUMO

In light of a global rise in the number of patients with type 2 diabetes mellitus (T2DM) and obesity, non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of hepatocellular carcinoma (HCC), with the annual occurrence of MASLD-driven HCC expected to increase by 45%-130% by 2030. Although MASLD has become a serious major public health threat globally, the exact molecular mechanisms mediating MASLD-driven HCC remain an open problem, necessitating future investigation. Meanwhile, emerging studies are focusing on the utility of bioactive compounds to halt the progression of MASLD to MASLD-driven HCC. In this review, we first briefly review the recent progress of the possible mechanisms of pathogenesis and progression for MASLD-driven HCC. We then discuss the application of bioactive compounds to mitigate MASLD-driven HCC through different modulatory mechanisms encompassing anti-inflammatory, lipid metabolic, and gut microbial pathways, providing valuable information for future treatment and prevention of MASLD-driven HCC. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of MASLD-driven HCC is still warranted.

17.
Res Sq ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168395

RESUMO

Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.

18.
Front Pharmacol ; 13: 977521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172194

RESUMO

Epigallocatechin 3-gallate (EGCG), an abundant polyphenolic component derived from green tea extract, possesses versatile bioactivities that can combat many diseases. During the last decade, EGCG was shown to be effective in experimental models of Parkinson's disease (PD). Several experimental studies have suggested that it has pleiotropic neuroprotective effects, which has enhanced the appeal of EGCG as a therapeutic strategy in PD. In this review, we compiled recent updates and knowledge of the molecular mechanisms underlying the neuroprotective effects of EGCG in PD. We focused on the effects of EGCG on apoptosis, oxidative stress, inflammation, ferroptosis, modulation of dopamine production, and the aggregation of α-synuclein. The review highlights the pharmacological features of EGCG and its therapeutic implications in PD. Taken together, the accumulated data indicate that EGCG is a promising neuroprotective compound for the treatment of PD.

19.
J Enzyme Inhib Med Chem ; 37(1): 2423-2433, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065941

RESUMO

A series of novel 9-O-substituted-13-octylberberine derivatives were designed, synthesised and evaluated for their anti-hepatocellular carcinoma (HCC) activities. Compound 6k showed the strongest activity against three human hepatoma cells including HepG2, Sk-Hep-1 and Huh-7 cells with IC50 values from 0.62 to 1.69 µM, which were much superior to berberine (IC50 >50 µM). More importantly, 6k exhibited lower cytotoxicity against normal hepatocytes L-02 with good lipid-water partition properties. The mechanism studies revealed that 6k caused G2/M phase arrest of the cell cycle, stabilised G-quadruplex DNA, and induced apoptosis via a mitochondrial apoptotic pathway. Finally, the in vivo anti-HCC activity of 6k was validated in the H22 liver cancer xenograft mouse model. Collectively, the current study would provide a new insight into the discovery of novel, safe and effective anti-HCC agents.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/patologia , Camundongos
20.
Pharmacology ; 107(9-10): 486-494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732157

RESUMO

INTRODUCTION: Abundant studies have disclosed that proteins can function as pivotal tumor promoters or suppressors in cancers' progression. This work was planned to investigate the regulatory function of N-myristoyltransferase-1 (NMT1) on non-small cell lung cancer (NSCLC) and the underlying molecular mechanisms. METHODS: The self-renewal abilities were assessed through a spheroid-formation assay. The tumorigenic abilities were examined through nude mice in vivo assay. The proteins' expression was measured through Western blot. The NMT1 protein expression in tumor tissues was measured through an IHC assay. The cell migration and invasion was confirmed through a transwell assay. The IC50 was verified through a CCK-8 assay. The NMT1 mRNA expression in NSCLC tissues was detected through RT-qPCR. RESULTS: It was demonstrated that NMT1 exhibited higher expression in spheroid cells. Additionally, NMT1 facilitated the stemness in NSCLC. It was also found that NMT1 accelerated NSCLC tumor metastasis and the resistance to cisplatin. Moreover, NMT1 activated the PI3K/AKT pathway to facilitate stemness in NSCLC. NMT1 was also higher in tumor tissues of NSCLC patients and resulted in a poor survival rate. CONCLUSION: NMT1 enhanced the stemness of NSCLC cells by activating the PI3K/AKT pathway. This discovery suggested that NMT1 may be a valid therapeutic biomarker for NSCLC.


Assuntos
Aciltransferases , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Aciltransferases/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA