Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Inorg Biochem ; 259: 112666, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029397

RESUMO

Here, we designed, synthesized and characterized three new cyclometalated Ru(II) complexes, [Ru(phen)2(1-(4-Ph-Ph)-IQ)]+ (phen = 1,10-phenanthroline, IQ = isoquinoline, RuIQ9), [Ru(phen)2(1-(4-Ph-Ph)-7-OCH3-IQ)]+ (RuIQ10), and [Ru(phen)2(1-(4-Ph-Ph)-6,7-(OCH3)2-IQ)]+ (RuIQ11). The cytotoxicity experiments conducted on both 2D and 3D multicellular tumor spheroids (MCTSs) indicated that complexes RuIQ9-11 exhibited notably higher cytotoxicity against A549 and A549/DDP cells when compared to the ligands and precursor compounds as well as clinical cisplatin. Moreover, the Ru(II) complexes displayed low toxicity when tested on normal HBE cells in vitro and exposed to zebrafish embryos in vivo. In addition, complexes RuIQ9-11 could inhibit A549 and A549/DDP cell migration and proliferation by causing cell cycle arrest, mitochondrial dysfunction, and elevating ROS levels to induce apoptosis in these cells. Mechanistic studies revealed that RuIQ9-11 could suppress the expression of Nrf2 and its downstream antioxidant protein HO-1 by inhibiting Nrf2 gene transcription in drug-resistant A549/DDP cells. Simultaneously, they inhibited the expression of efflux proteins MRP1 and p-gp in drug-resistant cells, ensuring the accumulation of the complexes within the cells. This led to an increase in intracellular ROS levels in drug-resistant cells, ultimately causing damage and cell death, thus overcoming cisplatin resistance. More importantly, RuIQ11 could effectively inhibit the migration and proliferation of drug-resistant cells within zebrafish, addressing the issue of cisplatin resistance. Accordingly, the prepared Ru(II) complexes possess significant potential for development as highly effective and low-toxicity lung cancer therapeutic agents to overcome cisplatin resistance.

2.
Metallomics ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183290

RESUMO

Currently, cisplatin resistance remains a primary clinical obstacle in the successful treatment of non-small cell lung cancer. Here, we designed, synthesized, and characterized two novel cyclometalated Ru(II) complexes, [Ru(bpy)2(1-Ph-7-OCH3-IQ)] (PF6) (bpy = 2,2'-bipyridine, IQ = isoquinoline, RuIQ7)and [Ru(bpy)2(1-Ph-6,7-(OCH3)2-IQ)] (PF6) (RuIQ8). As experimental controls, we prepared complex [Ru(bpy)2(1-Ph-IQ)](PF6) (RuIQ6) lacking a methoxy group in the main ligand. Significantly, complexes RuIQ6-8 displayed higher in vitro cytotoxicity when compared to ligands, precursor cis-[Ru(bpy)2Cl2], and clinical cisplatin. Mechanistic investigations revealed that RuIQ6-8 could inhibit cell proliferation by downregulating the phosphorylation levels of Akt and mTOR proteins, consequently affecting the rapid growth of human lung adenocarcinoma cisplatin-resistant cells A549/DDP. Moreover, the results from qRT-PCR demonstrated that these complexes could directly suppress the transcription of the NF-E2-related factor 2 gene, leading to the inhibition of downstream multidrug resistance-associated protein 1 expression and effectively overcoming cisplatin resistance. Furthermore, the relationship between the chemical structures of these three complexes and their anticancer activity, ability to induce cell apoptosis, and their efficacy in overcoming cisplatin resistance has been thoroughly examined and discussed. Notably, the toxicity test conducted on zebrafish embryos indicated that the three Ru-IQ complexes displayed favorable safety profiles. Consequently, the potential of these developed compounds as innovative therapeutic agents for the efficient and low-toxic treatment of NSCLC appears highly promising.


Assuntos
2,2'-Dipiridil/análogos & derivados , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Compostos Organometálicos , Rutênio , Animais , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Rutênio/química , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/patologia , Peixe-Zebra/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico
3.
Front Oncol ; 13: 1142916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023195

RESUMO

Objectives: The present study aims at establishing a noninvasive and reliable model for the preoperative prediction of glypican 3 (GPC3)-positive hepatocellular carcinoma (HCC) based on multiparametric magnetic resonance imaging (MRI) and clinical indicators. Methods: As a retrospective study, the subjects included 158 patients from two institutions with surgically-confirmed single HCC who underwent preoperative MRI between 2020 and 2022. The patients, 102 from institution I and 56 from institution II, were assigned to the training and the validation sets, respectively. The association of the clinic-radiological variables with the GPC3 expression was investigated through performing univariable and multivariable logistic regression (LR) analyses. The synthetic minority over-sampling technique (SMOTE) was used to balance the minority group (GPC3-negative HCCs) in the training set, and diagnostic performance was assessed by the area under the curve (AUC) and accuracy. Next, a prediction nomogram was developed and validated for patients with GPC3-positive HCC. The performance of the nomogram was evaluated through examining its calibration and clinical utility. Results: Based on the results obtained from multivariable analyses, alpha-fetoprotein levels > 20 ng/mL, 75th percentile ADC value < 1.48 ×103 mm2/s and R2* value ≥ 38.6 sec-1 were found to be the significant independent predictors of GPC3-positive HCC. The SMOTE-LR model based on three features achieved the best predictive performance in the training (AUC, 0.909; accuracy, 83.7%) and validation sets (AUC, 0.829; accuracy, 82.1%) with a good calibration performance and clinical usefulness. Conclusions: The nomogram combining multiparametric MRI and clinical indicators is found to have satisfactory predictive efficacy for preoperative prediction of GPC3-positive HCC. Accordingly, the proposed method can promote individualized risk stratification and further treatment decisions of HCC patients.

4.
J Inorg Biochem ; 249: 112397, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844533

RESUMO

In this study, we synthesized 4 cyclometalated iridium complexes using N-(1,10-phenanthrolin-5-yl)picolinamide (PPA) as the main ligand, denoted as [Ir(ppy)2PPA]PF6 (ppy = 2-phenylpyridine, Ir1), [Ir(bzq)2PPA]PF6 (bzq = benzo[h]quinoline, Ir2), [Ir(dfppy)2PPA]PF6 (dfppy = 2-(3,5-difluorophenyl)pyridine, Ir3), and [Ir(thpy)2PPA]PF6 (thpy = 2-(thiophene-2-yl)pyridine, Ir4). Compared to cisplatin and oxaliplatin, all four complexes exhibited significant anti-tumor activity. Among them, Ir2 demonstrated higher cytotoxicity against A549 cells, with an IC50 value of 1.6 ± 0.2 µM. The experimental results indicated that Ir2 primarily localized in the mitochondria, inducing a large amount of reactive oxygen species (ROS) generation, that decreased in mitochondrial membrane potential (MMP), reduced ATP production, and further impaired mitochondrial function, leading to cytochrome c release. Additionally, Ir2 caused cell cycle arrest at the S phase and induced apoptosis through the AKT-mediated signaling pathway. Further investigations revealed that Ir2 could simultaneously induce both apoptosis and autophagy in A549 cells, with the latter acting as a non-protective mechanism that promoted cell death. More importantly, Ir2 exhibited low toxicity to both normal LO2 cells in vitro and zebrafish embryos in vivo. Consequently, these newly developed Ir(III) complexes show great potential in the development of novel and low-toxicity anticancer agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Animais , Humanos , Células A549 , Irídio/farmacologia , Irídio/metabolismo , Peixe-Zebra , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Piridinas/farmacologia , Autofagia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Linhagem Celular Tumoral
5.
J Inorg Biochem ; 247: 112333, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37480763

RESUMO

The main challenge of cancer chemotherapy is the resistance of tumor cells to oxidative damage. Herein, we proposed a novel antitumor strategy: cyclic metal­ruthenium (Ru) complexes mediate reductive damage to kill tumor cells. We designed and synthesized Ru(II) complexes with ß-carboline as ligands: [Ru (phen)2(NO2-Ph-ßC)](PF6) (RußC-7) and [Ru(phen)2(1-Ph-ßC)](PF6) (RußC-8). In vitro experimental results showed that RußC-7 and RußC-8 can inhibit cell proliferation, promote mitochondrial abnormalities, and induce DNA damage. Interestingly, RußC-7 with SOD activity could reduce intracellular reactive oxygen species (ROS) levels, while RußC-8 has the opposite effect. Accordingly, this study identified the reductive damage mechanism of tumor apoptosis, and may provide a new ideas for the design of novel metal complexes.


Assuntos
Complexos de Coordenação , Rutênio , Humanos , Células HeLa , Rutênio/farmacologia , Apoptose , Proliferação de Células , Complexos de Coordenação/farmacologia
6.
Front Oncol ; 13: 1134646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456233

RESUMO

Objectives: To explore the predictive value of gadoxetic acid-enhanced magnetic resonance imaging (MRI) combined with T1 mapping and clinical factors for Ki-67 expression in hepatocellular carcinoma (HCC). Methods: A retrospective study was conducted on 185 patients with pathologically confirmed solitary HCC from two institutions. All patients underwent preoperative T1 mapping on gadoxetic acid-enhanced MRI. Patients from institution I (n = 124) and institution II (n = 61) were respectively assigned to the training and validation sets. Univariable and multivariable analyses were performed to assess the correlation of clinico-radiological factors with Ki-67 labeling index (LI). Based on the significant factors, a predictive nomogram was developed and validated for Ki-67 LI. The performance of the nomogram was evaluated on the basis of its calibration, discrimination, and clinical utility. Results: Multivariable analysis showed that alpha-fetoprotein (AFP) levels > 20ng/mL, neutrophils to lymphocyte ratio > 2.25, non-smooth margin, tumor-to-liver signal intensity ratio in the hepatobiliary phase ≤ 0.6, and post-contrast T1 relaxation time > 705 msec were the independent predictors of Ki-67 LI. The nomogram based on these variables showed the best predictive performance with area under the receiver operator characteristic curve (AUROC) 0.899, area under the precision-recall curve (AUPRC) 0.946 and F1 score of 0.912; the respective values were 0.823, 0.879 and 0.857 in the validation set. The Kaplan-Meier curves illustrated that the cumulative recurrence probability at 2 years was significantly higher in patients with high Ki-67 LI than in those with low Ki-67 LI (39.6% [53/134] vs. 19.6% [10/51], p = 0.011). Conclusions: Gadoxetic acid-enhanced MRI combined with T1 mapping and several clinical factors can preoperatively predict Ki-67 LI with high accuracy, and thus enable risk stratification and personalized treatment of HCC patients.

7.
J Inorg Biochem ; 246: 112295, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348172

RESUMO

Two new ruthenium(II) complexes [Ru(dip)2(PPßC)]PF6 (Ru1, dip = 4,7-diphenyl-1,10-phenanthroline, PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide) and [Ru(phen)2(PPßC)]PF6 (Ru2, phen = 1, 10-phenanthroline) with ß-carboline derivative PPßC as the primary ligand, were designed and synthesized. Ru1 and Ru2 displayed higher antiproliferative activity than cisplatin against the test cancer cells, with IC50 values ranging from 0.5 to 3.6 µM. Moreover, Ru1 and Ru2 preferentially accumulated in mitochondria and caused a series of changes in mitochondrial events, including the depolarization of mitochondrial membrane potential, the damage of mitochondrial DNA, the depletion of cellular ATP, and the elevation of intracellular reactive oxygen species levels. Then, it induced caspase-3/7-mediated A549 cell apoptosis. More importantly, both complexes could act as topoisomerase I catalytic inhibitors to inhibit mitochondrial DNA synthesis. Accordingly, the developed Ru(II) complexes hold great potential to be developed as novel therapeutics for cancer treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Células A549 , Rutênio/farmacologia , Rutênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Mitocôndrias/metabolismo , Apoptose , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
8.
J Colloid Interface Sci ; 646: 959-969, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37235941

RESUMO

Supramolecular assemblies fabricated by peptide-photosensitizer conjugates have attracted increasing attentions in recent years as drug carriers for chemotherapeutics (CTs). However, these assemblies have been known to suffer from disintegration by serum components leading to off-target drug release, and thereby impairing antitumor effects and causing systemic toxicities. To address this problem, this study reports a nano-architectural self-assembly peptide-photosensitizer carrier (NSPC) fabricated by conjugating a phthalocyanine derivative (MCPZnPc) and ε-poly-l-lysine (EPL). By engineering the core and peripheral interactions, MCPZnPC-EPL (M-E) NSPC firmly encapsulated multiple CTs, creating CT@M-E NSPCs that were highly stable against disintegration in serum. More importantly, CT@M-E NSPCs exhibited controlled release of CTs in tumor tissues. The antitumor effects of CTs were further promoted by the synergism with the reactivated photodynamic effect. Furthermore, M-E NSPC-encapsulation optimized CTs' biodistribution reducing adverse effects in vivo. This study provides a serum-stable supramolecular drug delivery system with photodynamic effect, which is applicable for a broad-range of CTs to promote antitumor effects and ameliorate adverse effects.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Portadores de Fármacos , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Peptídeos/farmacologia , Liberação Controlada de Fármacos , Linhagem Celular Tumoral
9.
Metallomics ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204038

RESUMO

Natural products and metals play a crucial role in cancer research and the development of antitumor drugs. We designed and synthesized three new carboline-based cyclometalated iridium complexes [Ir(C-N)2(PPßC)](PF6), where PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide, C-N = 2-phenylpyridine (ppy, Ir1), 2-(2,4-difluorophenyl) pyridine (dfppy, Ir2), 7,8-benzoquinoline (bzq, Ir3), by combining iridium with ß-carboline derivative. These iridium complexes exhibited high potential antitumor effects after being promptly taken up by A549 cells. Accumulating in mitochondria rapidly and preferentially, Ir1-3 caused a series of changes in mitochondrial events, including the loss of mitochondrial membrane potential, the depletion of cellular ATP, and the elevation of reactive oxygen species, leading to significant death of A549 cells. Moreover, the activation of intracellular caspase pathway and apoptosis was further validated to contribute to iridium complexes-induced cytotoxicity. These novel iridium complexes exerted a prominent inhibitory effect on tumor growth in a three-dimensional multicellular tumor spheroid model.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Irídio/farmacologia , Neoplasias Pulmonares/patologia , Antineoplásicos/metabolismo , Carbolinas/farmacologia , Carbolinas/metabolismo , Apoptose , Mitocôndrias/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células
10.
Clin Exp Med ; 23(7): 3767-3780, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37106265

RESUMO

Anti-PD-1 immunotherapy has been widely applied in patients with some types of lymphoma. Classical Hodgkin's lymphoma (cHL) is highly sensitive to immunotherapy, but non-Hodgkin's lymphoma (NHL) does not show a good response. Studies have indicated that haematopoietic progenitor kinase 1 (HPK1) suppresses T cells and reduces antitumour immunity. Therefore, HPK1 inhibitors may restore and elicit antitumour immune responses and are promising candidate drug targets for cancer immunotherapy. We first explored the Gene Expression Profile Interactive Analysis (GEPIA) database and predicted that HPK1 expression was increased in diffuse large B-cell lymphoma (DLBCL) and associated with Nod-like receptor protein 3 (NLRP3) expression. We investigated whether an HPK1 inhibitor could enhance the tumour response to anti-PD-1 immunotherapy in NHL and the association between HPK1 and NLRP3 expression. Employing shHPK1 and an inhibitor, we demonstrated that the HPK1 inhibitor increased anti-PD-1-mediated T-cell cytotoxicity in BJAB and WSU-DLCL2 cells cocultured with peripheral blood mononuclear cells (PBMCs). HPK1 inhibitor treatment increased PD-1, PD-L1, Bax, p53 and NK-kB expression but decreased NLRP3 expression, indicating that the HPK1 inhibitor promoted apoptosis and blocked the NLRP3 inflammasome pathway to affect anti-PD-1-mediated T-cell cytotoxicity. Moreover, the HPK1 inhibitor enhanced the efficiency of anti-PD-1 immunotherapy in vivo in a zebrafish xenograft model of NHL. In summary, this study provides evidence that an HPK1 inhibitor enhanced the tumour response to anti-PD-1 immunotherapy in NHL by promoting apoptosis and blocking the NLRP3 pathway. These findings provide a potential therapeutic option for NHL combining HPK1 inhibitor treatment and anti-PD-1 immunotherapy.


Assuntos
Doença de Hodgkin , Inibidores de Checkpoint Imunológico , Linfoma não Hodgkin , Animais , Humanos , Imunoterapia , Leucócitos Mononucleares/metabolismo , Linfoma não Hodgkin/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peixe-Zebra , Inibidores de Checkpoint Imunológico/uso terapêutico
11.
Cancer Lett ; 563: 216181, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086953

RESUMO

P-glycoprotein (P-gp/ABCB1)-mediated multidrug resistance (MDR) in cancers severely limit chemotherapeutic efficacy. We recently reported that phosphatidylinositol-3-kinase (PI3K) 110α and 110ß subunits can be novel targets for reversal of P-gp mediated MDR in cancers, and BAY-1082439 as an inhibitor specific for PI3K 110α and 110ß subunits could reverse P-gp-mediated MDR by downregulating P-gp expression in cancer cells. However, BAY-1082439 has very low solubility, short half-life and high in-vivo clearance rate. Till now, nano-system with the functions to target PI3K P110α and P110ß and reverse P-gp mediated MDR in cancers has not been reported. In our study, a tumor targeting drug delivery nano-system PBDF was established, which comprised doxorubicin (DOX) and BAY-1082439 respectively encapsulated by biodegradable PLGA-SH nanoparticles (NPs) that were grafted to gold nanorods (Au NRs) modified with FA-PEG-SH, to enhance the efficacy to reverse P-gp mediated MDR and to target tumor cells, further, to enhance the efficiency to inhibit MDR tumors overexpressing P-gp. In-vitro experiments indicated that PBDF NPs greatly enhanced uptake of DOX, improved the activity to reverse MDR, inhibited the cell proliferation, and induced S-phase arrest and apoptosis in KB-C2 cells, as compared with free DOX combining free BAY-1082439. In-vivo experiments further demonstrated that PBDF NPs improved the anti-tumor ability of DOX and inhibited development of KB-C2 tumors. Notably, the metastasis of KB-C2 cells in livers and lungs of nude mice were inhibited by treatment with PBDF NPs, which showed no obvious in-vitro or in-vivo toxicity.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Antineoplásicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Camundongos Nus , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Humanos
12.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672187

RESUMO

Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Animais , Peixe-Zebra/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/metabolismo
13.
Eur J Med Chem ; 236: 114335, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398732

RESUMO

Targeted therapy showed broad application prospects in the treatment of various types of cancer. Through carriers such as aptamers, antibodies, proteins and peptides, targeted therapy can selectively deliver drugs into tumor cells. Compared with traditional treatment methods such as chemo- and radiotherapy, targeted drug delivery systems can reduce the toxic effects of drugs on normal cells and avoid adverse reactions. Herein, an aptamer-cyclometalated iridium(III) complex conjugate (ApIrC) has been designed and developed as a targeted anticancer agent. Owing to the targeting ability of aptamers, ApIrC specifically bound to nucleolin over-expressed on the surface of cancer cells and showed strong fluorescence signal for tumor imaging and diagnosis. ApIrC had more substantial cellular uptake in cancer cells than the iridium complex alone and exhibited favorable low toxicity to normal cells. After uptake by cells through endocytosis, ApIrC can selectively accumulated in mitochondria and induced caspase-3/7-dependent cell death. Remarkably, ApIrC can also specifically target 3D multicellular spheroids (MCSs) and show excellent tumor permeability. So, it can effectively reach the interior of MCSs and cause cell damage. To our knowledge, this is the first report of the aptamer-cyclometalated iridium(III) complex conjugate which studied for cancer targeted therapy. The developed conjugate has great potential to be developed as novel therapeutics for effective and low-toxic cancer treatment.


Assuntos
Antineoplásicos , Aptâmeros de Nucleotídeos , Neoplasias , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Irídio/farmacologia , Mitocôndrias , Neoplasias/tratamento farmacológico
14.
Bioorg Chem ; 119: 105516, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856444

RESUMO

Both ruthenium (Ru) and isoquinoline (IQ) compounds are regarded as potential anticancer drug candidates. Here, we report the synthesis and characterization of three novel cyclometalated Ru(II)-isoquinoline complexes: RuIQ-3, RuIQ-4, and RuIQ-5, and evaluation of their in vitro cytotoxicities against a panel of cell lines including A549/DDP, a cisplatin-resistant human lung cancer cell line. A549/DDP 3D multicellular tumor spheroids (MCTSs) were also used to detect the drug resistance reversal effect of Ru(II)-IQ complexes. Our results indicated that the cytotoxic activities against cancer cells of Ru(II)-IQ complexes, especially RuIQ-5, were superior compared with cisplatin. In addition, RuIQ-5 exhibited low toxicity towards both normal HBE cells in vitro and zebrafish embryos in vivo. Further investigation on cellular mechanism of action indicated that after absorption by A549/DDP cells, RuIQ-5 was mainly distributed in the nucleus, which is different from cisplatin. Besides, RuIQ-5 could induce apoptosis through mitochondrial dysfunction, reactive oxygen species (ROS) accumulation, ROS-mediated DNA damage, and cycle arrest at both S and G2/M phases. Moreover, RuIQ-5 could inhibit the overexpression of Nrf2 through regulation of Akt/GSK-3ß/Fyn signaling pathway and hindering the nuclear translocation of Nrf2. Based on these findings, we firmly believe that the studied Ru(II)-IQ complexes hold great promise as anticancer therapeutics with high effectiveness and low toxicity.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Isoquinolinas/farmacologia , Rutênio/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Isoquinolinas/química , Estrutura Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Peixe-Zebra
15.
J Biol Inorg Chem ; 26(7): 793-808, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34459988

RESUMO

Two new cyclometalated Ru(II)-ß-carboline complexes, [Ru(dmb)2(Cl-Ph-ßC)](PF6) (dmb = 4,4'-dimethyl-2,2'-bipyridine; Cl-Ph-ßC = Cl-phenyl-9H-pyrido[3,4-b]indole; RußC-3) and [Ru(bpy)2(Cl-Ph-ßC)](PF6) (bpy = 2,2'-bipyridine; RußC-4) were synthesized and characterized. The Ru(II) complexes display high cytotoxicity against HeLa cells, the stabilized human cervical cancer cell, with IC50 values of 3.2 ± 0.4 µM (RußC-3) and 4.1 ± 0.6 µM (RußC-4), which were considerably lower than that of non-cyclometalated Ru(II)-ß-carboline complex [Ru(bpy)2(1-Py-ßC)] (PF6)2 (61.2 ± 3.9 µM) by 19- and 15-folds, respectively. The mechanism studies indicated that both Ru(II) complexes could significantly inhibit HeLa cell migration and invasion, and effectively induce G0/G1 cell cycle arrest. The new Ru(II) complexes could also trigger apoptosis through activating caspase-3 and poly (ADP-ribose) polymerase (PARP), increasing the Bax/Bcl-2 ratio, enhancing reactive oxygen species (ROS) generation, decreasing mitochondrial membrane potential (MMP), and inducing cytochrome c release from mitochondria. Further research revealed that RußC-3 could deactivate the ERK/Akt signaling pathway thus inhibiting HeLa cell invasion and migration, and inducing apoptosis. In addition, RußC-3-induced apoptosis in HeLa cells was closely associated with the increase of intracellular ROS levels, which may act as upstream factors to regulate ERK and Akt pathways. More importantly, RußC-3 exhibited low toxicity on both normal BEAS-2B cells in vitro and zebrafish embryos in vivo. Consequently, the developed Ru(II) complexes have great potential on developing novel low-toxic anticancer drugs.


Assuntos
Antineoplásicos , Rutênio , Neoplasias do Colo do Útero , Animais , Antineoplásicos/farmacologia , Apoptose , Carbolinas/farmacologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Rutênio/farmacologia , Transdução de Sinais , Neoplasias do Colo do Útero/tratamento farmacológico , Peixe-Zebra
16.
Bioinorg Chem Appl ; 2020: 8890950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879623

RESUMO

Two new Ru(II) complexes containing O, O-chelated ligands, Ru(dip)2(SA) (Ru-1) and Ru(dmp)2(SA) (Ru-2) (dip = 4,7-diphenyl-1,10-phenanthroline; dmp = 2,9-dimethyl-1,10-phenanthroline; SA = salicylate) were synthesized to evaluate their cytotoxicity in vitro. These complexes were found to exhibit moderate antitumor activity to different types of human cancers, including A549 (human lung carcinoma), MCF-7 (breast cancer), HeLa (human cervical cancer), and HepG2 (human hepatocellular carcinoma) cell lines, but displayed low toxicity to human normal cell lines BEAS-2B (immortalized human bronchial epithelial cells) when compared with that of cisplatin. Further studies revealed that these complexes could induce apoptosis in A549 cells, including activating caspase family proteins and poly (ADP-ribose) polymerase (PARP), reducing Bcl-2/Bax and Bcl-xl/Bad ratio, enhancing cellular reactive oxygen species (ROS) accumulation, triggering DNA damage, decreasing mitochondrial membrane potential (MMP), and leading cytochrome c release from mitochondria. Notably, complex Ru-1 showed low toxicity to developing zebrafish embryos. The obtained results suggest that these new synthetic complexes have the potential to be developed as low-toxicity agents for lung cancer treatment.

17.
Eur J Med Chem ; 203: 112562, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32698112

RESUMO

Two novel cyclometalated Ru(II) complexes containing isoquinoline ligand, [Ru(bpy)2(1-Ph-IQ)](PF6), (bpy = 2,2'-bipyridine; 1-Ph-IQ = 1-phenylisoquinoline; RuIQ-1) and [Ru(phen)2(1-Ph-IQ)](PF6) (phen = 1,10-phenanthroline; RuIQ-2) were found to show high cytotoxic activity against NCI-H460, A549, HeLa and MCF-7 cell lines. Notably, both of them exhibited IC50 values that were an order of magnitude lower than those of clinical cisplatin and two structurally similar Ru(II)-isoquinoline complexes [Ru(bpy)2(1-Py-IQ)](PF6)2 (Ru3) and [Ru(phen)2(1-Py-IQ)](PF6)2 (Ru4) (1-Py-IQ = 1-pyridine-2-yl). The cellular uptake and intracellular localization displayed that the two cyclometalated Ru(II) complexes entered NCI-H460 cancer cells dominantly via endocytosis pathway, and preferentially distributed in the nucleus. Further investigations on the apoptosis-inducing mechanisms of RuIQ-1 and RuIQ-2 revealed that the two complexes could cause S, G2/M double-cycle arrest by regulating cell cycle related proteins. The two complexes also could reduce the mitochondrial membrane potential (MMP), promote the generation of intracellular ROS and trigger DNA damage, and then lead to apoptosis-mediated cell death. More importantly, RuIQ-2 exhibits low toxicity both towards normal HBE cells in vitro and zebrafish embryos in vivo. Accordingly, the developed complexes hold great potential to be developed as novel therapeutics for effective and low-toxic cancer treatment.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Isoquinolinas/química , Rutênio/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Técnicas de Química Sintética , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Humanos , Ligantes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Peixe-Zebra
18.
Acta Biomater ; 113: 541-553, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32562802

RESUMO

Cancer therapeutics are varied and target diverse processes in cancer progression. Photodynamic therapy (PDT), photothermal therapy (PTT), and the inhibition of pro-cancer proteases are non-invasive anticancer therapeutics that attract increasing attentions for their enhanced specificities and milder systemic toxicities compared to traditional therapeutics. These modalities offer advantages to compensate for the shortcomings of their counterparts. For instance, PDT or PTT efficiently eliminates locally confined tumor cells while exhibiting no effect on metastatic tumor cells. In contrast, the inhibition of pro-cancer proteases systemically suppresses the proliferation and metastasis of cancer cells but does not eradicate existing cancer cells. To synergize these therapeutics, we hereby report a versatile nanoparticle that integrates the effects of PDT, PTT, and enzyme-inhibition. This nanoparticle (CIKP-NP) was synthesized by covalently or non-covalently modifying a photothermal nanoparticle with a photosensitizer, a pro-cancer protease inhibitor, and an albumin-binding molecule. After confirming the PDT, PTT, albumin-binding, and enzyme-inhibition properties at the molecular level, we demonstrated that CIKP-NP killed tumor cells through PDT or PTT and suppressed tumor cell invasion through enzyme-inhibition. In addition, through a breast cancer xenograft mouse model, we demonstrated that CIKP-NP suppressed tumor growth by PDT or PTT effect. Notably, the synergism of PDT and PTT significantly enhanced its anticancer efficiency. Furthermore, CIKP-NP significantly suppressed cancer metastasis in a lung metastatic mouse model. Last, biodistribution and the in vivo retention of CIKP-NP confirmed the tumor-targeting property. Beyond demonstrating the anti-tumor and anti-metastatic efficacy of CIKP-NP, our study also suggests a new strategy to synergize multiple anticancer therapeutics.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Proliferação de Células , Ouro , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Distribuição Tecidual
19.
J Mater Chem B ; 8(3): 504-514, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31840729

RESUMO

Inhibition of pro-cancer proteases is a potent anticancer strategy. However, protease inhibitors are mostly developed in the forms of small molecules or peptides, which normally suffer from insufficient metabolic stability. The fast clearance significantly impairs the antitumor effects of these inhibitors. In this study, we report a nanometer-sized inhibitor of a pro-cancer protease, suppressor of tumorigenicity 14 (st14), which has been reported as a potent prognostic marker for multiple cancers. This st14 inhibitor was fabricated by conjugating a recombinant st14 inhibitor (KD1) with carbon quantum dots (CQDs). CQD-KD1 not only demonstrated high potency of inhibiting st14 activity in biochemical experiments, but also remarkably suppressed the invasion of breast cancer cells. In contrast to the original recombinant KD1, CQD-KD1 demonstrated a prolonged retention time in plasma and at the tumor site because of the reduced renal clearance. Consistently, CQD-KD1 demonstrated enhanced efficacies of suppressing tumor growth and cancer metastases in vivo. In addition, CQD-KD1 precisely imaged tumor tissues in cancer-grafted mice by specifically targeting the over-expressed st14 on the tumor cell surface, which indicates CQD-KD1 as a potent probe for the fluorescence guided surgery of tumor resection. In conclusion, this study demonstrates that CQD-KD1 is a highly potent diagnostic and therapeutic agent for cancer treatments.


Assuntos
Antineoplásicos/farmacologia , Aprotinina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Serina Endopeptidases/metabolismo , Animais , Antineoplásicos/química , Aprotinina/química , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Carbono/química , Feminino , Humanos , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Pontos Quânticos/química , Proteínas Recombinantes/química , Propriedades de Superfície , Células Tumorais Cultivadas
20.
Int J Nanomedicine ; 14: 6799-6812, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692522

RESUMO

BACKGROUND: Photodynamic therapy (PDT), a clinical anticancer therapeutic modality, has a long history in clinical cancer treatments since the 1970s. However, PDT has not been widely used largely because of metabolic problems and off-target phototoxicities of the current clinical photosensitizers. PURPOSE: The objective of the study is to develop a high-efficiency and high-specificity carrier to precisely deliver photosensitizers to tumor sites, aiming at addressing metabolic problems, as well as the systemic damages current clinical photosensitizers are known to cause. METHODS: We synthesized a polydopamine (PDA)-based carrier with the modification of folic acid (FA), which is to target the overexpressed folate receptors on tumor surfaces. We used this carrier to load a cationic phthalocyanine-type photosensitizer (Pc) and generated a PDA-FA-Pc nanomedicine. We determined the antitumor effects and the specificity to tumor cell lines in vitro. In addition, we established human cancer-xenografted mice models to evaluate the tumor-targeting property and anticancer efficacies in vivo. RESULTS: Our PDA-FA-Pc nanomedicine demonstrated a high stability in normal physiological conditions, however, could specifically release photosensitizers in acidic conditions, eg, tumor microenvironment and lysosomes in cancer cells. Additionally, PDA-FA-Pc nanomedicine demonstrated a much higher cellular uptake and phototoxicity in cancer cell lines than in healthy cell lines. Moreover, the in vivo imaging data indicated excellent tumor-targeting properties of PDA-FA-Pc nanomedicine in human cancer-xenografted mice. Lastly, PDA-FA-Pc nanomedicine was found to significantly suppress tumor growth within two human cancer-xenografted mice models. CONCLUSION: Our current study not only demonstrates PDA-FA-Pc nanomedicine as a highly potent and specific anticancer agent, but also suggests a strategy to address the metabolic and specificity problems of clinical photosensitizers.


Assuntos
Ácido Fólico/farmacologia , Indóis/farmacologia , Nanopartículas/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Polímeros/farmacologia , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Estabilidade de Medicamentos , Feminino , Ácido Fólico/química , Células HeLa , Humanos , Indóis/química , Isoindóis , Células MCF-7 , Camundongos , Nanomedicina , Nanopartículas/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Polímeros/química , Ensaios Antitumorais Modelo de Xenoenxerto , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA