Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circulation ; 148(23): 1887-1906, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37905452

RESUMO

BACKGROUND: The importance of mitochondria in normal heart function are well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. Previous studies demonstrated that knockdown of the mitochondrial ribosomal protein S5 (MRPS5) by small interfering RNA (siRNA) inhibits mitochondrial translation and thereby causes a mitonuclear protein imbalance. Therefore, we decided to examine the effects of MRPS5 loss and the role of these processes on cardiomyocyte proliferation. METHODS: We deleted a single allele of MRPS5 in mice and used left anterior descending coronary artery ligation surgery to induce myocardial damage in these animals. We examined cardiomyocyte proliferation and cardiac regeneration both in vivo and in vitro. Doxycycline treatment was used to inhibit protein translation. Heart function in mice was assessed by echocardiography. Quantitative real-time polymerase chain reaction and RNA sequencing were used to assess changes in transcription and chromatin immunoprecipitation (ChIP) and BioChIP were used to assess chromatin effects. Protein levels were assessed by Western blotting and cell proliferation or death by histology and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. Adeno-associated virus was used to overexpress genes. The luciferase reporter assay was used to assess promoter activity. Mitochondrial oxygen consumption rate, ATP levels, and reactive oxygen species were also analyzed. RESULTS: We determined that deletion of a single allele of MRPS5 in mice results in elevated cardiomyocyte proliferation and cardiac regeneration; this observation correlates with improved cardiac function after induction of myocardial infarction. We identified ATF4 (activating transcription factor 4) as a key regulator of the mitochondrial stress response in cardiomyocytes from Mrps5+/- mice; furthermore, ATF4 regulates Knl1 (kinetochore scaffold 1) leading to an increase in cytokinesis during cardiomyocyte proliferation. The increased cardiomyocyte proliferation observed in Mrps5+/- mice was attenuated when one allele of Atf4 was deleted genetically (Mrps5+/-/Atf4+/-), resulting in the loss in the capacity for cardiac regeneration. Either MRPS5 inhibition (or as we also demonstrate, doxycycline treatment) activate a conserved regulatory mechanism that increases the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: These data highlight a critical role for MRPS5/ATF4 in cardiomyocytes and an exciting new avenue of study for therapies to treat myocardial injury.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Doxiciclina , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Interferente Pequeno/metabolismo , Biossíntese de Proteínas , Proliferação de Células , Regeneração , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Mol Ther Nucleic Acids ; 27: 412-426, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036054

RESUMO

Mesenchymal stromal cell (MSC) transplantation has been a promising therapeutic strategy for repairing heart tissues post-myocardial infarction (MI). Nevertheless, its therapeutic efficacy remains low, which is mainly ascribed to the low viability of transplanted MSCs. Recently, long noncoding RNAs (lncRNAs) have been reported to participate in diverse physiological and pathological processes, but little is known about their role in MSC survival. Using unbiased transcriptome profiling of hypoxia-preconditioned MSCs (HP-MSCs) and normoxic MSCs (N-MSCs), we identified a lncRNA named lung cancer-associated transcript 1 (LUCAT1) under hypoxia. LUCAT1 knockdown reduced the survival of engrafted MSCs and decreased the MSC-based therapeutic potency, as shown by impaired cardiac function, reduced cardiomyocyte survival, and increased fibrosis post-MI. Conversely, LUCAT1 overexpression had the opposite results. Mechanistically, LUCAT1 bound with and recruited jumonji domain-containing 6 (JMJD6) to the promoter of forkhead box Q1 (FOXQ1), which demethylated FOXQ1 at H4R3me2(s) and H3R2me2(a), thus downregulating Bax expression and upregulating Bcl-2 expression to attenuate MSC apoptosis. Therefore, our findings revealed the protective effects of LUCAT1 on MSC apoptosis and demonstrated that the LUCAT1-mediated JMJD6-FOXQ1 pathway might represent a novel target to potentiate the therapeutic effect of MSC-based therapy for ischemic cardiovascular diseases.

3.
Stem Cell Res Ther ; 12(1): 456, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384486

RESUMO

BACKGROUND: The efficacy of stem cell therapy for ischemia repair has been limited by low cell retention rate. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß super family, which has multiple effects on development, physiology and diseases. The objective of the study is to investigate whether GDF11 could affect the efficacy of stem cell transplantation. METHODS: We explored the effects of GDF11 on proangiogenic activities of mesenchymal stem cells (MSCs) for angiogenic therapy in vitro and in vivo. RESULTS: Mouse bone marrow-derived MSCs were transduced with lentiviral vector to overexpress GDF11 (MSCGDF11). After exposed to hypoxia and serum deprivation for 48 h, MSCGDF11 were significantly better in viability than control MSCs (MSCvector). MSCGDF11 also had higher mobility and better angiogenic paracrine effects. The cytokine antibody array showed more angiogenic cytokines in the conditioned medium of MSCGDF11 than that of MSCvector, such as epidermal growth factor, platelet-derived growth factor-BB, placenta growth factor. When MSCs (1 × 106 cells in 50 µl) were injected into ischemic hindlimb of mice after femoral artery ligation, MSCGDF11 had higher retention rate in the muscle than control MSCs. Injection of MSCGDF11 resulted in better blood reperfusion and limb salvage than that of control MSCs after 14 days. Significantly more CD31+ endothelial cells and α-SMA + smooth muscle cells were detected in the ischemic muscles that received MSCGDF11. The effects of GDF11 were through activating TGF-ß receptor and PI3K/Akt signaling pathway. CONCLUSION: Our study demonstrated an essential role of GDF11 in promoting therapeutic functions of MSCs for ischemic diseases by enhancing MSC viability, mobility, and angiogenic paracrine functions.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Proteínas Morfogenéticas Ósseas , Células Cultivadas , Células Endoteliais , Feminino , Fatores de Diferenciação de Crescimento/genética , Isquemia/terapia , Camundongos , Neovascularização Fisiológica , Fosfatidilinositol 3-Quinases , Gravidez
4.
J Cell Physiol ; 236(12): 8197-8207, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34224586

RESUMO

Age-related diseases such as cardiovascular diseases portend disability, increase health expenditures, and cause late-life mortality. Synthetic agonists of growth hormone-releasing hormone (GHRH) exhibit several favorable effects on heart function and remodeling. Here we assessed whether GHRH agonist MR409 can modulate heart function and systemic parameters in old mice. Starting at the age of 15 months, mice were injected subcutaneously with MR409 (10 µg/day, n = 8) or vehicle (n = 7) daily for 6 months. Mice treated with MR409 showed improvements in exercise activity, cardiac function, survival rate, immune function, and hair growth in comparison with the controls. More stem cell colonies were grown out of the bone marrow recovered from the MR409-treated mice. Mitochondrial functions of cardiomyocytes (CMs) from the MR409-treated mice were also significantly improved with more mitochondrial fusion. Fewer ß-gal positive cells were observed in endothelial cells after 10 passages with MR409. In Doxorubicin-treated H9C2 cardiomyocytes, cell senescence marker p21 and reactive oxygen species were significantly reduced after cultured with MR409. MR409 also improved cellular ATP production and oxygen consumption rate in Doxorubicin-treated H9C2 cells. Mitochondrial protein OPA1 long isoform was significantly increased after treatment with MR409. The effects of MR409 were mediated by GHRH receptor and protein kinase A (PKA). In short, GHRH agonist MR409 reversed the aging-associated changes with respect of heart function, mobility, hair growth, cellular energy production, and senescence biomarkers. The improvement of heart function may be related to a better mitochondrial functions through GHRH receptor/cAMP/PKA/OPA1 signaling pathway and relieved cardiac inflammation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores de Neuropeptídeos/agonistas , Receptores de Hormônios Reguladores de Hormônio Hipofisário/agonistas , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Adv Sci (Weinh) ; 8(18): e2004629, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34319658

RESUMO

Angiogenesis is essential for vascular development. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating angiogenesis remain under-explored. Human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) are shown to exert more potent cardioprotective effects against cardiac ischemia than human bone marrow-derived MSCs (hBM-MSCs), associated with enhanced neovascularization. The purpose of this study is to search for angiogenic lncRNAs enriched in hES-MSCs, and investigate their roles and mechanisms. AC103746.1 is one of the most highly expressed intergenic lncRNAs detected in hES-MSCs versus hBM-MSCs, and named as SCDAL (stem cell-derived angiogenic lncRNA). SCDAL knockdown significantly reduce the angiogenic potential and reparative effects of hES-MSCs in the infarcted hearts, while overexpression of SCDAL in either hES-MSCs or hBM-MSCs exhibits augmented angiogenesis and cardiac function recovery. Mechanistically, SCDAL induces growth differentiation factor 6 (GDF6) expression via direct interaction with SNF5 at GDF6 promoter. Secreted GDF6 promotes endothelial angiogenesis via non-canonical vascular endothelial growth factor receptor 2 activation. Furthermore, SCDAL-GDF6 is expressed in human endothelial cells, and directly enhances endothelial angiogenesis in vitro and in vivo. Thus, these findings uncover a previously unknown lncRNA-dependent regulatory circuit for angiogenesis. Targeted intervention of the SCDAL-GDF6 pathway has potential as a therapy for ischemic heart diseases.


Assuntos
Fator 6 de Diferenciação de Crescimento/genética , Fator 6 de Diferenciação de Crescimento/metabolismo , Neovascularização Patológica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Adulto , Feminino , Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Transdução de Sinais/genética
6.
Sci Transl Med ; 13(584)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692129

RESUMO

Stem cell-derived small extracellular vesicles (sEVs) promote angiogenesis after myocardial infarction (MI). However, the components of sEVs that contribute to these effects and the safety and efficiency of engineered sEV treatment for MI remain unresolved. Here, we observed improved cardiac function, enhanced vascular density, and smaller infarct size in mice treated with the sEVs from hypoxia-preconditioned (HP) mesenchymal stem cells (MSCs) (HP-sEVs) than in mice treated with normoxia-preconditioned (N) MSCs (N-sEVs). MicroRNA profiling revealed a higher abundance of miR-486-5p in HP-sEVs than in N-sEVs, and miR-486-5p inactivation abolished the benefit of HP-sEV treatment, whereas miR-486-5p up-regulation enhanced the benefit of N-sEV treatment. Matrix metalloproteinase 19 (MMP19) abundance was lower in HP-sEV-treated than N-sEV-treated mouse hearts but was enriched in cardiac fibroblasts (CFs), and Mmp19 was identified as one of the target genes of miR-486-5p. Conditioned medium from CFs that overexpressed miR-486-5p or silenced MMP19 increased the angiogenic activity of endothelial cells; however, medium from CFs that simultaneously overexpressed Mmp19 and miR-486-5p abolished this effect. Mmp19 silencing in CFs reduced the cleavage of extracellular vascular endothelial growth factor (VEGF). Furthermore, miR-486-5p-overexpressing N-sEV treatment promoted angiogenesis and cardiac recovery without increasing arrhythmia complications in a nonhuman primate (NHP) MI model. Collectively, this study highlights the key role of sEV miR-486-5p in promoting cardiac angiogenesis via fibroblastic MMP19-VEGFA cleavage signaling. Delivery of miR-486-5p-engineered sEVs safely enhanced angiogenesis and cardiac function in an NHP MI model and may promote cardiac repair.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Animais , Células Endoteliais , Camundongos , MicroRNAs/genética , Primatas , Fator A de Crescimento do Endotélio Vascular
8.
Theranostics ; 10(24): 10892-10907, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042260

RESUMO

Background: Lysophosphatidic acid (LPA) is a small glycerophospholipid that acts as a potent extracellular signal in various biological processes and diseases. Our previous work demonstrated that the expression of the LPA receptors LPA1 and LPA3 is elevated in the early postnatal heart. However, the role of this stage-specific expression of LPA1 and LPA3 in the heart is unknown. Methods and Results: By using LPA3 and LPA1 knockout mice, and neonatal SD rats treated with Ki16425 (LPA1/LPA3 inhibitor), we found that the number of proliferating cardiomyocytes, detected by coimmunostaining pH3, Ki67 or BrdU with cardiac troponin T, was significantly decreased in the LPA3 knockout mice and the Ki16425-treated rats but not in the LPA1 knockout mice during the first week of postnatal life. Using a myocardial infarction (MI) model, we found that cardiac function and the number of proliferating cardiomyocytes were decreased in the neonatal LPA3 KO mice and increased in the AAV9-mediated cardiac-specific LPA3 overexpression mice. By using lineage tracing and AAV9-LPA3, we further found that LPA3 overexpression in adult mice enhances cardiac function and heart regeneration as assessed by pH3-, Ki67-, and Aurora B-positive cardiomyocytes and clonal cardiomyocytes after MI. Genome-wide transcriptional profiling and additional mechanistic studies showed that LPA induces cardiomyocyte proliferation through the PI3K/AKT, BMP-Smad1/5, Hippo/YAP and MAPK/ERK pathways in vitro, whereas only ERK was confirmed to be activated by LPA-LPA3 signaling in vivo. Conclusion: Our study reports that LPA3-mediated LPA signaling is a crucial factor for cardiomyocyte proliferation in the early postnatal heart. Cardiac-specific LPA3 overexpression improved cardiac function and promoted cardiac regeneration after myocardial injury induced by MI. This finding suggested that activation of LPA3 potentially through AAV-mediated gene therapy might be a therapeutic strategy to improve the outcome after MI.


Assuntos
Coração/fisiologia , Lisofosfolipídeos/metabolismo , Infarto do Miocárdio/patologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Regeneração/fisiologia , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Vasos Coronários/cirurgia , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Isoxazóis/administração & dosagem , Ligadura , Camundongos , Camundongos Knockout , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/terapia , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cultura Primária de Células , Propionatos/administração & dosagem , Ratos , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
9.
Stem Cell Res Ther ; 11(1): 273, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641103

RESUMO

BACKGROUND: Age and other cardiovascular risk factors have been reported to impair the activities of mesenchymal stem cells (MSCs), which will affect the efficacy of stem cell transplantation. The objective of the study is to investigate whether exosomes derived from human umbilical cord MSCs (UMSCs) could enhance the activities of bone marrow MSCs from old person (OMSCs), and improve their capacity for cardiac repair. METHODS: Exosomes extracted from conditioned medium of UMSCs were used to treat OMSCs to generate OMSCsExo. The key molecule in the exosomes that have potential to rejuvenate aged MSCs were screened, and the role of OMSC was tested in the mouse model of mycardial infarction (MI). RESULTS: We found the activity of senescence-associated ß-galactosidase and the expression of aging-related factors such as p53, p21, and p16 were significantly higher in OMSCs than those in UMSCs. After treatment with UMSC exosomes, these senescence phenotypes of OMSCs were remarkably reduced. The proliferation, migration, differentiation, and anti-apoptotic and paracrine effect were increased in OMSCsExo. In vivo study, mice with cardiac infarction had significantly better cardiac function, less fibrosis, and more angiogenesis after they were injected with OMSCsExo as compared with those with OMSC. There was more miR-136 expression in UMSCs and OMSCsExo than in OMSCs. Upregulation of miR-136 by transfection of miR-136 mimic into OMSCs significantly attenuated the apoptosis and senescence of OMSCs. Apoptotic peptidase activating factor (Apaf1) was found to be the downstream gene that is negatively regulated by miR-136 via directly targeting at its 3'UTR. CONCLUSION: Our data suggest that exosomes from young MSCs can improve activities of aged MSCs and enhance their function for myocardial repair by transferring exosomal miR-136 and downregulating Apaf1.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Idoso , Animais , Humanos , Camundongos , MicroRNAs/genética , Miocárdio , Cordão Umbilical
10.
Stem Cells Transl Med ; 9(10): 1257-1271, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32515551

RESUMO

Growth differentiation factor 11 (GDF11) has been shown to promote stem cell activity, but little is known about the effect of GDF11 on viability and therapeutic efficacy of cardiac mesenchymal stem cells (MSCs) for cardiac injury. To understand the roles of GDF11 in MSCs, mouse heart-derived MSCs were transduced with lentiviral vector carrying genes for both GDF11 and green fluorescent protein (GFP) (MSCsLV-GDF11 ) or cultured with recombinant GDF11 (MSCsrGDF11 ). Either MSCsrGDF11 or MSCs LV-GDF11 displayed less cell apoptosis and better paracrine function, as well as preserved mitochondrial morphology and function under hypoxic condition as compared with control MSCs. GDF11 enhanced phosphorylation of Smad2/3, which upregulated expression of YME1L, a mitochondria protease that balances OPA1 processing. Inhibitors of TGF-ß receptor (SB431542) or Smad2/3 (SIS3) attenuated the effects of GDF11 on cell viability, mitochondrial function, and expression of YME1L. Transplantation of MSCsGDF11 into infarct heart resulted in improved cell survival and retention, leading to more angiogenesis, smaller scar size, and better cardiac function in comparison with control MSCs. GDF11 enhanced viability and therapeutic efficiency of MSCs by promoting mitochondrial fusion through TGF-ß receptor/Smad2/3/YME1L-OPA1 signaling pathway. This novel role of GDF11 may be used for a new approach of stem cell therapy for myocardial infarction.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Metaloendopeptidases/metabolismo , Infarto do Miocárdio/terapia , Animais , Células Cultivadas , Método Duplo-Cego , Humanos , Masculino , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia
11.
J Cell Mol Med ; 24(15): 8703-8717, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32588524

RESUMO

Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß super family. It has multiple effects on development, physiology and diseases. However, the role of GDF11 in the development of mesenchymal stem cells (MSCs) is not clear. To explore the effects of GDF11 on the differentiation and pro-angiogenic activities of MSCs, mouse bone marrow-derived MSCs were engineered to overexpress GDF11 (MSCGDF11 ) and their capacity for differentiation and paracrine actions were examined both in vitro and in vivo. Expression of endothelial markers CD31 and VEGFR2 at the levels of both mRNA and protein was significantly higher in MSCGDF11 than control MSCs (MSCVector ) during differentiation. More tube formation was observed in MSCGDF11 as compared with controls. In an in vivo angiogenesis assay with Matrigel plug, MSCGDF11 showed more differentiation into CD31+ endothelial-like cells and better pro-angiogenic activity as compared with MSCVector . Mechanistically, the enhanced differentiation by GDF11 involved activation of extracellular-signal-related kinase (ERK) and eukaryotic translation initiation factor 4E (EIF4E). Inhibition of either TGF-ß receptor or ERK diminished the effect of GDF11 on MSC differentiation. In summary, our study unveils the function of GDF11 in the pro-angiogenic activities of MSCs by enhancing endothelial differentiation via the TGFß-R/ERK/EIF4E pathway.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/genética , Células Endoteliais/metabolismo , Fatores de Diferenciação de Crescimento/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/genética , Animais , Apoptose/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Movimento Celular , Células Cultivadas , Células Endoteliais/citologia , Expressão Gênica , Fatores de Diferenciação de Crescimento/metabolismo , Hipóxia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Circ Res ; 127(4): 486-501, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32349646

RESUMO

RATIONALE: Maintaining iron homeostasis is essential for proper cardiac function. Both iron deficiency and iron overload are associated with cardiomyopathy and heart failure via complex mechanisms. Although ferritin plays a central role in iron metabolism by storing excess cellular iron, the molecular function of ferritin in cardiomyocytes remains unknown. OBJECTIVE: To characterize the functional role of Fth (ferritin H) in mediating cardiac iron homeostasis and heart disease. METHODS AND RESULTS: Mice expressing a conditional Fth knockout allele were crossed with 2 distinct Cre recombinase-expressing mouse lines, resulting in offspring that lack Fth expression specifically in myocytes (MCK-Cre) or cardiomyocytes (Myh6-Cre). Mice lacking Fth in cardiomyocytes had decreased cardiac iron levels and increased oxidative stress, resulting in mild cardiac injury upon aging. However, feeding these mice a high-iron diet caused severe cardiac injury and hypertrophic cardiomyopathy, with molecular features typical of ferroptosis, including reduced glutathione (GSH) levels and increased lipid peroxidation. Ferrostatin-1, a specific inhibitor of ferroptosis, rescued this phenotype, supporting the notion that ferroptosis plays a pathophysiological role in the heart. Finally, we found that Fth-deficient cardiomyocytes have reduced expression of the ferroptosis regulator Slc7a11, and overexpressing Slc7a11 selectively in cardiomyocytes increased GSH levels and prevented cardiac ferroptosis. CONCLUSIONS: Our findings provide compelling evidence that ferritin plays a major role in protecting against cardiac ferroptosis and subsequent heart failure, thereby providing a possible new therapeutic target for patients at risk of developing cardiomyopathy.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Apoferritinas/deficiência , Cardiomiopatias/etiologia , Ferroptose/fisiologia , Ferro/metabolismo , Miocárdio/metabolismo , Envelhecimento , Alelos , Animais , Apoferritinas/efeitos adversos , Apoferritinas/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/prevenção & controle , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/prevenção & controle , Cruzamentos Genéticos , Cicloexilaminas/administração & dosagem , Glutationa/metabolismo , Insuficiência Cardíaca/etiologia , Homeostase , Hipertrofia Ventricular Esquerda/etiologia , Deficiências de Ferro , Sobrecarga de Ferro , Ferro da Dieta/efeitos adversos , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Fenilenodiaminas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
13.
Theranostics ; 9(24): 7403-7416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695776

RESUMO

Bone marrow mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have been widely used for treating myocardial infarction (MI). However, low retention and short-lived therapeutic effects are still significant challenges. This study aimed to determine whether incorporation of MSC-derived sEVs in alginate hydrogel increases their retention in the heart thereby improving therapeutic effects. Methods: The optimal sodium alginate hydrogel incorporating sEVs system was determined by its release ability of sEVs and rheology of hydrogel. Ex vivo fluorescence imaging was utilized to evaluate the retention of sEVs in the heart. Immunoregulation and effects of sEVs on angiogenesis were analyzed by immunofluorescence staining. Echocardiography and Masson's trichrome staining were used to estimate cardiac function and infarct size. Results: The delivery of sEVs incorporated in alginate hydrogel (sEVs-Gel) enhanced their retention in the heart. Compared with sEVs only treatment (sEVs), sEVs-Gel treatment significantly decreased cardiac cell apoptosis and promoted the polarization of macrophages at day 3 after MI. sEVs-Gel treatment also increased scar thickness and angiogenesis at four weeks post-infarction. Measurement of cardiac function and infarct size were significantly better in the sEVs-Gel group than in the group treated with sEVs only. Conclusion: Delivery of sEVs incorporated in alginate hydrogel provides a novel approach of cell-free therapy and optimizes the therapeutic effect of sEVs for MI.


Assuntos
Alginatos/química , Vesículas Extracelulares/metabolismo , Hidrogéis/química , Infarto do Miocárdio/terapia , Animais , Apoptose , Cardiotônicos/metabolismo , Citoproteção , Vesículas Extracelulares/ultraestrutura , Géis , Inflamação/patologia , Macrófagos/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Neovascularização Fisiológica , Ratos Sprague-Dawley , Reologia
14.
Nat Commun ; 10(1): 1802, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996254

RESUMO

The primary cause of heart failure is the loss of cardiomyocytes in the diseased adult heart. Previously, we reported that the miR-17-92 cluster plays a key role in cardiomyocyte proliferation. Here, we report that expression of miR-19a/19b, members of the miR-17-92 cluster, is induced in heart failure patients. We show that intra-cardiac injection of miR-19a/19b mimics enhances cardiomyocyte proliferation and stimulates cardiac regeneration in response to myocardial infarction (MI) injury. miR-19a/19b protected the adult heart in two distinctive phases: an early phase immediately after MI and long-term protection. Genome-wide transcriptome analysis demonstrates that genes related to the immune response are repressed by miR-19a/19b. Using an adeno-associated virus approach, we validate that miR-19a/19b reduces MI-induced cardiac damage and protects cardiac function. Finally, we confirm the therapeutic potential of miR-19a/19b in protecting cardiac function by systemically delivering miR-19a/19b into mice post-MI. Our study establishes miR-19a/19b as potential therapeutic targets to treat heart failure.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/patologia , MicroRNAs/administração & dosagem , MicroRNAs/metabolismo , Infarto do Miocárdio/terapia , Animais , Proliferação de Células/genética , Dependovirus/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Insuficiência Cardíaca/terapia , Ventrículos do Coração/patologia , Humanos , Injeções Intralesionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Regeneração/genética
15.
Circ Res ; 123(5): 564-578, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29921652

RESUMO

RATIONALE: Autophagy can preserve cell viability under conditions of mild ischemic stress by degrading damaged organelles for ATP production, but under conditions of severe ischemia, it can promote cell death and worsen cardiac performance. Mesenchymal stem cells (MSCs) are cardioprotective when tested in animal models of myocardial infarction, but whether these benefits occur through the regulation of autophagy is unknown. OBJECTIVE: To determine whether transplanted MSCs reduce the rate of autophagic degradation (autophagic flux) in infarcted hearts and if so, to characterize the mechanisms involved. METHODS AND RESULTS: Treatment with transplanted MSCs improved cardiac function and infarct size while reducing apoptosis and measures of autophagic flux (bafilomycin A1-induced LC3-II [microtubule-associated protein 1 light chain 3] accumulation and autophagosome/autolysosome prevalence) in infarcted mouse hearts. In hypoxia and serum deprivation-cultured neonatal mouse cardiomyocytes, autophagic flux and cell death, as well as p53-Bnip3 (B-cell lymphoma 2-interacting protein 3) signaling, declined when the cells were cultured with MSCs or MSC-secreted exosomes (MSC-exo), but the changes associated with MSC-exo were largely abolished by pretreatment with the exosomal inhibitor GW4869. Furthermore, a mimic of the exosomal oligonucleotide miR-125b reduced, whereas an anti-miR-125b oligonucleotide increased, autophagic flux and cell death, via modulating p53-Bnip3 signaling in hypoxia and serum deprivation-cultured neonatal mouse cardiomyocytes. In the in vivo mouse myocardial infarction model, MSC-exo, but not the exosomes obtained from MSCs pretreated with the anti-miR-125b oligonucleotide (MSC-exoanti-miR-125b), recapitulated the same results as the in vitro experiments. Moreover, measurements of infarct size and cardiac function were significantly better in groups that were treated with MSC-exo than the MSC-exoanti-miR-125b group. CONCLUSIONS: The beneficial effects offered by MSC transplantation after myocardial infarction are at least partially because of improved autophagic flux through excreted exosome containing mainly miR-125b-5p.


Assuntos
Autofagia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/genética , Infarto do Miocárdio/terapia , Terapêutica com RNAi/métodos , Animais , Células Cultivadas , Exossomos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo
16.
Cell Death Dis ; 9(5): 556, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29748581

RESUMO

Accumulating evidence revealed that mesenchymal stem cells (MSCs) confer cardioprotection against myocardial infarction (MI). However, the poor survival and engraftment rate of the transplanted cells limited their therapeutic efficacy in the heart. The enhanced leptin production associated with hypoxia preconditioning contributed to the improved MSCs survival. Mitochondrial integrity determines the cellular fate. Thus, we aimed to investigate whether leptin can enhance mitochondrial integrity of human MSCs (hMSCs) to protect against various stress. In vivo, transplantation of leptin-overexpressing hMSCs into the infarcted heart resulted in improved cell viability, leading to enhanced angiogenesis and cardiac function. In vitro, pretreatment of hMSCs with recombinant leptin (hMSCs-Leppre) displayed improved cell survival against severe ischemic condition (glucose and serum deprivation under hypoxia), which was associated with increased mitochondrial fusion. Subsequently, Optic atrophy 1 (OPA1), a mitochondrial inner membrane protein that regulates fusion and cristae structure, was significantly elevated in the hMSCs-Leppre group, and the protection of leptin was abrogated by targeting OPA1 with a selective siRNA. Furthermore, OMA1, a mitochondrial protease that cleaves OPA1, decreased in a leptin-dependent manner. Pretreatment of cells with an inhibitor of the proteasome (MG132), prevented leptin-induced OMA1 degradation, implicating the ubiquitination/proteasome system as a part of the protective leptin pathway. In addition, GSK3 inhibitor (SB216763) was also involved in the degradation of OMA1. In conclusion, in the hostile microenvironment caused by MI, (a) leptin can maintain the mitochondrial integrity and prolong the survival of hMSCs; (b) leptin-mediated mitochondrial integrity requires phosphorylation of GSK3 as a prerequisite for ubiquitination-depended degradation of OMA1 and attenuation of long-OPA1 cleavage. Thus, leptin targeting the GSK3/OMA1/OPA1 signaling pathway can optimize hMSCs therapy for cardiovascular diseases such as MI.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Leptina/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Metaloendopeptidases/metabolismo , Proteínas Mitocondriais/metabolismo , Ubiquitinação , Animais , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Humanos , Indóis/farmacologia , Leptina/genética , Leupeptinas/farmacologia , Masculino , Maleimidas/farmacologia , Metaloendopeptidases/genética , Camundongos , Proteínas Mitocondriais/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
17.
Circ Res ; 122(7): 958-969, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29343525

RESUMO

RATIONALE: Human pluripotent stem cell-derived cardiovascular progenitor cells (hPSC-CVPCs) should be thoroughly investigated in large animal studies before testing in clinical trials. OBJECTIVE: The main of this study is to clarify whether hPSC-CVPCs can engraft for long time in the heart of primates after myocardial infarction (MI) and compare the effectiveness and safety of immunosuppression with cyclosporine alone or multiple-drug regimen (MDR) containing cyclosporine, methylprednisolone, and basiliximab in cynomolgus monkeys that had received intramyocardial injections of 1×107 EGFP (enhanced green fluorescent protein)-expressing hPSC-CVPCs after MI. A third group of animals received the immunosuppression MDR but without cell therapy after MI (MI+MDR group). METHODS AND RESULTS: Measurements of EGFP gene levels and EGFP immunofluorescence staining indicated that the hPSC-CVPC engraftment rate was greater in the MI+MDR+CVPC group than that in the MI+cyclosporine+CVPC group. However, even in the MI+MDR+CVPC group, no transplanted cells could be detected at 140 days after transplantation. Concomitantly, immunofluorescent analysis of CD3, CD4, and CD8 expression indicated that T-lymphocyte infiltration in the CVPC-transplanted hearts was less in the MDR-treated animals than in the cyclosporine-alone-treated animals. The recovery of left ventricular function on day 28 post-MI in the MI+MDR+CVPC group was better than that in the MI+MDR group. Apoptotic cardiac cells were also less common in the MI+MDR+CVPC group than in the MI+MDR group, although both immunosuppression regimens were associated with transient hepatic dysfunction. CONCLUSIONS: This is the largest study of hPSCs in nonhuman primates in cardiovascular field to date (n=32). Compared with cyclosporine alone, MDR attenuates immune rejection and improves survival of hPSC-CVPCs in primates; this is associated with less apoptosis of native cardiac cells and better recovery of left ventricular function at 28 days. However, even with MDR, transplanted hPSC-CVPCs do not engraft and do not survive at 140 days after transplantation, thereby excluding remuscularization as a mechanism for the functional effect.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Desenvolvimento Muscular , Mioblastos Cardíacos/transplante , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Animais , Linhagem Celular , Ciclosporina/administração & dosagem , Ciclosporina/efeitos adversos , Humanos , Terapia de Imunossupressão/efeitos adversos , Terapia de Imunossupressão/métodos , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Macaca fascicularis , Masculino , Mioblastos Cardíacos/citologia , Transplante de Células-Tronco/efeitos adversos
18.
Artif Cells Nanomed Biotechnol ; 46(8): 1659-1670, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29141446

RESUMO

Hypoxia treatment enhances paracrine effect of mesenchymal stem cells (MSCs). The aim of this study was to investigate whether exosomes from hypoxia-treated MSCs (ExoH) are superior to those from normoxia-treated MSCs (ExoN) for myocardial repair. Mouse bone marrow-derived MSCs were cultured under hypoxia or normoxia for 24 h, and exosomes from conditioned media were intramyocardially injected into infarcted heart of C57BL/6 mouse. ExoH resulted in significantly higher survival, smaller scar size and better cardiac functions recovery. ExoH conferred increased vascular density, lower cardiomyocytes (CMs) apoptosis, reduced fibrosis and increased recruitment of cardiac progenitor cells in the infarcted heart relative to ExoN. MicroRNA analysis revealed significantly higher levels of microRNA-210 (miR-210) in ExoH compared with ExoN. Transfection of a miR-210 mimic into endothelial cells (ECs) and CMs conferred similar biological effects as ExoH. Hypoxia treatment of MSCs increased the expression of neutral sphingomyelinase 2 (nSMase2) which is crucial for exosome secretion. Blocking the activity of nSMase2 resulted in reduced miR-210 secretion and abrogated the beneficial effects of ExoH. In conclusion, hypoxic culture augments miR-210 and nSMase2 activities in MSCs and their secreted exosomes, and this is responsible at least in part for the enhanced cardioprotective actions of exosomes derived from hypoxia-treated cells.


Assuntos
Exossomos/transplante , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio , Miocárdio/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Hipóxia Celular , Meios de Cultivo Condicionados/farmacologia , Exossomos/metabolismo , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
19.
Proc Natl Acad Sci U S A ; 114(45): 11908-11913, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078279

RESUMO

The causative relationship between specific mitochondrial molecular structure and reactive oxygen species (ROS) generation has attracted much attention. NDUFA13 is a newly identified accessory subunit of mitochondria complex I with a unique molecular structure and a location that is very close to the subunits of complex I of low electrochemical potentials. It has been reported that down-regulated NDUFA13 rendered tumor cells more resistant to apoptosis. Thus, this molecule might provide an ideal opportunity for us to investigate the profile of ROS generation and its role in cell protection against apoptosis. In the present study, we generated cardiac-specific tamoxifen-inducible NDUFA13 knockout mice and demonstrated that cardiac-specific heterozygous knockout (cHet) mice exhibited normal cardiac morphology and function in the basal state but were more resistant to apoptosis when exposed to ischemia-reperfusion (I/R) injury. cHet mice showed a preserved capacity of oxygen consumption rate by complex I and II, which can match the oxygen consumption driven by electron donors of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD)+ascorbate. Interestingly, at basal state, cHet mice exhibited a higher H2O2 level in the cytosol, but not in the mitochondria. Importantly, increased H2O2 served as a second messenger and led to the STAT3 dimerization and, hence, activation of antiapoptotic signaling, which eventually significantly suppressed the superoxide burst and decreased the infarct size during the I/R process in cHet mice.


Assuntos
Apoptose/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , NADH NADPH Oxirredutases/metabolismo , Fator de Transcrição STAT3/metabolismo , Compostos de Anilina/metabolismo , Animais , Células Cultivadas , Dimerização , Coração/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Knockout , NADH NADPH Oxirredutases/genética , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética
20.
Stem Cells Transl Med ; 6(1): 209-222, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28170197

RESUMO

Our group recently reported positive therapeutic benefit of human endometrium-derived mesenchymal stem cells (EnMSCs) delivered to infarcted rat myocardium, an effect that correlated with enhanced secretion of protective cytokines and growth factors compared with parallel cultures of human bone marrow MSCs (BMMSCs). To define more precisely the molecular mechanisms of EnMSC therapy, in the present study, we assessed in parallel the paracrine and therapeutic properties of MSCs derived from endometrium, bone marrow, and adipose tissues in a rat model of myocardial infarction (MI). EnMSCs, BMMSCs, and adipose-derived MSCs (AdMSCs) were characterized by fluorescence-activated cell sorting (FACS). Paracrine and cytoprotective actions were assessed in vitro by coculture with neonatal cardiomyocytes and human umbilical vein endothelial cells. A rat MI model was used to compare cell therapy by intramyocardial injection of BMMSCs, AdMSCs, and EnMSCs. We found that EnMSCs conferred superior cardioprotection relative to BMMSCs or AdMSCs and supported enhanced microvessel density. Inhibitor studies indicated that the enhanced paracrine actions of EnMSCs were mediated by secreted exosomes. Analyses of exosomal microRNAs (miRs) by miR array and quantitative polymerase chain reaction revealed that miR-21 expression was selectively enhanced in exosomes derived from EnMSCs. Selective antagonism of miR-21 by anti-miR treatment abolished the antiapoptotic and angiogenic effects of EnMSCs with parallel effects on phosphatase and tensin homolog (PTEN), a miR-21 target and downstream Akt. The results of the present study confirm the superior cardioprotection by EnMSCs relative to BMMSCs or AdMSCs and implicates miR-21 as a potential mediator of EnMSC therapy by enhancing cell survival through the PTEN/Akt pathway. The endometrium might be a preferential source of MSCs for cardiovascular cell therapy. Stem Cells Translational Medicine 2017;6:209-222.


Assuntos
Cardiotônicos/metabolismo , Endométrio/citologia , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Endocitose , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , MicroRNAs/genética , Modelos Biológicos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA