Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159559, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39179098

RESUMO

Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal flora, is recognized as an independent risk factor for atherosclerosis and atherosclerotic cardiovascular diseases. However, the underlying mechanism remains poorly understood. Here, we showed that dietary TMAO supplementation accelerates atherosclerosis in ApoE-/- mice. Pyroptosis and the expression of phospholipid-modifying enzyme MBOAT2 were increased in endothelial cells within atherosclerotic lesions. Genetic upregulation of MBOAT2 via adeno-associated virus with endothelium-specific promoter results in increased atherosclerotic lesions in ApoE-/- mice. Mechanistically, the overexpression of MBOAT2 disrupted glycerophospholipid metabolism and induced endothelial cell pyroptosis in an Endoplasmic reticulum stress-dependent manner. These data reveal that TMAO promotes endothelial cell pyroptosis and the progression of atherosclerotic lesions through the upregulation of MBOAT2, indicating that MBOAT2 is a promising therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Metilaminas , Piroptose , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Estresse do Retículo Endoplasmático , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/efeitos dos fármacos , Metilaminas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases
3.
Nat Struct Mol Biol ; 31(2): 219-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177680

RESUMO

Morphological rearrangement of the endoplasmic reticulum (ER) is critical for metazoan mitosis. Yet, how the ER is remodeled by the mitotic signaling remains unclear. Here, we report that mitotic Aurora kinase A (AURKA) employs a small GTPase, Rab1A, to direct ER remodeling. During mitosis, AURKA phosphorylates Rab1A at Thr75. Structural analysis demonstrates that Thr75 phosphorylation renders Rab1A in a constantly active state by preventing interaction with GDP-dissociation inhibitor (GDI). Activated Rab1A is retained on the ER and induces the oligomerization of ER-shaping protein RTNs and REEPs, eventually triggering an increase of ER complexity. In various models, from Caenorhabditis elegans and Drosophila to mammals, inhibition of Rab1AThr75 phosphorylation by genetic modifications disrupts ER remodeling. Thus, our study reveals an evolutionarily conserved mechanism explaining how mitotic kinase controls ER remodeling and uncovers a critical function of Rab GTPases in metaphase.


Assuntos
Aurora Quinase A , Mitose , Animais , Fosforilação , Aurora Quinase A/metabolismo , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo
4.
Biosensors (Basel) ; 14(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275310

RESUMO

Carcinoembryonic antigen (CEACAM5), as a broad-spectrum tumor biomarker, plays a crucial role in analyzing the therapeutic efficacy and progression of cancer. Herein, we propose a novel biosensor based on specklegrams of tapered multimode fiber (MMF) and two-dimensional convolutional neural networks (2D-CNNs) for the detection of CEACAM5. The microfiber is modified with CEA antibodies to specifically recognize antigens. The biosensor utilizes the interference effect of tapered MMF to generate highly sensitive specklegrams in response to different CEACAM5 concentrations. A zero mean normalized cross-correlation (ZNCC) function is explored to calculate the image matching degree of the specklegrams. Profiting from the extremely high detection limit of the speckle sensor, variations in the specklegrams of antibody concentrations from 1 to 1000 ng/mL are measured in the experiment. The surface sensitivity of the biosensor is 0.0012 (ng/mL)-1 within a range of 1 to 50 ng/mL. Moreover, a 2D-CNN was introduced to solve the problem of nonlinear detection surface sensitivity variation in a large dynamic range, and in the search for image features to improve evaluation accuracy, achieving more accurate CEACAM5 monitoring, with a maximum detection error of 0.358%. The proposed fiber specklegram biosensing scheme is easy to implement and has great potential in analyzing the postoperative condition of patients.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Antígeno Carcinoembrionário , Proteínas Ligadas por GPI
5.
Talanta ; 271: 125625, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244308

RESUMO

The detection of trace cancer markers in body fluids such as blood/serum is crucial for cancer diseases screening and treatment, which requires high sensitivity and specificity of biosensors. In this study, a peanut structure cascaded lasso (PSCL) shaped fiber sensing probe based on fiber laser demodulation method was proposed to specifically detect the carcinoembryonic antigen related cell adhesion molecules 5 (CEACAM5) protein in serum. Thanks for the narrow linewidth and high signal-to-noise ratio (SNR) of the laser spectrum, it is easier to distinguish small spectral changes than interference spectrum. Adding the antibody modified magnetic microspheres (MMS) to form the sandwich structure of "antibody-antigen-antibody-MMS", and amplified the response caused by biomolecular binding. The limit of detection (LOD) for CEACAM5 in buffer could reach 0.11 ng/mL. Considering the common threshold of 5 ng/mL for CEA during medical screening and the cut off limit of 2.5 ng/mL for some kits, the LOD of proposed biosensor meets the actual needs. Human serum samples from a hospital were used to validate the real sensing capability of proposed biosensor. The deviation between the measured value in various serum samples and the clinical value ranged from 1.9 to 9.8 %. This sensing scheme holds great potential to serve as a point of care testing (POCT) device and extend to more biosensing applications.


Assuntos
Arachis , Neoplasias , Humanos , Microesferas , Moléculas de Adesão Celular , Lasers , Fenômenos Magnéticos , Antígeno Carcinoembrionário , Proteínas Ligadas por GPI
6.
Comput Biol Med ; 165: 107319, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611427

RESUMO

As a leading cause of blindness worldwide, macular edema (ME) is mainly determined by sub-retinal fluid (SRF), intraretinal fluid (IRF), and pigment epithelial detachment (PED) accumulation, and therefore, the characterization of SRF, IRF, and PED, which is also known as ME segmentation, has become a crucial issue in ophthalmology. Due to the subjective and time-consuming nature of ME segmentation in retinal optical coherence tomography (OCT) images, automatic computer-aided systems are highly desired in clinical practice. This paper proposes a novel loss-balanced parallel decoding network, namely PadNet, for ME segmentation. Specifically, PadNet mainly consists of an encoder and three parallel decoder modules, which serve as segmentation, contour, and diffusion branches, and they are employed to extract the ME's characteristics, the contour area features, and to expand the ME area from the center to edge, respectively. A new loss-balanced joint-loss function with three components corresponding to each of the three parallel decoding branches is also devised for training. Experiments are conducted with three public datasets to verify the effectiveness of PadNet, and the performances of PadNet are compared with those of five state-of-the-art methods. Results show that PadNet improves ME segmentation accuracy by 8.1%, 11.1%, 0.6%, 1.4% and 8.3%, as compared with UNet, sASPP, MsTGANet, YNet, RetiFluidNet, respectively, which convincingly demonstrates that the proposed PadNet is robust and effective in ME segmentation in different cases.


Assuntos
Edema Macular , Descolamento Retiniano , Humanos , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem , Edema Macular/diagnóstico por imagem , Descolamento Retiniano/diagnóstico por imagem
7.
Biosensors (Basel) ; 13(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504073

RESUMO

Detection of trace tumor markers in blood/serum is essential for the early screening and prognosis of cancer diseases, which requires high sensitivity and specificity of the assays and biosensors. A variety of label-free optical fiber-based biosensors has been developed and yielded great opportunities for Point-of-Care Testing (POCT) of cancer biomarkers. The fiber biosensor, however, suffers from a compromise between the responsivity and stability of the sensing signal, which would deteriorate the sensing performance. In addition, the sophistication of sensor preparation hinders the reproduction and scale-up fabrication. To address these issues, in this study, a straightforward lasso-shaped fiber laser biosensor was proposed for the specific determination of carcinoembryonic antigen (CEA)-related cell adhesion molecules 5 (CEACAM5) protein in serum. Due to the ultra-narrow linewidth of the laser, a very small variation of lasing signal caused by biomolecular bonding can be clearly distinguished via high-resolution spectral analysis. The limit of detection (LOD) of the proposed biosensor could reach 9.6 ng/mL according to the buffer test. The sensing capability was further validated by a human serum-based cancer diagnosis trial, enabling great potential for clinical use. The high reproduction of fabrication allowed the mass production of the sensor and extended its utility to a broader biosensing field.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Biomarcadores Tumorais , Fibras Ópticas , Neoplasias/diagnóstico , Lasers , Antígeno Carcinoembrionário , Proteínas Ligadas por GPI
8.
Cancer Biol Med ; 20(4)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37144561

RESUMO

OBJECTIVE: The identification of biomarkers for predicting chemoradiotherapy efficacy is essential to optimize personalized treatment. This study determined the effects of genetic variations in genes involved in apoptosis, pyroptosis, and ferroptosis on the prognosis of patients with locally advanced rectal cancer receiving postoperative chemoradiotherapy (CRT). METHODS: The Sequenom MassARRAY was used to detect 217 genetic variations in 40 genes from 300 patients with rectal cancer who received postoperative CRT. The associations between genetic variations and overall survival (OS) were evaluated using hazard ratios (HRs) and 95% confidence intervals (CIs) computed using a Cox proportional regression model. Functional experiments were performed to determine the functions of the arachidonate 5-lipoxygenase (ALOX5) gene and the ALOX5 rs702365 variant. RESULTS: We detected 16 genetic polymorphisms in CASP3, CASP7, TRAILR2, GSDME, CASP4, HO-1, ALOX5, GPX4, and NRF2 that were significantly associated with OS in the additive model (P < 0.05). There was a substantial cumulative effect of three genetic polymorphisms (CASP4 rs571407, ALOX5 rs2242332, and HO-1 rs17883419) on OS. Genetic variations in the CASP4 and ALOX5 gene haplotypes were associated with a higher OS. We demonstrated, for the first time, that rs702365 [G] > [C] represses ALOX5 transcription and corollary experiments suggested that ALOX5 may promote colon cancer cell growth by mediating an inflammatory response. CONCLUSIONS: Polymorphisms in genes regulating cell death may play essential roles in the prognosis of patients with rectal cancer who are treated with postoperative CRT and may serve as potential genetic biomarkers for individualized treatment.


Assuntos
Polimorfismo Genético , Neoplasias Retais , Humanos , Prognóstico , Quimiorradioterapia , Morte Celular , Biomarcadores , Neoplasias Retais/genética , Neoplasias Retais/terapia
9.
Anal Chim Acta ; 1251: 340976, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925278

RESUMO

Accurate and ultrasensitive evaluation of human epidermal growth factor receptor 2 (HER2) protein is key to early diagnosis and subtype differentiation of breast cancer. Single-cell analyses to reduce ineffective targeted therapies due to breast cancer heterogeneity and improve patient survival remain challenging. Herein, we reported a novel droplet microfluidic combined with an instant cation exchange signal amplification strategy for quantitative analysis of HER2 protein expression on single cells. In the 160 µm droplets produced by a tapered capillary bundle, abundant Immuno-CdS labeled on HER2-positive cells were replaced by Ag + to obtain Cd2+ that stimulated Rhod-5N fluorescence. This uniformly distributed and instantaneous fluorescence amplification strategy in droplets improves sensitivity and reduces signal fluctuation. Using HER2 modified PS microsphere to simulate single cells, we obtained a linear fitting of HER2-modified concentration and fluorescence intensity in microdroplets with the limit detection of 11.372 pg mL-1. Moreover, the relative standard deviation (RSD) was 4.2-fold lower than the traditional immunofluorescence technique (2.89% vs 12.21%). The HER2 protein on SK-BR-3 cells encapsulated in droplets was subsequently quantified, ranging from 9862.954 pg mL-1 and 205.26 pg mL-1, equivalent to 9.795 × 106 and 2.038 × 105 protein molecules. This detection system provides a universal platform for single-cell sensitive quantitative analysis and contributes to the evaluation of HER2-positive tumors.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Humanos , Feminino , Receptor ErbB-2/metabolismo , Imunofluorescência , Neoplasias da Mama/diagnóstico
11.
J Hepatol ; 77(2): 410-423, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35351523

RESUMO

BACKGROUND & AIMS: The hepatic manifestation of the metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), can lead to the development of hepatocellular carcinoma (HCC). Despite a strong causative link, NAFLD-HCC is often underrepresented in systematic genome explorations. METHODS: Herein, tumor-normal pairs from 100 patients diagnosed with NAFLD-HCC were subject to next-generation sequencing. Bioinformatic analyses were performed to identify key genomic, epigenomic and transcriptomic events associated with the pathogenesis of NAFLD-HCC. Establishment of primary patient-derived NAFLD-HCC culture was used as a representative human model for downstream in vitro investigations of the underlying CTNNB1 S45P driver mutation. A syngeneic immunocompetent mouse model was used to further test the involvement of CTNNB1mutand TNFRSF19 in reshaping the tumor microenvironment. RESULTS: Mutational processes operative in the livers of patients with NAFLD inferred susceptibility to tumor formation through defective DNA repair pathways. Dense promoter mutations and dysregulated transcription factors accentuated activated transcriptional regulation in NAFLD-HCC, in particular the enrichment of MAZ-MYC activities. Somatic events common in HCCs arising from NAFLD and viral hepatitis B infection underscore similar driver pathways, although an incidence shift highlights CTNNB1mut dominance in NAFLD-HCC (33%). Immune exclusion correlated evidently with CTNNB1mut. Chromatin immunoprecipitation-sequencing integrated with transcriptome and immune profiling revealed a unique transcriptional axis, wherein CTNNB1mut leads to an upregulation of TNFRSF19 which subsequently represses senescence-associated secretory phenotype-like cytokines (including IL6 and CXCL8). This phenomenon could be reverted by the Wnt-modulator ICG001. CONCLUSIONS: The unique mutational processes in the livers of patients with NAFLD and NAFLD-HCC allude to a "field effect" involving a gain-of-function role of CTNNB1 mutations in immune exclusion. LAY SUMMARY: The increasing prevalence of metabolic syndrome in adult populations means that NAFLD is poised to be the major cause of liver cancer in the 21st century. We showed a strong "field effect" in the livers of patients with NAFLD, wherein activated ß-catenin was involved in reshaping the tumor-immune microenvironment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Receptores do Fator de Necrose Tumoral , beta Catenina , Adulto , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatite B , Humanos , Evasão da Resposta Imune , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Mutação , Hepatopatia Gordurosa não Alcoólica/genética , Receptores do Fator de Necrose Tumoral/genética , Microambiente Tumoral , beta Catenina/genética , beta Catenina/metabolismo
12.
Free Radic Biol Med ; 162: 582-591, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248263

RESUMO

Vascular endothelial cell (VEC) inflammation induced by low shear stress plays key roles in the initiation and progression of atherosclerosis (As). Pyroptosis is a form of inflammatory programmed cell death that is critical for As. However, the effect of low shear stress on VEC pyroptosis and the underlying mechanisms were not clear. Here we show that low shear stress promoted VEC pyroptosis and reduced the expression of Ten-Eleven Translocation 2 (TET2) methylcytosine dioxygenase. Loss of TET2 resulted in the upregulation of the expression and activity of mitochondrial respiratory complex II subunit succinate dehydrogenase B (SDHB) by decreasing the recruitment of histone deacetylase 2, independent of DNA demethylation modification. The overexpression of SDHB mediated mitochondrial injury and increased the production of reactive oxygen species (ROS). The administration of ROS scavenger NAC alleviated VEC pyroptosis induced by SDHB overexpression and TET2 shRNA. These findings show that low shear stress induced endothelial cell pyroptosis through the TET2/SDHB/ROS pathway and offer new insights into As.


Assuntos
Aterosclerose , Piroptose , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Células Endoteliais/metabolismo , Humanos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase
13.
Cell Death Dis ; 11(7): 510, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32641749

RESUMO

Inflammatory factors and activation of oncogenes both played critical roles in the development and progression of human hepatocellular carcinoma (HCC). However, the interplay between these two has not been well studied. In this study, we found that regulated by TNFα, Pim-2 proto-oncogene, serine/threonine kinase (PIM2) was highly expressed in HCC and correlated with poor prognosis (P = 0.007) as well as tumor recurrence (P = 0.014). Functional studies showed that PIM2 could enhance abilities of cell proliferation, cell motility, angiogenesis, chemo-resistance, and in vivo tumorigenicity and HCC metastasis. Mechanistic studies revealed that PIM2 could activate NF-κB signaling pathway through upregulating phosphorylation level of RIPK2. Interestingly, TNFα treatment could induce the expression of PIM2, and overexpression of PIM2 could in turn upregulate the expression of TNFα in HCC cells. More importantly, we found the expression level of PIM2 increased with the progression of liver cirrhosis, and PIM kinase inhibitor AZD1208 treatment could effectively attenuate HCC cells' tumorigenic ability both in vitro and in vivo. Collectively, our study revealed the interaction between an inflammatory factor and a proto-oncogene that contributed to tumorigenesis and progression of HCC, and PIM kinase inhibition may serve as a therapeutic target in the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Progressão da Doença , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Metástase Neoplásica , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
Nat Cell Biol ; 22(7): 868-881, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483387

RESUMO

Osteosarcoma is a type of aggressive malignant bone tumour that frequently metastasizes to lungs, resulting in poor prognosis. However, the molecular mechanisms of lung metastasis of osteosarcoma remain poorly understood. Here we identify exon-intron fusion genes in osteosarcoma cell lines and tissues. These fusion genes are derived from chromosomal translocations that juxtapose the coding region for amino acids 1-38 of Rab22a (Rab22a1-38) with multiple inverted introns and untranslated regions of chromosome 20. The resulting translation products, designated Rab22a-NeoFs, acquire the ability to drive lung metastasis of osteosarcoma. The Rab22a1-38 moiety governs the function of Rab22a-NeoFs by binding to SmgGDS-607, a GTP-GDP exchange factor of RhoA. This association facilitates the release of GTP-bound RhoA from SmgGDS-607, which induces increased activity of RhoA and promotes metastasis. Disrupting the interaction between Rab22a-NeoF1 and SmgGDS-607 with a synthetic peptide prevents lung metastasis in an orthotopic model of osteosarcoma. Our findings may provide a promising strategy for a subset of osteosarcoma patients with lung metastases.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Pulmonares/secundário , Osteossarcoma/patologia , Translocação Genética , Proteínas rab de Ligação ao GTP/metabolismo , Adulto , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Osteossarcoma/genética , Osteossarcoma/metabolismo , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Proteínas rab de Ligação ao GTP/genética
16.
Theranostics ; 9(23): 6856-6866, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660073

RESUMO

Resistance to preoperative chemoradiotherapy (CRT) is a major obstacle to cancer treatment in patients with locally advanced rectal cancer. This study was to explore genome alterations in rectal cancer under CRT stress. Methods: Whole-exome sequencing (WES) was performed on 28 paired tumors collected before and after CRT from the same patients who did not respond to CRT treatment. Somatic point mutations and copy number variations were detected by VarScan2 and Exome CNVs respectively using paired tumor and blood samples. Somatic alterations associated with CRT resistance were inferred considering differences in significantly mutated genes, mutation counts and cancer cell fraction between matched pre- and post-CRT tumors. We employed SignatureAnalyzer to infer mutation signatures and PyClone to decipher clonal evolution and examine intratumoral heterogeneity in tumors before and after CRT. The associations between intratumoral heterogeneity and patients' survival were analyzed using the log-rank test and the Cox regression model. Results: (i) Recurrent mutations in CTDSP2, APC, KRAS, TP53 and NFKBIZ confer selective advantages on cancer cells and made them resistant to CRT treatment. (ii) CRT alters the genomic characteristics of tumors at both the somatic mutation and the copy number variation levels. (iii) CRT-resistant tumors exhibit either a branched or a linear evolution pattern. (iv) Different recurrent mutation signatures in pre-CRT and post-CRT patients implicate mutational processes underlying the evolution of CRT-resistant tumors. (v) High intratumoral heterogeneity in pre- or post-CRT is associated with poor patients' survival. Conclusion: Our study reveals genome landscapes in rectal cancer before and after CRT and tumors evolution under CRT stress. The treatment-associated characteristics are useful for further investigations of CRT resistance in rectal cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Quimiorradioterapia , Genoma Humano , Humanos , Mutação , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Período Pré-Operatório , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Retais/cirurgia , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
17.
Int J Biol Sci ; 15(9): 1802-1815, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523184

RESUMO

Deletion of Chromosome 3p is one of the most frequently detected genetic alterations in nasopharyngeal carcinoma (NPC). We reported the role of a novel 3p26.3 tumor suppressor gene (TSG) CHL1 in NPC. Down-regulation of CHL1 was detected in 4/6 of NPC cell lines and 71/95 (74.7%) in clinical tissues. Ectopic expressions of CHL1 in NPC cells significantly inhibit colony formation and cell motility in functional study. By up-regulating epithelial markers and down-regulating mesenchymal markers CHL1 could induce mesenchymal-epithelial transition (MET), a key step in preventing tumor invasion and metastasis. CHL1 could also cause the inactivation of RhoA/Rac1/Cdc42 signaling pathway and inhibit the formation of stress fiber, lamellipodia, and filopodia. CHL1 could co-localize with adhesion molecule Integrin-ß1, the expression of CHL1 was positively correlated with Integrin-ß1 and another known tumor suppressor gene (TSG) Merlin. Down-regulation of Integrin-ß1 or Merlin was significantly correlated with the poor survival rate of NPC patients. Further mechanistic studies showed that CHL1 could directly interact with integrin-ß1 and link to Merlin, leading to the inactivation of integrin ß1-AKT pathway. In conclusion, CHL1 is a vital tumor suppressor in the carcinogenesis of NPC.


Assuntos
Moléculas de Adesão Celular/metabolismo , Integrina beta1/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neurofibromina 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Western Blotting , Moléculas de Adesão Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Metilação de DNA/genética , Metilação de DNA/fisiologia , Imunofluorescência , Humanos , Imunoprecipitação , Carcinoma Nasofaríngeo/genética , Regiões Promotoras Genéticas/genética , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
18.
Brain Behav Immun ; 81: 630-645, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351185

RESUMO

Neuroinflammation has been involved in pathogenesis of Parkinson's disease (PD), a chronic neurodegenerative disease characterized neuropathologically by progressive dopaminergic neuronal loss in the substantia nigra (SN). We recently have shown that helper T (Th)17 cells facilitate dopaminergic neuronal loss in vitro. Herein, we demonstrated that interleukin (IL)-17A, a proinflammatory cytokine produced mainly by Th17 cells, contributed to PD pathogenesis depending on microglia. Mouse and rat models for PD were prepared by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or striatal injection of 1-methyl-4-phenylpyridinium (MPP+), respectively. Both in MPTP-treated mice and MPP+-treated rats, blood-brain barrier (BBB) was disrupted and IL-17A level increased in the SN but not in cortex. Effector T (Teff) cells that were adoptively transferred via tail veins infiltrated into the brain of PD mice but not into that of normal mice. The Teff cell transfer aggravated nigrostriatal dopaminergic neurodegeneration, microglial activation and motor impairment. Contrarily, IL-17A deficiency alleviated BBB disruption, dopaminergic neurodegeneration, microglial activation and motor impairment. Anti-IL-17A-neutralizing antibody that was injected into lateral cerebral ventricle in PD rats ameliorated the manifestations mentioned above. IL-17A activated microglia but did not directly affect dopaminergic neuronal survival in vitro. IL-17A exacerbated dopaminergic neuronal loss only in the presence of microglia, and silencing IL-17A receptor gene in microglia abolished the IL-17A effect. IL-17A-treated microglial medium that contained higher concentration of tumor necrosis factor (TNF)-α facilitated dopaminergic neuronal death. Further, TNF-α-neutralizing antibody attenuated MPP+-induced neurotoxicity. The findings suggest that IL-17A accelerates neurodegeneration in PD depending on microglial activation and at least partly TNF-α release.


Assuntos
Interleucina-17/imunologia , Microglia/imunologia , Doença de Parkinson/imunologia , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Morte Celular/imunologia , Corpo Estriado/imunologia , Modelos Animais de Doenças , Dopamina/imunologia , Neurônios Dopaminérgicos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/imunologia , Degeneração Neural/patologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Neuroimunomodulação/imunologia , Ratos , Ratos Sprague-Dawley , Substância Negra/imunologia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Cancer Res Treat ; 51(3): 1198-1206, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30590005

RESUMO

PURPOSE: Mismatch repair (MMR) deficiency plays a critical role in rectal cancer. This study aimed to explore the associations between genetic variations in seven MMR genes and adverse events (AEs) and survival of patients with rectal cancer treated with postoperative chemoradiotherapy (CRT). MATERIALS AND METHODS: Fifty single nucleotide polymorphisms in seven MMR (MLH1, MLH3, MSH2, MSH3, MSH6, PMS1 and PMS2) genes were genotyped by Sequenom MassARRAY method in 365 patients with locally advanced rectal cancer receiving postoperative CRT. The associations between genotypes and AEs were measured by odds ratios and 95% confidence intervals (CIs) by unconditional logistic regression model. The associations between genetic variations and survival were computed by the hazard ratios and 95% CIs by Cox proportional regression model. RESULTS: The most common grade ≥ 2 AEs in those 365 patients, in decreasing order, were diarrhea (44.1%), leukopenia (29.6%), and dermatitis (18.9%). Except 38 cases missing, 61 patients (18.7%) died during the follow-up period. We found MSH3 rs12513549, rs33013 and rs6151627 significantly associated with the risk of grade ≥ 2 diarrhea. PMS1 rs1233255 had an impact on the occurrence of grade ≥2 dermatitis. Meanwhile, PMS1 rs4920657, rs5743030, and rs5743100 were associated with overall survival (OS) time of rectal cancer. CONCLUSION: These results suggest that MSH3 and PMS1 polymorphisms may play important roles in AEs prediction and prognosis of rectal cancer patients receiving postoperative CRT, which can be potential genetic biomarkers for rectal cancer personalized treatment.


Assuntos
Quimiorradioterapia Adjuvante/efeitos adversos , Proteínas MutL/genética , Proteína 3 Homóloga a MutS/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Retais/terapia , Biomarcadores Tumorais/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Medicina de Precisão , Prognóstico , Neoplasias Retais/genética , Neoplasias Retais/mortalidade , Análise de Sequência de DNA , Análise de Sobrevida , Resultado do Tratamento
20.
Int J Cancer ; 143(12): 3209-3217, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29971780

RESUMO

Nasopharyngeal carcinoma is an Epstein-Barr Virus (EBV) associated malignancy which is highly prevalent in Southeast Asia. EBV-related antibodies have been widely used as screening markers for early nasopharyngeal carcinoma (NPC) detection. However, due to its low positive predictive rate, it is essential to develop new biomarkers to facilitate NPC early diagnosis or triage EBV serological high-risk individuals to improve the chance of NPC early detection. BART microRNAs, which are encoded by BamHI region of EBV, were reported to be abundant in NPC and have potential value in early diagnosis of NPC. Here, we quantified circulating level of 17 BART microRNAs in discovery stage based on previous microarray and sequencing data and, in particular, BART 2-5p, the sole candidate whose area under curve (AUC) was higher than 0.8, has been chosen for further study. In validation stage, the sensitivity, specificity and AUC of BART 2-5p was 93.9%, 89.8%, 0.972 (95%CI: 0.954-0.989), respectively, in Cohort 1 constituted by NPC patients and controls from Hong Kong. For validation Cohort 2 consisting of patients and controls from Guangzhou, the sensitivity, specificity and AUC was 94.2%, 83.5%, 0.959 (95%CI: 0.939-0.980), respectively. To evaluate its ability to distinguish preclinical NPC patients, we established a nested case-control study with serum samples prospectively collected from 22 NPC patients prior to their clinical diagnosis and 88 matched healthy high-risk controls in a screening trial. The sensitivity and specificity were 90.9% and 54.5%. Collectively, EBV microRNA BART2-5p may be a valuable biomarker for early detection of NPC.


Assuntos
Detecção Precoce de Câncer/métodos , Herpesvirus Humano 4/genética , Programas de Rastreamento/métodos , MicroRNAs/sangue , Carcinoma Nasofaríngeo/diagnóstico , Neoplasias Nasofaríngeas/diagnóstico , RNA Viral/sangue , Adulto , Anticorpos Antivirais/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Herpesvirus Humano 4/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/sangue , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/sangue , Neoplasias Nasofaríngeas/genética , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA