Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1339, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906659

RESUMO

Genetic circuits that control transgene expression in response to pre-defined transcriptional cues would enable the development of smart therapeutics. To this end, here we engineer programmable single-transcript RNA sensors in which adenosine deaminases acting on RNA (ADARs) autocatalytically convert target hybridization into a translational output. Dubbed DART VADAR (Detection and Amplification of RNA Triggers via ADAR), our system amplifies the signal from editing by endogenous ADAR through a positive feedback loop. Amplification is mediated by the expression of a hyperactive, minimal ADAR variant and its recruitment to the edit site via an orthogonal RNA targeting mechanism. This topology confers high dynamic range, low background, minimal off-target effects, and a small genetic footprint. We leverage DART VADAR to detect single nucleotide polymorphisms and modulate translation in response to endogenous transcript levels in mammalian cells.


Assuntos
Edição de Genes , Edição de RNA , Animais , Regulação da Expressão Gênica , RNA/metabolismo , Redes Reguladoras de Genes , Adenosina Desaminase/genética , Mamíferos/genética
2.
Sci Transl Med ; 12(546)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493795

RESUMO

Most genetic diseases arise from recessive point mutations that require correction, rather than disruption, of the pathogenic allele to benefit patients. Base editing has the potential to directly repair point mutations and provide therapeutic restoration of gene function. Mutations of transmembrane channel-like 1 gene (TMC1) can cause dominant or recessive deafness. We developed a base editing strategy to treat Baringo mice, which carry a recessive, loss-of-function point mutation (c.A545G; resulting in the substitution p.Y182C) in Tmc1 that causes deafness. Tmc1 encodes a protein that forms mechanosensitive ion channels in sensory hair cells of the inner ear and is required for normal auditory function. We found that sensory hair cells of Baringo mice have a complete loss of auditory sensory transduction. To repair the mutation, we tested several optimized cytosine base editors (CBEmax variants) and guide RNAs in Baringo mouse embryonic fibroblasts. We packaged the most promising CBE, derived from an activation-induced cytidine deaminase (AID), into dual adeno-associated viruses (AAVs) using a split-intein delivery system. The dual AID-CBEmax AAVs were injected into the inner ears of Baringo mice at postnatal day 1. Injected mice showed up to 51% reversion of the Tmc1 c.A545G point mutation to wild-type sequence (c.A545A) in Tmc1 transcripts. Repair of Tmc1 in vivo restored inner hair cell sensory transduction and hair cell morphology and transiently rescued low-frequency hearing 4 weeks after injection. These findings provide a foundation for a potential one-time treatment for recessive hearing loss and support further development of base editing to correct pathogenic point mutations.


Assuntos
Surdez , Proteínas de Membrana , Animais , Surdez/genética , Surdez/terapia , Fibroblastos , Células Ciliadas Auditivas , Audição/genética , Humanos , Camundongos
3.
Cell Rep ; 31(6): 107623, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402282

RESUMO

Stem cell-derived ß (SC-ß) cells could provide unlimited human ß cells toward a curative diabetes treatment. Differentiation of SC-ß cells yields transplantable islets that secrete insulin in response to glucose challenges. Following transplantation into mice, SC-ß cell function is comparable to human islets, but the magnitude and consistency of response in vitro are less robust than observed in cadaveric islets. Here, we profile metabolism of SC-ß cells and islets to quantify their capacity to sense glucose and identify reduced anaplerotic cycling in the mitochondria as the cause of reduced glucose-stimulated insulin secretion in SC-ß cells. This activity can be rescued by challenging SC-ß cells with intermediate metabolites from the TCA cycle and late but not early glycolysis, downstream of the enzymes glyceraldehyde 3-phosphate dehydrogenase and phosphoglycerate kinase. Bypassing this metabolic bottleneck results in a robust, bi-phasic insulin release in vitro that is identical in magnitude to functionally mature human islets.


Assuntos
Linfócitos B/metabolismo , Glucose/metabolismo , Glicólise/genética , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
4.
PLoS One ; 15(5): e0233779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470059

RESUMO

Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.


Assuntos
Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fermentação , Frutose/metabolismo , Glucosiltransferases/genética , Mutação com Perda de Função , Trealose/biossíntese
5.
Nat Chem Biol ; 15(4): 419-426, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742124

RESUMO

The chemical functionalities within biopolymers determine their physical properties and biological activities. The relationship between the side chains available to a biopolymer population and the potential functions of the resulting polymers, however, has proven difficult to study experimentally. Using seven sets of chemically diverse charged, polar, and nonpolar side chains, we performed cycles of artificial translation, in vitro selections for binding to either PCSK9 or IL-6 protein, and replication on libraries of random side chain-functionalized nucleic acid polymers. Polymer sequence convergence, bulk population target binding, affinity of individual polymers, and head-to-head competition among post-selection libraries collectively indicate that polymer libraries with nonpolar side chains outperformed libraries lacking these side chains. The presence of nonpolar groups, resembling functionality existing in proteins but missing from natural nucleic acids, thus may be strong determinants of binding activity. This factor may contribute to the apparent evolutionary advantage of proteins over their nucleic acid precursors for some molecular recognition tasks.


Assuntos
Biopolímeros/química , Biopolímeros/fisiologia , Replicação do DNA , Humanos , Interleucina-6/química , Biblioteca de Peptídeos , Polímeros/química , Pró-Proteína Convertase 9/química , Proteínas/química
6.
ACS Chem Biol ; 13(10): 3011-3020, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30240188

RESUMO

Sugar alcohols (polyols) exist widely in nature. While some specific sugar alcohol phosphatases are known, there is no known phosphatase for some important sugar alcohols (e.g., sorbitol-6-phosphate). Using liquid chromatography-mass spectrometry-based metabolomics, we screened yeast strains with putative phosphatases of unknown function deleted. We show that the yeast gene YNL010W, which has close homologues in all fungi species and some plants, encodes a sugar alcohol phosphatase. We term this enzyme, which hydrolyzes sorbitol-6-phosphate, ribitol-5-phosphate, and (d)-glycerol-3-phosphate, polyol phosphatase 1 or PYP1. Polyol phosphates are structural analogs of the enediol intermediate of phosphoglucose isomerase (Pgi). We find that sorbitol-6-phosphate and ribitol-5-phosphate inhibit Pgi and that Pyp1 activity is important for yeast to maintain Pgi activity in the presence of environmental sugar alcohols. Pyp1 expression is strongly positively correlated with yeast growth rate, presumably because faster growth requires greater glycolytic and accordingly Pgi flux. Thus, yeast express the previously uncharacterized enzyme Pyp1 to prevent inhibition of glycolysis by sugar alcohol phosphates. Pyp1 may be useful for engineering sugar alcohol production.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fosfatos Açúcares/metabolismo , Deleção de Genes , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Hidrólise , Monoéster Fosfórico Hidrolases/genética , Proteínas de Saccharomyces cerevisiae/genética , Fosfatos Açúcares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA