Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol Rep ; 4: 100090, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36970231

RESUMO

Tumor necrosis factor like ligand 1A (TL1A), a member of TNF superfamily, regulates inflammatory response and immune defense. TL1A homologues have recently been discovered in fish, but their functions have not been studied. In this study, a TL1A homologue was identified in grass carp (Ctenopharyngodon idella) and its bioactivities were investigated. The grass carp tl1a (Citl1a) gene was constitutively expressed in tissues, with the highest expression detected in the liver. It was upregulated in response to infection with Aeromonas hydrophila. The recombinant CiTL1A was produced in bacteria and was shown to stimulate the expression of il1ß, tnfα, caspase 8 and ifnγ in the primary head kidney leucocytes. In addition, co-immunoprecipitation assay revealed that CiTL1A interacted with DR3 and induced apoptosis via activation of DR3. The results demonstrate that TL1A regulates inflammation and apoptosis and is involved in the immune defense against bacterial infection in fish.

2.
Fish Shellfish Immunol ; 133: 108530, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36632914

RESUMO

Interleukin (IL) 27 is a member of the IL-12 family and is a heterodimeric cytokine composed of IL-27A and Epstein-Barr virus-induced 3 (EBI3). It plays an important role in regulating inflammation and cancer progression. IL-27A not only functions by dimerizing with EBI3 but also acts alone. Here, we report that IL-27A and EBI3 suppress spring viremia of carp virus (SVCV) replication in zebrafish. Expression analysis reveals that il-27a and ebi3 were significantly upregulated in the ZF4 cells by SVCV and poly(I:C), and in the zebrafish caudal fin (ZFIN) cells overexpressed with SVCV genes. Interestingly, il-27a and ebi3 were not modulated by IFNφ1, indicating that they are not IFN stimulated genes (ISGs). Furthermore, overexpression of IL-27A and EBI3 alone inhibited SVCV replication in the EPC cells, but less potent than co-expression of IL-27A and EBI3. Intriguingly, IL-27A could not induce the expression of irf3, ifn, isg15 and mx1. Taken together, our results demonstrate that IL-27A and EBI3 activate innate antiviral response in an IFN independent manner in zebrafish.


Assuntos
Doenças dos Peixes , Interleucina-27 , Infecções por Rhabdoviridae , Rhabdoviridae , Peixe-Zebra , Animais , Infecções por Vírus Epstein-Barr , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Herpesvirus Humano 4/metabolismo , Interleucina-27/genética , Interleucinas/genética , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/veterinária , Viremia , Replicação Viral , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
J Virol ; 96(22): e0131422, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36314827

RESUMO

IFN regulatory factor (IRF) 2 belongs to the IRF1 subfamily, and its functions are not yet fully understood. In this study, we showed that IRF2a was a negative regulator of the interferon (IFN) response induced by spring viremia of carp virus (SVCV). Irf2a-/- knockout zebrafish were less susceptible to SVCV than wild-type fish. Transcriptomic analysis reveals that differentially expressed genes (DEGs) in the irf2a-/- and irf2a+/+ cells derived caudal fins were mainly involved in cytokine-cytokine receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth factor-beta (TGF-beta) signaling pathway. Interestingly, the basal expression levels of interferon stimulating genes (ISGs), including pkz, mx, apol, and stat1 were higher in the irf2a-/- cells than irf2a+/+ cells, suggesting that they may contribute to the increased viral resistance of the irf2a-/- cells. Overexpression of IRF2a inhibited the activation of ifnφ1 and ifnφ3 induced by SVCV and poly(I:C) in the epithelioma papulosum cyprini (EPC) cells. Further, it was found that SVCV phosphoprotein (SVCV-P) could interact with IRF2a to promote IRF2a nuclear translocation and protein stability via suppressing K48-linked ubiquitination of IRF2a. Both IRF2a and SVCV-P not only destabilized STAT1a but reduced its translocation into the nucleus. Our work demonstrates that IRF2a cooperates with SVCV-P to suppress host antiviral response against viral infection in zebrafish. IMPORTANCE Interferon regulatory factors (IRFs) are central in the regulation of interferon-mediated antiviral immunity. Here, we reported that IRF2a suppressed interferon response and promoted virus replication in zebrafish. The suppressive effects were enhanced by the phosphoprotein of the spring viremia of carp virus (SVCV) via inhibition of K48-linked ubiquitination of IRF2a. IRF2a and SVCV phosphoprotein cooperated to degrade STAT1 and block its nuclear translocation. Our work demonstrated that IRFs and STATs were targeted by the virus through posttranslational modifications to repress interferon-mediated antiviral response in lower vertebrates.


Assuntos
Doenças dos Peixes , Fator Regulador 2 de Interferon , Fosfoproteínas , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/virologia , Interferons/imunologia , Fosfoproteínas/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Viremia , Peixe-Zebra/virologia , Fator Regulador 2 de Interferon/metabolismo , Técnicas de Inativação de Genes , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT1 , Replicação Viral
4.
Fish Shellfish Immunol ; 125: 48-53, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35526800

RESUMO

PLAAT1 belongs to the PLAAT family and plays regulatory roles in cell growth, tumor suppression and phospholipid metabolism. However, whether PLAAT1 is involved in p53 mediated signaling has not been investigated. Here, we report that PLAAT1 promotes degradation of p53 in zebrafish. We found that the plaat1 gene was constitutively expressed in tissues including liver, kidney, spleen, intestine, eye and brain, with relative higher expression levels detected in the brain and eye. Overexpression of plaat1 led to inhibition of p53 and tnfα mRNA expression. Furthermore, it was shown that PLAAT1 interacted with p53 to facilitate p53 degradation via autophagy-lysosome dependent pathway. Our work indicates that PLAAT1 is involved in the interplay between p53 mediated cellular responses and autophagy.


Assuntos
Proteína Supressora de Tumor p53 , Peixe-Zebra , Animais , Apoptose , Autofagia/genética , Lisossomos/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Front Immunol ; 13: 862764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392096

RESUMO

Teleost type I interferons (IFNs) are categorized into group I and II subgroups that bind to distinct receptors to activate antiviral responses. However, the interaction between ifn ligands and receptors has not fully been understood. In this study, the crystal structure of grass carp [Ctenopharyngodon idella (Ci)] IFNa has been solved at 1.58Å and consists of six helices. The CiIFNa displays a typical structure of type I IFNs with a straight helix F and lacks a helix element in the AB loop. Superposition modeling identified several key residues involved in the interaction with receptors. It was found that CiIFNa bound to cytokine receptor family B (CRFB) 1, CRFB2, and CRFB5, and the three receptors could form heterodimeric receptor complexes. Furthermore, mutation of Leu27, Glu103, Lys117, and His165 markedly decreased the phosphorylation of signal transducer and activator of transcription (STAT) 1a induced by CiIFNa in the Epithelioma papulosum cyprini (EPC) cells, and Glu103 was shown to be required for the CiIFNa-activated antiviral activity. Interestingly, wild-type and mutant CiIFNa proteins did not alter the phosphorylation levels of STAT1b. Our results demonstrate that fish type I IFNs, although structurally conserved, interact with the receptors in a manner that may differ from mammalian homologs.


Assuntos
Carpas , Interferon Tipo I , Animais , Antivirais , Carpas/metabolismo , Proteínas de Transporte/genética , Interferon Tipo I/metabolismo , Interferon-alfa/metabolismo , Filogenia , Receptores de Interferon/metabolismo
6.
Dev Comp Immunol ; 122: 104127, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33965447

RESUMO

CC chemokine ligand 19 (CCL19) plays a key role in the regulation of immune responses including homeostasis, inflammation, and immune tolerance. In this study, two variants of CCL19 homologues (CCL19a2 and CCL19b) and CCR7 were investigated in grass carp Ctenopharyngodon idella. The three genes were widely expressed in immune tissues and could be modulated by stimulation with LPS, PHA and poly(I:C), and infection with Flavobacterium columnare and grass carp reovirus. In an in vitro chemotaxis assay, the recombinant CCL19a2 and CCL19b were active to promote the migration of HEK293 T cells expressing CCR7 and leucocytes isolated from the gills, head kidney and spleen. Moreover, their chemotactive effects were validated in vivo. We found that the cells recruited by CCL19a2 and CCl19b are mainly monocytes/macrophages expressing high levels of IL-1ß, IFN-γ, colony stimulating factor 1 receptor (CSF1R) and MHC II. Our work suggests that CCL19a2 and CCl19b are involved in recruitment of antigen presenting cells in fish.


Assuntos
Apresentação de Antígeno/imunologia , Carpas/imunologia , Quimiocina CCL19/imunologia , Doenças dos Peixes/imunologia , Leucócitos/imunologia , Receptores CCR7/metabolismo , Animais , Sequência de Bases , Carpas/microbiologia , Linhagem Celular , Movimento Celular/imunologia , Quimiocina CCL19/genética , Doenças dos Peixes/microbiologia , Flavobacterium/imunologia , Brânquias/citologia , Brânquias/imunologia , Células HEK293 , Rim Cefálico/citologia , Rim Cefálico/imunologia , Humanos , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Monócitos/imunologia , Fito-Hemaglutininas/imunologia , Poli I-C/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Reoviridae/imunologia , Análise de Sequência de DNA , Baço/citologia , Baço/imunologia
7.
Gene ; 789: 145668, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33882323

RESUMO

Group II C-type lectin domain (CTLD) containing receptors belong to a large family of pattern recognition receptors which mainly act on the innate immunity. They are structurally related and consist of a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) and a single extracellular CTLD. Although they have been described in teleost fish, their involvement in immune responses is not well understood. In this study, four immune-related lectin-like receptors (termed CiILLR1 and CiILLR5-7), belonging to the group II CTLD receptors, were identified in grass carp (Ctenopharyngodon idella). They contain a short cytoplasmic tail and a single CTLD in the extracellular region. The CiILLR1 has a WxHxxxxxY motif similar to the WxHxxxxY motif which is required for the recognition of ß-glucans by some of the group II CTLD containing lectins in mammals. Further, a modified QPD motif (EPD) known to be involved in binding to carbohydrate ligands is present in the CiILLR1, 5 and 6. However, CiILLR7 lacks these motifs. Expression analysis revealed that they were constitutively expressed in the head kidney and spleen. Moreover, CiILLR1, 5 and 6 could be up-regulated in the head kidney and spleen of fish after infection with Flavobacterium columnare and in the primary head kidney leukocytes by LPS and PHA. Expression of CiILLR1, CiILLR5 and CiILLR6 were mainly detected in the enriched lymphocytes whilst CiILLR7 was expressed in the enriched monocytes/macrophages. The results expand existing knowledge on the immune responses of the C-type lectin receptors in teleost fish.


Assuntos
Carpas/metabolismo , Lectinas Tipo C/metabolismo , Sequência de Aminoácidos , Animais , Carboidratos , Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Flavobacterium/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo , Rim Cefálico/metabolismo , Imunidade Inata/fisiologia , Leucócitos/metabolismo , Ligantes , Linfócitos/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Alinhamento de Sequência , Transdução de Sinais/fisiologia , Baço/metabolismo , Regulação para Cima/fisiologia , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA