Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39011110

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.

2.
Nat Neurosci ; 22(2): 167-179, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643292

RESUMO

The findings that amyotrophic lateral sclerosis (ALS) patients almost universally display pathological mislocalization of the RNA-binding protein TDP-43 and that mutations in its gene cause familial ALS have nominated altered RNA metabolism as a disease mechanism. However, the RNAs regulated by TDP-43 in motor neurons and their connection to neuropathy remain to be identified. Here we report transcripts whose abundances in human motor neurons are sensitive to TDP-43 depletion. Notably, expression of STMN2, which encodes a microtubule regulator, declined after TDP-43 knockdown and TDP-43 mislocalization as well as in patient-specific motor neurons and postmortem patient spinal cord. STMN2 loss upon reduced TDP-43 function was due to altered splicing, which is functionally important, as we show STMN2 is necessary for normal axonal outgrowth and regeneration. Notably, post-translational stabilization of STMN2 rescued neurite outgrowth and axon regeneration deficits induced by TDP-43 depletion. We propose that restoring STMN2 expression warrants examination as a therapeutic strategy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Motores/metabolismo , Axônios/metabolismo , Linhagem Celular , Regulação para Baixo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Medula Espinal/metabolismo , Estatmina
3.
Cell Metab ; 28(4): 605-618.e6, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-29909971

RESUMO

Mutations in PLA2G6 (PARK14) cause neurodegenerative disorders in humans, including autosomal recessive neuroaxonal dystrophy and early-onset parkinsonism. We show that loss of iPLA2-VIA, the fly homolog of PLA2G6, reduces lifespan, impairs synaptic transmission, and causes neurodegeneration. Phospholipases typically hydrolyze glycerol phospholipids, but loss of iPLA2-VIA does not affect the phospholipid composition of brain tissue but rather causes an elevation in ceramides. Reducing ceramides with drugs, including myriocin or desipramine, alleviates lysosomal stress and suppresses neurodegeneration. iPLA2-VIA binds the retromer subunits Vps35 and Vps26 and enhances retromer function to promote protein and lipid recycling. Loss of iPLA2-VIA impairs retromer function, leading to a progressive increase in ceramide. This induces a positive feedback loop that affects membrane fluidity and impairs retromer function and neuronal function. Similar defects are observed upon loss of vps26 or vps35 or overexpression of α-synuclein, indicating that these defects may be common in Parkinson disease.


Assuntos
Ceramidas/metabolismo , Proteínas de Drosophila/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Fosfolipases A2 do Grupo X/metabolismo , Doença de Parkinson/metabolismo , Proteínas de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Drosophila/genética , Proteínas de Drosophila/química , Retroalimentação Fisiológica , Feminino , Fosfolipases A2 do Grupo VI/genética , Células HeLa , Humanos , Lisossomos/metabolismo , Masculino , Fluidez de Membrana , Mutação , Neurônios/metabolismo , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Esfingolipídeos/metabolismo
4.
Elife ; 52016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901468

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by mutations in Frataxin (FXN). Loss of FXN causes impaired mitochondrial function and iron homeostasis. An elevated production of reactive oxygen species (ROS) was previously proposed to contribute to the pathogenesis of FRDA. We recently showed that loss of frataxin homolog (fh), a Drosophila homolog of FXN, causes a ROS independent neurodegeneration in flies (Chen et al., 2016). In fh mutants, iron accumulation in the nervous system enhances the synthesis of sphingolipids, which in turn activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2) to trigger neurodegeneration of adult photoreceptors. Here, we show that loss of Fxn in the nervous system in mice also activates an iron/sphingolipid/PDK1/Mef2 pathway, indicating that the mechanism is evolutionarily conserved. Furthermore, sphingolipid levels and PDK1 activity are also increased in hearts of FRDA patients, suggesting that a similar pathway is affected in FRDA.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Fatores de Transcrição MEF2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Animais , Ataxia de Friedreich/patologia , Técnicas de Inativação de Genes , Humanos , Proteínas de Ligação ao Ferro/genética , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Frataxina
5.
Elife ; 52016 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-27343351

RESUMO

Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas de Drosophila/metabolismo , Ataxia de Friedreich/fisiopatologia , Proteínas de Ligação ao Ferro/genética , Ferro/toxicidade , Fatores de Regulação Miogênica/metabolismo , Esfingolipídeos/biossíntese , Animais , Modelos Animais de Doenças , Drosophila , Frataxina
6.
PLoS Genet ; 12(5): e1006054, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27195754

RESUMO

Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.


Assuntos
Proteínas de Drosophila/genética , Olho/metabolismo , Cinesinas/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Cinesinas/metabolismo , Camundongos , Células Fotorreceptoras/metabolismo , Poliubiquitina , Proteólise , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Peixe-Zebra/genética
7.
Elife ; 42015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25824290

RESUMO

Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Biblioteca Gênica , Mutagênese Insercional , Interferência de RNA , Animais , Animais Geneticamente Modificados , Western Blotting , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva/genética , Larva/metabolismo , Aprendizagem/fisiologia , Microscopia Confocal , Fatores de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo
8.
FEBS Lett ; 585(21): 3409-14, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22001206

RESUMO

The dipeptidyl peptidase (DPP) family members, including DPP-IV, DPP8, DPP9 and others, cleave the peptide bond after the penultimate proline residue and are drug target rich. The dimerization of DPP-IV is required for its activity. A propeller loop located at the dimer interface is highly conserved within the family. Here we carried out site-directed mutagenesis on the loop of DPPIV and identified several residues important for dimer formation and enzymatic activity. Interestingly, the corresponding residues on DPP9 have a different impact whereby the mutations decrease activity without changing dimerization. Thus the propeller loop seems to play a varying role in different DPPs.


Assuntos
Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Estrutura Quaternária de Proteína , Sequência de Aminoácidos , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA