Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 234: 113760, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244484

RESUMO

Recently, carbon quantum dots (CQDs) have become popular because of their simple synthesis and potential applications. Although CQDs have high biocompatibility, their biotoxicity must be verified to reduce the possible risks associated with large-scale application. In this study, the hepatotoxicity of three CQD types, namely diammonium citrate (AC)-based (CQDs-AC), spermidine trihydrochloride (Spd)-based (CQDs-Spd), and AC- and Spd-based CQDs (CQDs-AC/Spd), were evaluated in vivo and in vitro. It was observed in vivo that CQDs-Spd and CQDs-AC/Spd, but not CQDs-AC, caused histopathological damage, including liver steatosis and mild mixed inflammatory cell infiltration; however, reduced liver function was only observed in CQD-Spd-treated mice. The in vitro results revealed that only CQDs-Spd significantly decreased the number of viable HepG2 cells (NADH depletion) and induced oxidative stress (heme oxygenase-1 activation) after 24 h of exposure, which promoted inflammatory factor secretion (NF-κB activation). Additionally, decreasing zonula occludens-2 and α1-antitrypsin protein expression in HepG2 cells suggested that CQD-Spd exposure increases the risk of liver diseases. Our results revealed that CQDs-Spd had greater hepatotoxic potential than CQDs-AC and CQDs-AC/Spd, which might be attributable to their high positive surface charge. Overall, the risk of CQD-induced hepatotoxic risk must be considered when applying positively charged CQDs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Pontos Quânticos , Camundongos , Animais , Humanos , Pontos Quânticos/toxicidade , Carbono/farmacologia , Espermidina , Células Hep G2 , Doença Hepática Induzida por Substâncias e Drogas/etiologia
2.
Arch Environ Contam Toxicol ; 85(4): 438-450, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910195

RESUMO

The effects of atmospheric pollution from ship emissions have been considered for several harbors worldwide. The health risk assessment and source apportionment of particle-bound metals in a fishery harbor were investigated in this study. The most abundant metal elements in particulate matter (PM) on all sampling days in three seasons were Fe (280.94 ± 136.93 ng/m3), Al (116.40 ± 71.25 ng/m3), and Zn (110.55 ± 26.70 ng/m3). The ratios of V/Ni were 1.44 ± 0.31, 1.48 ± 0.09 and 1.87 ± 0.06 in PM10, PM2.5, and PM1, respectively. Meanwhile, the ratios higher than 1 indicated that fuel oil combustion from ship emission in fishery harbor. The highest deposits of total particle-bound metals in the human respiratory tract were in the head airway (HA), accounting for 76.77 ± 2.29% of the total particle-bound metal concentration, followed by 5.32 ± 0.13% and 2.53 ± 0.15% in the alveolar region (AR) and tracheobronchial (TB) region, respectively. The total cancer risk (CR) of inhalation exposure to local residents exceeded 10-6. Mean total CR values followed the sequence: autumn (1.24 × 10-4) > winter (8.53 × 10-5) > spring (2.77 × 10-6). Source apportionment of related metal emissions was mobile pollution emissions (vehicle/boat) (37.10-48.92%), metal fumes of arc welding exhaust (19.68-34.42%), spray-painting process (12.34-16.24%), combustion emissions (6.32-13.12%), and metal machining processes (9.04-16.31%) in Singda fishing harbor. These results suggest that proper control of heavy metals from each potential source in fishing harbor areas should be carried out to reduce the carcinogenic risk of adverse health effects.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Humanos , Poluentes Atmosféricos/análise , Estações do Ano , Pesqueiros , Monitoramento Ambiental , Material Particulado/análise , Metais Pesados/análise , Medição de Risco , China
3.
Bioresour Technol ; 387: 129590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532059

RESUMO

In this study, different types of lignocellulosic biomas were used as substrates for the conversion to 5-HMF via biphasic reaction system that is composed of a reaction phase (aqueous phase) and an extraction phase (organic phase) under the catalysis of various metal salts. Deep eutectic solvents (DESs), ionic liquid [BMIM]Cl, aqueous choline chloride, aqueous betaine hydrochloride, and ethylamine hydrochloride were used as the reaction phase in the combination of dimethyl sulfoxide (DMSO) as organic solvents. The highest yields of 5-HMF obtained from pineapple stems in reactions with DES were 40.98%, 37.26%, and 23.44% for ChCl:Lac, ChCl:OA, and EaCl:Lac, respectively. Moreover, the combination of dimethyl sulfoxide, betaine hydrochloride aqueous solution, and AlCl3·6H2O with the pineapple stem conversion system resulted in a maximum yield of 61.04% ± 0.55% of 5-HMF. This study also demonstrated that AlCl3·6H2O and betaine hydrochloride could be effectively reused four times, which indicates a green and effective process.


Assuntos
Betaína , Dimetil Sulfóxido , Biomassa , Solventes , Água
4.
Sci Total Environ ; 895: 165213, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391157

RESUMO

To reduce the nanoplastics (NPs) toxicity assessment error, we established a Transwell-based bronchial epithelial cell exposure system to assess the pulmonary toxicity of polystyrene NPs (PSNPs). Transwell exposure system was more sensitive than submerged culture for toxicity detection of PSNPs. PSNPs adhered to the BEAS-2B cell surface, were ingested by the cell, and accumulated in the cytoplasm. PSNPs induced oxidative stress and inhibited cell growth through apoptosis and autophagy. A noncytotoxic dose of PSNPs (1 ng/cm2) increased the expression levels of inflammatory factors (ROCK-1, NF-κB, NLRP3, ICAM-1, etc) in BEAS-2B cells, whereas a cytotoxic dose (1000 ng/cm2) induced apoptosis and autophagy, which might inhibit the activation of ROCK-1 and contribute to reducing inflammation. In addition, the noncytotoxic dose increased the expression levels of zonula occludens-2 (ZO-2) and α1-antitrypsin (α-AT) proteins in BEAS-2B cells. Therefore, in response to PSNP exposure, a compensatory increase in the activities of inflammatory factors, ZO-2, and α-AT may be triggered at low doses as a mechanism to preserve the survival of BEAS-2B cells. In contrast, exposure to a high dose of PSNPs elicits a noncompensatory response in BEAS-2B cells. Overall, these findings suggest that PSNPs may be harmful to human pulmonary health even at an ultralow concentration.


Assuntos
Pneumopatias , Poliestirenos , Humanos , Poliestirenos/metabolismo , Brônquios/metabolismo , NF-kappa B , Células Epiteliais
5.
Water Environ Res ; 94(1): e1673, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861087

RESUMO

In this study, the emulsified castor oil (ECO) substrate was developed for a long-term supplement of biodegradable carbon with pH buffering capacity to anaerobically bioremediate trichloroethylene (TCE)-polluted groundwater. The ECO was produced by mixing castor oil, surfactants (sapindales and soya lecithin [SL]), vitamin complex, and a citrate/sodium phosphate dibasic buffer system together for slow carbon release. Results of the emulsification experiments and microcosm tests indicate that ECO emulsion had uniform small droplets (diameter = 539 nm) with stable oil-in-water characteristics. ECO had a long-lasting, dispersive, negative zeta potential (-13 mv), and biodegradable properties (viscosity = 357 cp). Approximately 97% of TCE could be removed with ECO supplement after a 95-day operational period without the accumulation of TCE dechlorination byproducts (dichloroethylene and vinyl chloride). The buffer system could neutralize acidified groundwater, and citrate could be served as a primary substrate. ECO addition caused an abrupt TCE adsorption at the initial stage and the subsequent removal of adsorbed TCE. Results from the next generation sequences and real-time polymerase chain reaction (PCR) indicate that the increased microbial communities and TCE-degrading bacterial consortia were observed after ECO addition. ECO could be used as a pH-control and carbon substrate to enhance anaerobic TCE biodegradation effectively. PRACTITIONER POINTS: Emulsified castor oil (ECO) contains castor oil, surfactants, and buffer for a slow carbon release and pH control. ECO can be a long-term carbon source for trichloroethylene (TCE) dechlorination without causing acidification. TCE removal after ECO addition is due to adsorption and reductive dechlorination mechanisms.


Assuntos
Água Subterrânea , Tricloroetileno , Biodegradação Ambiental , Carbono , Óleo de Rícino , Concentração de Íons de Hidrogênio
6.
Chemosphere ; 263: 128349, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297274

RESUMO

Biochars (BCs) are currently widely used, yet their impact on human health is mostly unknown. We generated micro-tobacco stem-pyrolysed BCs (mTBCs) at different pyrolysis temperatures and assessed pulmonary toxicity in normal human lung epithelial BEAS-2B cells. mTBCs generated at 350 °C (mTBC350) and 650 °C (mTBC650) were analysed and compared for physicochemical properties and adverse effects. Pyrolysis temperature had a significant influence on chemical composition, particle size, specific surface area and aromatic carbon structure. mTBC650 displayed a highly ordered aromatic carbon structure with smaller particle size, high surface area (20.09 m2/g) and high polycyclic aromatic hydrocarbon and metal content. This composition could promote reactive oxygen species accumulation accompanied by greater cytotoxicity, genotoxicity and epithelial barrier malfunction in cultured cells. Thus, the risk of pulmonary toxicity owing to micro-BCs (mBCs) is affected by pyrolysis temperature. Long-term exposure to mBCs produced at high temperatures may lead to or exacerbate pulmonary disease.


Assuntos
Nicotiana , Pirólise , Carvão Vegetal , Temperatura Alta , Humanos , Temperatura
7.
Environ Sci Pollut Res Int ; 26(33): 34157-34166, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30456616

RESUMO

Dispersants including Tween 20, Tween 40, Tween 60, and polyacrylic acid (PAA) were used to modify nanoscale zero-valent iron (nZVI). All dispersants dispersed nZVI effectively. PAA-modified nZVI was more stable than nZVI that was modified with Tween surfactant. Iron nanoparticles that were prepared using 0.5-5.0% (vol%) of PAA remained in suspension for more than 2 h. nZVI that was modified using Tween surfactant remained in suspension for 30-60 min, and there was complete sedimentation of bare iron in 10 min. When 2.0-5.0% (vol%) of Tween surfactant was used, the stability of the nZVI that was modified using Tween 20 was much better than that for nZVI that was modified using Tween 40 or Tween 60. The results for the transportation test show that nZVI that was prepared using 2% (vol%) of Tween 20 exhibited the best mobility in porous media. Approximately 83-90% of TCE was degraded by bare, PAA-modified, and Tween 20-modified nZVI, and about 63-67% of TCE was removed by nZVI that was modified using Tween 40 and Tween 60 during 20 days of reaction. The production of cis-dichloroethene (DCE) and 1,1-DCE demonstrates that TCE is removed via reductive dechlorination. The results of this study show that PAA- and Tween 20-modified nZVI are more practical for in situ remediation because they exhibit good mobility and degrade TCE effectively.


Assuntos
Nanopartículas Metálicas/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Resinas Acrílicas , Halogenação , Ferro , Modelos Químicos , Polissorbatos/metabolismo , Porosidade , Tensoativos , Suspensões
8.
Bioresour Technol ; 225: 40-47, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27875767

RESUMO

A novel anthraquinone-2,6-disulfonate/MnOx-doped polypyrrole film (AQDS/Mn/PPy) electrode was prepared by one-step electropolymerization method and was used to improve performance of a reversible photo-bioelectrochemical cell (RPBEC). The RPBEC was operated in polarity reversion depended on dark/light reaction of alga Chlorella vulgaris by which sequential decolorization of azo dye and mineralization of decolorization products coupled with bioelectricity generation can be achieved. The results showed that formation of uniform AQDS/Mn/PPy film significantly enhanced electroactive surface area and electrocatalytic activity of carbon electrode. The RPBEC with AQDS/Mn/PPy electrodes demonstrated 77% increases in maximum power and 73% increases in Congo red decolorization rate before polarity reversion, and 198% increases in maximum power and 138% increases in decolorization products mineralization rate after polarity reversion, respectively, compared to the RPBEC with bare electrode. This was resulted from simultaneous dynamics improvement in half-reaction rate of anode and photo-biocathode due to enhanced electron transfer and algal-bacterial biofilm formation.


Assuntos
Antraquinonas/química , Compostos Azo/isolamento & purificação , Fontes de Energia Bioelétrica , Corantes/isolamento & purificação , Eletricidade , Compostos de Manganês/química , Óxidos/química , Fotoquímica/instrumentação , Polímeros/química , Pirróis/química , Biofilmes , Chlorella vulgaris/metabolismo , Eletrodos , Propriedades de Superfície
9.
Nanotoxicology ; 10(7): 881-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26694701

RESUMO

Despite promising environmental applications for nano zerovalent iron (nZVI), concerns remain about the potential accumulation and toxic effects of nZVI particles. Here, we use an alveolar-capillary co-culture model to investigate a possible link between low-level epithelial exposure to nZVI and pulmonary and cardiovascular toxicity. While nZVI was unable to pass through the epithelial barrier into the endothelium, nZVI exposure did cause oxidative and inflammatory responses in both epithelial and endothelial cells. Therefore, toxic effects induced by nZVI are not restricted to epithelial cells but can be transferred into the endothelium. Communication between A549 and EA.hy926 cells is responsible for amplification of nZVI-induced toxic responses. Decreases in transepithelial electrical resistance and zonula occludens proteins after epithelial exposure to nZVI impaired epithelial barrier integrity. Increases in oxidized α1-antitrypsin and oxidized low-density lipoprotein in the co-culture model suggest that nZVI exposure increases the risk of chronic obstructive pulmonary disease and atherosclerosis. Therefore, inhalation of nZVI has the potential to induce cardiovascular disease through oxidative and inflammatory mediators produced from the damaged lung epithelium in chronic lung diseases.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Ferro/toxicidade , Pulmão/efeitos dos fármacos , Modelos Biológicos , Nanopartículas/toxicidade , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Epiteliais/citologia , Humanos , Ferro/química , Lipoproteínas LDL/metabolismo , Nanopartículas/química , Oxirredução , Propriedades de Superfície , alfa 1-Antitripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA