Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 227: 102484, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315918

RESUMO

TAR binding protein 43 (TDP-43) is normally present in the nucleus but mislocalized in the cytoplasm in a number of neurodegenerative diseases including Huntington's disease (HD). The nuclear loss of TDP-43 impairs gene transcription and regulation. However, it remains to be investigated whether loss of TDP-43 influences trinucleotide CAG repeat expansion in the HD gene, a genetic cause for HD. Here we report that CRISPR/Cas9 mediated-knock down of endogenous TDP-43 in the striatum of HD knock-in mice promoted CAG repeat expansion, accompanied by the increased expression of the DNA mismatch repair genes, Msh3 and Mlh1, which have been reported to increase trinucleotide repeat instability. Furthermore, suppressing Msh3 and Mlh1 by CRISPR/Cas9 targeting diminished the CAG repeat expansion. These findings suggest that nuclear TDP-43 deficiency may dysregulate the expression of DNA mismatch repair genes, leading to CAG repeat expansion and contributing to the pathogenesis of CAG repeat diseases.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/genética , Doença de Huntington/patologia , Expansão das Repetições de Trinucleotídeos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Neostriado/patologia
2.
Exp Neurol ; 345: 113833, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363810

RESUMO

The cytoplasmic inclusions of nuclear TAR DNA-binding protein 43 (TDP-43) are a pathologic hallmark in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTD), and other neurological disorders. We reported that expressing mutant TDP-43(M337V) in rhesus monkeys can mimic the cytoplasmic mislocalization of mutant TDP-43 seen in patient brains. Here we investigated how cytoplasmic mutant TDP-43 mediates neuropathology. We found that C-terminal TDP-43 fragments are primarily localized in the cytoplasm and that the age-dependent elevated UBE2N promotes the accumulation of cytoplasmic C-terminal TDP-43 via K63 ubiquitination. Immunoprecipitation and mass spectrometry revealed that cytoplasmic mutant TDP-43 interacts with proteasome assembly proteins PSMG2 and PSD13, which might lead to the impairment of the proteasomal activity. Our findings suggest that cytoplasmic TDP-43 may participate in age-dependent accumulation of misfolded proteins in the brain by inhibiting the UPS activity.


Assuntos
Envelhecimento/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Córtex Motor/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Envelhecimento/patologia , Animais , Linhagem Celular Tumoral , Citoplasma/patologia , Humanos , Macaca fascicularis , Camundongos , Córtex Motor/patologia
3.
Hum Mol Genet ; 30(16): 1497-1508, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33949657

RESUMO

Our previous work has established a huntingtin knock-in (KI) pig model that displays striatal neuronal loss, allowing us to examine if somatic CAG expansion in striatum accounts for the preferential neurodegeneration in Huntington disease (HD). We found that HD KI pigs do not display somatic CAG expansion in striatum as HD KI mice and that the majority of polyQ repeats in exon 1 HTT in the striatum of HD KI mice are fairly stable. We also found that striatal MSH2 and MLH3, which are involved in DNA repair, are more abundant in mouse brains than pig brains. Consistently inhibiting MSH2 and MLH3 reduced the somatic CAG expansion in HD KI mouse striatum with no influence on neuropathology. Our findings suggest that somatic CAG expansion is species-dependent, occurs in a small fraction of the HD gene in mice, and does not critically contribute to HD neuropathology.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Proteínas MutL/genética , Neostriado/patologia , Suínos , Expansão das Repetições de Trinucleotídeos/genética
4.
Front Cell Neurosci ; 13: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949029

RESUMO

Joubert syndrome (JBTS) is an inherited autosomal recessive disorder associated with cerebellum and brainstem malformation and can be caused by mutations in the Abelson helper integration site-1 (AHI1) gene. Although AHI1 mutations in humans cause abnormal cerebellar development and impaired axonal decussation in JBTS, these phenotypes are not robust or are absent in various mouse models with Ahi1 mutations. AHI1 contains an N-terminal coiled-coil domain, multiple WD40 repeats, and a C-terminal Src homology 3 (SH3) domain, suggesting that AHI1 functions as a signaling or scaffolding protein. Since most AHI1 mutations in humans can result in truncated AHI1 proteins lacking WD40 repeats and the SH3 domain, it remains unclear whether mutant AHI1 elicits toxicity via a gain-of-function mechanism by the truncated AHI1. Because Ahi1 in zebrafish and humans share a similar N-terminal region with a coiled-coil domain that is absent in mouse Ahi1, we used zebrafish as a model to investigate whether Ahi1 mutations could affect axonal decussation. Using in situ hybridization, we found that ahi1 is highly expressed in zebrafish ocular tissues, especially in retina, allowing us to examine its effect on retinal ganglion cell (RGC) projection and eye morphology. We injected a morpholino to zebrafish embryos, which can generate mutant Ahi1 lacking the intact WD40 repeats, and found RGC axon misprojection and ocular dysplasia in 4 dpf (days post-fertilization) larvae after the injection. However, ahi1 null zebrafish showed normal RGC axon projection and ocular morphology. We then used CRISPR/Cas9 to generate truncated ahi1 and also found similar defects in the RGC axon projection as seen in those injected with ahi1 morpholino. Thus, the aberrant retinal axon projection in zebrafish is caused by the presence of mutant ahi1 rather than the loss of ahi1, suggesting that mutant Ahi1 may affect axonal decussation via toxic gain of function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA