Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Hum Mol Genet ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39251229

RESUMO

α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.

2.
Taiwan J Obstet Gynecol ; 63(4): 532-535, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004481

RESUMO

OBJECTIVE: To assess the treatment efficacy of dienogest specifically in the Taiwanese population with endometriosis. MATERIALS AND METHODS: Eighty-eight patients diagnosed with endometriosis receiving at least 3 months of dienogest 2 mg once daily, from January 2018 to June 2022, were enrolled. They were divided into two groups: surgery group and non-surgery group. The assessment of pain improvement was based on visual analog scale (VAS) scores (0-100 mm) recorded at 0, 3, 6, and 12 months following the initiation of dienogest. Serum CA-125 value and ovarian endometrioma size were analyzed at 0 and 6 months. RESULTS: A total of 65 patients with endometriosis presented painful symptoms. In the surgery group (N = 28), the initial VAS score was 47.5 mm, which significantly declined to 9.6 mm at 3 months (p < 0.01), then to 7.5 mm, 2.9 mm, and 2.1 mm at 6, 9, and 12 months, respectively. In the non-surgery group (N = 37), the initial VAS score was 65.7 mm, which significantly declined to 13.2 mm at 3 months (p < 0.01) and 4.9 mm at 6 months (p < 0.05), remained low at 0.3 mm at both 9 and 12 months. Endometrioma size (N = 33) exhibited a significant 35% decrease from 38.2 mm to 24.8 mm after 6 months treatment (p < 0.01). Serum CA-125 levels showed significant improvement from 86.5 to 30.2 U/ml (p < 0.01) at 6 months. CONCLUSION: This retrospective cohort study proved that dienogest is effective in reducing endometriosis-associated pain and endometrioma size in Taiwanese population.


Assuntos
Endometriose , Nandrolona , Humanos , Feminino , Endometriose/tratamento farmacológico , Endometriose/complicações , Nandrolona/análogos & derivados , Nandrolona/uso terapêutico , Adulto , Taiwan , Estudos Retrospectivos , Resultado do Tratamento , Antígeno Ca-125/sangue , Dor Pélvica/tratamento farmacológico , Dor Pélvica/etiologia , Medição da Dor , Antagonistas de Hormônios/uso terapêutico
3.
Viruses ; 16(3)2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543718

RESUMO

Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.


Assuntos
Desoxiadenosinas , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Chlorocebus aethiops , Lactente , Criança , Humanos , Pré-Escolar , Enterovirus Humano A/genética , Células Vero , Adenosina/farmacologia , Células CACO-2 , Replicação Viral , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais , Antivirais/farmacologia
4.
Biomaterials ; 305: 122432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176263

RESUMO

The field of RNA therapeutics has been emerging as the third milestone in pharmaceutical drug development. RNA nanoparticles have displayed motile and deformable properties to allow for high tumor accumulation with undetectable healthy organ accumulation. Therefore, RNA nanoparticles have the potential to serve as potent drug delivery vehicles with strong anti-cancer responses. Herein, we report the physicochemical basis for the rational design of a branched RNA four-way junction (4WJ) nanoparticle that results in advantageous high-thermostability and -drug payload for cancer therapy, including metastatic tumors in the lung. The 4WJ nanostructure displayed versatility through functionalization with an anti-cancer chemical drug, SN38, for the treatment of two different cancer models including colorectal cancer xenograft and orthotopic lung metastases of colon cancer. The resulting 4WJ RNA drug complex spontaneously targeted cancers effectively for cancer inhibition with and without ligands. The 4WJ displayed fast renal excretion, rapid body clearance, and little organ accumulation with undetectable toxicity and immunogenicity. The safety parameters were documented by organ histology, blood biochemistry, and pathological analysis. The highly efficient cancer inhibition, undetectable drug toxicity, and favorable Chemical, Manufacturing, and Control (CMC) production of RNA nanoparticles document a candidate with high potential for translation in cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Humanos , RNA , Eliminação Renal , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química , Linhagem Celular Tumoral
5.
Mol Pharm ; 21(2): 718-728, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38214504

RESUMO

RNA therapeutics has advanced into the third milestone in pharmaceutical drug development, following chemical and protein therapeutics. RNA itself can serve as therapeutics, carriers, regulators, or substrates in drug development. Due to RNA's motile, dynamic, and deformable properties, RNA nanoparticles have demonstrated spontaneous targeting and accumulation in cancer vasculature and fast excretion through the kidney glomerulus to urine to prevent possible interactions with healthy organs. Furthermore, the negatively charged phosphate backbone of RNA results in general repulsion from negatively charged lipid cell membranes for further avoidance of vital organs. Thus, RNA nanoparticles can spontaneously enrich tumor vasculature and efficiently enter tumor cells via specific targeting, while those not entering the tumor tissue will clear from the body quickly. These favorable parameters have led to the expectation that RNA has low or little toxicity. RNA nanoparticles have been well characterized for their anticancer efficacy; however, little detail on RNA nanoparticle pathology and safety is known. Here, we report the in vitro and in vivo assessment of the pathology and safety aspects of different RNA nanoparticles including RNA three-way junction (3WJ) harboring 2'-F modified pyrimidine, folic acid, and Survivin siRNA, as well as the RNA four-way junction (4WJ) harboring 2'-F modified pyrimidine and 24 copies of SN38. Both animal models and patient serum were investigated. In vitro studies include hemolysis, platelet aggregation, complement activation, plasma coagulation, and interferon induction. In vivo studies include hematoxylin and eosin (H&E) staining, hematological and biochemical analysis as the serum profiling, and animal organ weight study. No significant toxicity, side effect, or immune responses were detected during the extensive safety evaluations of RNA nanoparticles. These results further complement previous cancer inhibition studies and demonstrate RNA nanoparticles as an effective and safe drug delivery vehicle for future clinical translations.


Assuntos
Nanopartículas , Neoplasias , Animais , Humanos , RNA Interferente Pequeno/genética , Sistemas de Liberação de Medicamentos , Neoplasias/metabolismo , Nanopartículas/química , Pirimidinas
6.
Am J Cancer Res ; 13(11): 5151-5173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058811

RESUMO

Although various HER2-targeted therapies have been approved clinically, drug resistance remains a considerable challenge. Studies have found that the cause of drug resistance is related to the expression of genes co-amplified with HER2 in breast cancer cells. Our study found that STARD3 was highly expressed in tumor tissues (n = 130, P < 0.001), especially in the HER2+ subtype (n = 35, P < 0.05), and correlated with poorer overall survival (HR = 1.47, P < 0.001). We discovered the interaction mechanism between STARD3 and HER2 proteins. We found that STARD3 overexpression increases HER2 levels by directly interacting with the HSP90 protein and inducing phosphorylated SRC, which may protect HER2 from degradation. Conversely, loss of STARD3 attenuates HER2 expression through lysosomal degradation. In addition, STARD3 overexpression induced cell cycle progression by inducing cyclin D1 and reducing p27. Therefore, the development of STARD3-specific targeted anti-cancer drugs would be helpful in the treatment of HER2+ patients. We further found that curcumin (15 µM) is a potent STARD3 inhibitor. STARD3-knockdown cells treated with curcumin (5 µM) showed a significant synergistic effect in inhibiting cancer cell growth and migration. The results suggest that targeting STARD3 would aid in treating HER2-positive breast cancer patients. This article uses curcumin as an example to prove that the targeted inhibition of STARD3 expression can be an option for the clinical treatment of HER2+ breast cancer patients.

7.
Mol Ther Nucleic Acids ; 33: 351-366, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37547295

RESUMO

Triple-negative breast cancer (TNBC) is highly aggressive with a poor prognosis because of a lack of cell markers as drug targets. α9-Nicotinic acetylcholine receptor (nAChR) is expressed abundantly in TNBC; thus, it is a valuable biomarker for TNBC detection and treatment. In this study, we utilized thermodynamically stable three-way junction (3WJ) packaging RNA (pRNA) as the core to construct RNA nanoparticles with an α9-nAChR RNA aptamer as a targeting ligand and an anti-microRNA-21 (miR-21) as a therapeutic module. We compared the configuration of the two RNA nanoparticles and found that 3WJ-B-α9-nAChR-aptamer fluorescent RNA nanoparticles (3WJ-B-α9-apt-Alexa) exhibited better specificity for α9-nAChR in TNBC cells compared with 3WJ-C-α9-nAChR. Furthermore, 3WJ-B-α9-apt-Alexa bound more efficiently to TNBC patient-derived xenograft (PDX) tumors than 3WJ fluorescent RNA nanoparticles (3WJ-Alexa) with little or no accumulation in healthy organs after systemic injection in mice. Moreover, 3WJ-B-α9-nAChR-aptamer RNA nanoparticles carrying anti-miR-21 (3WJ-B-α9-apt-anti-miR-21) significantly suppressed TNBC-PDX tumor growth and induced cell apoptosis because of reduced miR-21 gene expression and upregulated the phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) proteins. In addition, no pathological changes were detected upon toxicity examination of treated mice. In conclusion, the 3WJ-B-α9-nAChR-aptamer RNA nanoparticles established in this study efficiently deliver therapeutic anti-miR-21, indicating their potential as a novel TNBC therapy.

8.
Taiwan J Obstet Gynecol ; 62(1): 171-174, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36720535

RESUMO

OBJECTIVE: To report a case of pyomyoma, a serious complication of the uterine leiomyoma, in a postpartum woman. As the occurrence of pyomyoma in association with pregnancy is rather rare, a brief literature review of the condition in pregnant women is provided. CASE REPORT: A 41-year-old woman was found to have pyomyoma following persistent fever during the postpartum period of a first-time vaginal delivery. Her pregnancy course was complicated by preterm labor, for which the patient had received tocolysis since 30-week gestation. The pyomyoma was promptly removed by myomectomy on day-6 postpartum. CONCLUSION: Pyomyoma can occur in both pre- and post-menopausal women, and may even complicate pregnancies. Therefore, obstetricians and gynecologists should be wary of pyomyoma in postpartum women with histories of leiomyoma that present with sepsis of unknown focus that is refractory to standard antibiotics. Fertility may be preserved through timely diagnosis, followed by a prompt intervention.


Assuntos
Bacteriemia , Leiomioma , Miomectomia Uterina , Neoplasias Uterinas , Humanos , Recém-Nascido , Feminino , Gravidez , Adulto , Neoplasias Uterinas/complicações , Neoplasias Uterinas/cirurgia , Neoplasias Uterinas/diagnóstico , Leiomioma/complicações , Leiomioma/cirurgia , Leiomioma/diagnóstico , Miomectomia Uterina/efeitos adversos , Bacteriemia/complicações , Bacteriemia/diagnóstico , Febre/etiologia
9.
Lancet Digit Health ; 4(6): e406-e414, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568690

RESUMO

BACKGROUND: Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect a person's race, yet there is no known correlation for race on medical imaging that would be obvious to human experts when interpreting the images. We aimed to conduct a comprehensive evaluation of the ability of AI to recognise a patient's racial identity from medical images. METHODS: Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory Mammogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first, performance quantification of deep learning models in detecting race from medical images, including the ability of these models to generalise to external environments and across multiple imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic population features by assessing the ability of these hypothesised confounders to detect race in isolation using regression models, and by re-evaluating the deep learning models by testing them on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of image corruptions on model performance, we investigated the underlying mechanism by which AI models can recognise race. FINDINGS: In our study, we show that standard AI deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities, which was sustained under external validation conditions (x-ray imaging [area under the receiver operating characteristics curve (AUC) range 0·91-0·99], CT chest imaging [0·87-0·96], and mammography [0·81]). We also showed that this detection is not due to proxies or imaging-related surrogate covariates for race (eg, performance of possible confounders: body-mass index [AUC 0·55], disease distribution [0·61], and breast density [0·61]). Finally, we provide evidence to show that the ability of AI deep learning models persisted over all anatomical regions and frequency spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable will be challenging and demand further study. INTERPRETATION: The results from our study emphasise that the ability of AI deep learning models to predict self-reported race is itself not the issue of importance. However, our finding that AI can accurately predict self-reported race, even from corrupted, cropped, and noised medical images, often when clinical experts cannot, creates an enormous risk for all model deployments in medical imaging. FUNDING: National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of National Institutes of Health, US National Science Foundation, National Library of Medicine of the National Institutes of Health, and Taiwan Ministry of Science and Technology.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Inteligência Artificial , Detecção Precoce de Câncer , Humanos , Estudos Retrospectivos
10.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770956

RESUMO

The microenvironment for tumor growth and developing metastasis should be essential. This study demonstrated that the hyaluronic acid synthase 3 (HAS3) protein and its enzymatic product hyaluronic acid (HA) encompassed in the subcutaneous extracellular matrix can attenuate the invasion of human breast tumor cells. Decreased HA levels in subcutaneous Has3-KO mouse tissues promoted orthotopic breast cancer (E0771) cell-derived allograft tumor growth. MDA-MB-231 cells premixed with higher concentration HA attenuate tumor growth in xenografted nude mice. Human patient-derived xenotransplantation (PDX) experiments found that HA selected the highly migratory breast cancer cells with CD44 expression accumulated in the tumor/stroma junction. In conclusion, HAS3 and HA were detected in the stroma breast tissues at a high level attenuates effects for induced breast cancer cell death, and inhibit the cancer cells invasion at the initial stage. However, the highly migratory cancer cells were resistant to the HA-mediated effects with unknown mechanisms.


Assuntos
Neoplasias da Mama/metabolismo , Hialuronan Sintases/metabolismo , Tecido Parenquimatoso/metabolismo , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Hialuronan Sintases/deficiência , Hialuronan Sintases/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tecido Parenquimatoso/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Tumorais Cultivadas
11.
Chem Rev ; 121(13): 7398-7467, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34038115

RESUMO

RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.


Assuntos
Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Estabilidade de RNA , RNA/química , Animais , Humanos , Terapia de Alvo Molecular , Termodinâmica
12.
J Food Drug Anal ; 29(4): 622-637, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649138

RESUMO

This study demonstrated for the first time that curcumin effectively inhibits the growth of triple-negative breast cancer (TNBC) tumors by inhibiting the expression of salt-induced kinase-3 (SIK3) protein in patient-derived xenografted tumor mice (TNBC-PDX). For TNBC patients, chemotherapy is the only option for postoperative adjuvant treatment. In this study, we detected the SIK3 mRNA expression in paired-breast cancer tissues by qPCR analysis. The results revealed that SIK3 mRNA expression was significantly higher in tumor tissues when compared to the normal adjacent tissues (73.25 times, n = 183). Thus, it is proposed for the first time that the antitumor effect induced by curcumin by targeting SIK3 can be used as a novel strategy for the therapy of TNBC tumors. In vitro mechanism studies have shown that curcumin (>25 µM) inhibits the SIK3-mediated cyclin D upregulation, thereby inhibiting the G1/S cell cycle and arresting TNBC (MDA-MB-231) cancer cell growth. The SIK3 overexpression was associated with increased mesenchymal markers (i.e., Vimentin, α-SMA, MMP3, and Twist) during epithelial-mesenchymal transition (EMT). Our results demonstrated that curcumin inhibits the SIK3-mediated EMT, effectively attenuating the tumor migration. For clinical indications, dietary nutrients (such as curcumin) as an adjuvant to chemotherapy should be helpful to TNBC patients because the current trend is to shrink the tumor with preoperative chemotherapy and then perform surgery. In addition, from the perspective of chemoprevention, curcumin has excellent clinical application value.


Assuntos
Curcumina , Proteínas Serina-Treonina Quinases , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Curcumina/farmacologia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Mensageiro/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
13.
J Food Drug Anal ; 29(1): 113-127, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696218

RESUMO

Triple-negative breast cancers (TNBCs) lack specific targeted therapy options and have evolved into highly chemo-resistant tumors that metastasize to multiple organs. The present study demonstrated that the proline dehydrogenase (PRODH) mRNA level in paired (tumor vs. normal) human breast tissue samples (n=234) was 6.6-fold greater than normal cells (*p=0.021). We established stable PRODH-overexpressing TNBC (HS578T) cells, and the malignant phenotypes were evaluated using soft agar colony formation and Transwell migration assays. The results demonstrated that PRODH induced epithelial-mesenchymal transition in cancer cells and increased cell proliferation. The present study found that the tea polyphenol epigallocatechin-3-gallate (EGCG) significantly inhibited PRODH and its regulated proteins, such as alpha-smooth muscle actin (alpha-SMA) expression in TNBC cells. These findings support the targeting of the PRODH signaling pathway as a potential therapeutic strategy in preventing cancer cell metastasis. The patient-derived xenograft (PDX) mouse model is highly relevant to real human tumor growth. We established a TNBC-PDX (F4, n=4 in each group)mouse model. The PDX mice were treated with EGCG (50 mg/kg), and the results indicated that EGCG significantly inhibited PDX tumor growth (*p = 0.013). These experiments provide additional evidence to evaluate the antitumor effects of EGCG-induced PRODH inhibition for clinical therapeutic application, especially in TNBC patients.


Assuntos
Polifenóis , Neoplasias de Mama Triplo Negativas , Animais , Catequina/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Polifenóis/farmacologia , Prolina/farmacologia , Prolina Oxidase , Chá , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
15.
Cancers (Basel) ; 11(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835799

RESUMO

Cigarette smoking is associated with an increased risk of melanoma metastasis. Smokers show higher PD-L1 expression and better responses to PD-1/PD-L1 inhibitors than nonsmokers. Here, we investigate whether nicotine, a primary constituent of tobacco, induces PD-L1 expression and promotes melanoma cell proliferation and migration, which is mediated by the α9 nicotinic acetylcholine receptor (α9-nAChR). α9-nAChR overexpression in melanoma using melanoma cell lines, human melanoma tissues, and assessment of publicly available databases. α9-nAChR expression was significantly correlated with PD-L1 expression, clinical stage, lymph node status, and overall survival (OS). Overexpressing or knocking down α9-nAChR in melanoma cells up- or downregulated PD-L1 expression, respectively, and affected melanoma cell proliferation and migration. Nicotine-induced α9-nAChR activity promoted melanoma cell proliferation through stimulation of the α9-nAChR-mediated AKT and ERK signaling pathways. In addition, nicotine-induced α9-nAchR activity promoted melanoma cell migration via activation of epithelial-mesenchymal transition (EMT). Moreover, PD-L1 expression was upregulated in melanoma cells after nicotine treatment via the transcription factor STAT3 binding to the PD-L1 promoter. These results highlight that nicotine-induced α9-nAChR activity promotes melanoma cell proliferation, migration, and PD-L1 upregulation. This study may reveal important insights into the mechanisms underlying nicotine-induced melanoma growth and metastasis through α9-nAChR-mediated carcinogenic signals and PD-L1 expression.

16.
Cancers (Basel) ; 11(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683883

RESUMO

Radiation therapy (RT) is one of the main treatments for triple-negative breast cancer (TNBC). However, many patients experience RT failure due to the metastatic potential of RT and the radiation resistance of several cancers. Histone deacetylase inhibitors (HDACis) can serve as radiosensitizers. In this study, we investigated whether a novel HDACi, TMU-35435, could reinforce radiosensitivity through the induction of misfolded protein aggregation and autophagy in TNBC. Significantly enhanced toxicity was found for the combination treatment compared with TMU-35435 or irradiation (IR) treatment alone in TNBC cells. The combination treatment induced misfolded protein aggregation and TMU-35435 inhibited the interaction of HDAC6 with dynein. Furthermore, the combined treatment induced endoplasmic reticulum (ER) stress but did not trigger apoptosis. In addition, the combination treatment caused autophagic cell death. Tumor growth in the mouse of model orthotopic breast cancer was suppressed by the combination treatment through the induction of ER stress and autophagy. These findings support the future evaluation of the novel HDACi TMU-35435, as a potent radiosensitizer in TNBC.

17.
Cancer Med ; 8(10): 4821-4835, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31274246

RESUMO

Neuroblastoma is the second most common pediatric malignancy and has a high rate of spontaneous remission. Uncovering the mechanisms underlying neuroblastoma cell differentiation is critical for therapeutic purposes. A neuroblastoma cell line (N2a) treated with either serum withdrawal (<2.5%) or melatonin (>0.1 nmol/L) for 24 hours was used as a cell differentiation research model. Interestingly, the hyaluronan synthase 3 (HAS3) protein was induced in differentiated N2a cells. N2a-allografted nude mice received an intraperitoneal injection of melatonin (40 or 80 mg/kg/day for 3 weeks). The mean tumor volume in mice treated with 80 mg/kg melatonin was smaller than that in PBS-treated mice (1416.3 and 3041.3 mm3 , respectively, difference = 1625 mm3 , *P = 0.0003, n = 7 per group). Compared with the vector control group, N2a cells with forced HAS3 overexpression showed significantly increased neuron length (*P = 0.00082) and neurite outgrowth (*P = 0.00059). Intracellular changes in autophagy, including distorted mitochondria with abnormal circular inner membranes, were detected by transmission electron microscopy (TEM). Our study demonstrated that HAS3-mediated signaling activated by physiological concentrations of melatonin (>0.1 nmol/L) triggered significant N2a cell differentiation. These results provide molecular data with potential clinical relevance for therapeutic drug development.


Assuntos
Hialuronan Sintases/metabolismo , Melatonina/administração & dosagem , Neuroblastoma/tratamento farmacológico , Animais , Autofagia , Diferenciação Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melatonina/farmacologia , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
18.
BMC Complement Altern Med ; 19(1): 188, 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31351461

RESUMO

BACKGROUND: Apiole was isolated from the leaves of various plants and vegetables and has been demonstrated to inhibit human colon cancer cell (COLO 205 cells) growth through induction of G0/G1 cell cycle arrest and apoptotic cell death. This study further explored the antitumor effects of apiole derivatives AP-02, 04, and 05 in COLO 205 cancer cells. METHODS: Human breast (MDA-MB-231, ZR75), lung (A549, PE089), colon (COLO 205, HT 29), and hepatocellular (Hep G2, Hep 3B) cancer cells were treated with apiole and its derivatives in a dose-dependent manner. Flow cytometry analysis was subsequently performed to determine the mechanism of AP-02-induced G0/G1 cell cycle arrest. The in vivo antitumor effect of AP-02 (1 and 5 mg/kg, administered twice per week) was examined by treating athymic nude mice bearing COLO 205 tumor xenografts. The molecular mechanisms of AP-02-induced antitumor effects were determined using western blot analysis. RESULTS: AP-02 was the most effective compound, especially for inhibition of COLO 205 colon cancer cell growth. The cytotoxicity of AP-02 in normal colon epithelial (FHC) cells was significantly lower than that in other normal cells derived from the breast, lung or liver. Flow cytometry analysis indicated that AP-02-induced G0/G1 cell cycle arrest in COLO 205 cells but not in HT 29 cells (< 5 µM for 24 h, **p < 0.01). Tumor growth volume was also significantly inhibited in AP-02 (> 1 mg/kg)-treated athymic nude mice bearing COLO 205 tumor xenografts compared to control mice (*p < 0.05). Furthermore, G0/G1 phase regulatory proteins (p53 and p21/Cip1) and an invasion suppressor protein (E-cadherin) were significantly upregulated, while cyclin D1 was significantly downregulated, in AP-02-treated tumor tissues compared to the control group (> 1 mg/kg, *p < 0.05). CONCLUSIONS: Our results provide in vitro and in vivo molecular evidence of AP-02-induced anti-proliferative effects on colon cancer, indicating that this compound might have potential clinical applications.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Dioxóis/administração & dosagem , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Petroselinum/química , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias do Colo/fisiopatologia , Ciclina D1/genética , Ciclina D1/metabolismo , Dioxóis/efeitos adversos , Dioxóis/química , Feminino , Humanos , Camundongos , Camundongos Nus , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nat Commun ; 10(1): 3131, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311925

RESUMO

Alterations in membrane proteins (MPs) and their regulated pathways have been established as cancer hallmarks and extensively targeted in clinical applications. However, the analysis of MP-interacting proteins and downstream pathways across human malignancies remains challenging. Here, we present a systematically integrated method to generate a resource of cancer membrane protein-regulated networks (CaMPNets), containing 63,746 high-confidence protein-protein interactions (PPIs) for 1962 MPs, using expression profiles from 5922 tumors with overall survival outcomes across 15 human cancers. Comprehensive analysis of CaMPNets links MP partner communities and regulated pathways to provide MP-based gene sets for identifying prognostic biomarkers and druggable targets. For example, we identify CHRNA9 with 12 PPIs (e.g., ERBB2) can be a therapeutic target and find its anti-metastasis agent, bupropion, for treatment in nicotine-induced breast cancer. This resource is a study to systematically integrate MP interactions, genomics, and clinical outcomes for helping illuminate cancer-wide atlas and prognostic landscapes in tumor homo/heterogeneity.


Assuntos
Biomarcadores Tumorais/genética , Redes Reguladoras de Genes , Neoplasias/genética , Receptores Nicotínicos/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Bupropiona/farmacologia , Bupropiona/uso terapêutico , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/uso terapêutico , Prognóstico , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Receptores Nicotínicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancers (Basel) ; 11(4)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013812

RESUMO

It is well-known that human epidermal growth factor receptor 2 (HER2) is critical for breast cancer (BC) development and progression. Several studies have revealed the role of the ubiquitin/proteasome system (UPS) in cancer. In this study, we investigated the expression level of Proteasome 26S subunit, non-ATPase 3 (PSMD3) in BC using BC cell lines, human BC tissue samples, Oncomine, and TCGA databases and studied the PSMD3-HER2 protein interaction. PSMD3 was upregulated in BC, particularly in the HER2+ subtype. PSMD3 immunostaining was detected in the cytoplasm and nucleus of BC tumor tissues. Strong interaction between PSMD3 and HER2 at the protein level was observed. Knockdown of PSMD3 significantly impaired the stability of HER2, inhibited BC cell proliferation and colony formation, and induced cell apoptosis. Ubiquitination process was strongly enhanced after knockdown of PSMD3 in association with decreased HER2 level. Accumulation and Localization of LAMP-1 in the cell membrane with decreased HER2 immunostaining was observed after knockdown of PSMD3. High expression level of PSMD3 was associated with HER2 expression (p < 0.001), tumor size (p < 0.001), and clinical stage (p = 0.036). High expression level of PSMD3 predicted a short overall survival (OS), particularly for HER2+. Overall, we provide a novel function for PSMD3 in stabilizing HER2 from degradation in HER2+ BC, which suggests that PSMD3 is a novel target for HER2+ BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA