Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Commun ; 15(1): 3682, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693121

RESUMO

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Assuntos
Dieta Hiperlipídica , Galectina 3 , Secreção de Insulina , Células Secretoras de Insulina , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Galectina 3/metabolismo , Galectina 3/genética , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Arterioscler Thromb Vasc Biol ; 44(1): 108-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942609

RESUMO

BACKGROUND: Weibel-Palade bodies (WPBs) are endothelial cell-specific cigar-shaped secretory organelles containing various biologically active molecules. WPBs play crucial roles in thrombosis, hemostasis, angiogenesis, and inflammation. The main content of WPBs is the procoagulant protein vWF (von Willebrand factor). Physical contacts and functional cross talk between mitochondria and other organelles have been demonstrated. Whether an interorganellar connection exists between mitochondria and WPBs is unknown. METHODS: We observed physical contacts between mitochondria and WPBs in human umbilical vein endothelial cells by electron microscopy and living cell confocal microscopy. We developed an artificial intelligence-assisted method to quantify the duration and length of organelle contact sites in live cells. RESULTS: We found there existed physical contacts between mitochondria and WPBs. Disruption of mitochondrial function affected the morphology of WPBs. Furthermore, we found that Rab3b, a small GTPase on the WPBs, was enriched at the mitochondrion-WPB contact sites. Rab3b deficiency reduced interaction between the two organelles and impaired the maturation of WPBs and vWF multimer secretion. CONCLUSIONS: Our results reveal that Rab3b plays a crucial role in mediating the mitochondrion-WPB contacts, and that mitochondrion-WPB coupling is critical for the maturation of WPBs in vascular endothelial cells.


Assuntos
Corpos de Weibel-Palade , Fator de von Willebrand , Humanos , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo , Inteligência Artificial , Exocitose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mitocôndrias/metabolismo , Células Cultivadas
3.
World J Surg Oncol ; 21(1): 368, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007448

RESUMO

BACKGROUND: Oligoprogression is an emerging issue in patients with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). However, the surgical treatment for central nervous system (CNS) oligoprogression is not widely discussed. We investigated the outcomes of craniotomy with adjuvant whole-brain radiotherapy (WBRT) and subsequent therapies for CNS oligoprogression in patients with EGFR-mutated NSCLC. METHODS: NSCLC patients with CNS oligoprogression were identified from a tertiary medical center. The outcomes of surgery with adjuvant WBRT or WBRT alone were analyzed, along with other variables. Overall survival and progression-free survival were analyzed using the log-rank test as the primary and secondary endpoints. A COX regression model was used to identify the possible prognostic factors. RESULTS: Thirty-seven patients with CNS oligoprogression who underwent surgery or WBRT were included in the study after reviewing 728 patients. Twenty-one patients underwent surgery with adjuvant WBRT, and 16 received WBRT alone. The median overall survival for surgery and WBRT alone groups was 43 (95% CI 17-69) and 22 (95% CI 15-29) months, respectively. Female sex was a positive prognostic factor for overall survival (OR 0.19, 95% CI 0.06-0.57). Patients who continued previous tyrosine kinase inhibitors (OR 3.48, 95% CI 1.06-11.4) and induced oligoprogression (OR 3.35, 95% CI 1.18-9.52) were associated with worse overall survival. Smoking history (OR 4.27, 95% CI 1.54-11.8) and induced oligoprogression (OR 5.53, 95% CI 2.1-14.7) were associated with worse progression-free survival. CONCLUSIONS: Surgery combined with adjuvant WBRT is a feasible treatment modality for CNS oligoprogression in patients with EGFR-mutated NSCLC. Changing the systemic-targeted therapy after local treatments may be associated with improved overall survival.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Estudos Retrospectivos , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Sistema Nervoso Central , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
4.
FASEB J ; 37(10): e23206, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37718485

RESUMO

There is a higher expression level of epidermal growth factor receptor (EGFR) in up to 90% of advanced head and neck squamous cell carcinoma (HNSCC) tissue than in normal surrounding tissues. However, the role of RNA-binding proteins (RBPs) in EGFR-associated metastasis of HNSCC remains unclear. In this study, we reveal that RBPs, specifically nucleolin (NCL) and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1), correlated with the mesenchymal phenotype of HNSCC. The depletion of RBPs significantly attenuated EGF-induced HNSCC metastasis. Intriguingly, the EGF-induced EMT markers, such as fibronectin, were regulated by RBPs through the ERK and NF-κB pathway, followed by the enhancement of mRNA stability of fibronectin through the 5' untranslated region (5'-UTR) of the gene. The upregulation of fibronectin triggered the integrin signaling activation to enhance tumor cells' attachment to endothelial cells and increase endothelial permeability. In addition, the concurrence of EGFR and RBPs or EGFR and fibronectin was associated with overall survival and disease-free survival of HNSCC. The in vivo study showed that depletion of NCL, hnRNPA2B1, and fibronectin significantly inhibited EGF-promoted extravasation of tumor cells into lung tissues. The depletion of fibronectin or treatment with integrin inhibitors dramatically attenuated EGF-induced HNSCC metastatic nodules in the lung. Our data suggest that the RBPs/fibronectin axis is essential for EGF-induced tumor-endothelial cell interactions to enhance HNSCC cell metastasis.


Assuntos
Fibronectinas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fibronectinas/genética , Células Endoteliais , Fator de Crescimento Epidérmico , Receptores ErbB/genética , Regiões 5' não Traduzidas , Integrinas , Neoplasias de Cabeça e Pescoço/genética
5.
Metabolism ; 146: 155641, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37380017

RESUMO

BACKGROUND AND AIMS: Hyperinsulinemia, hyperglucagonemia, and low-grade inflammation are frequently presented in obesity and type 2 diabetes (T2D). The pathogenic regulation between hyperinsulinemia/insulin resistance (IR) and low-grade inflammation is well documented in the development of diabetes. However, the cross-talk of hyperglucagonemia with low-grade inflammation during diabetes progression is poorly understood. In this study, we investigated the regulatory role of proinflammatory cytokine interleukin-6 (IL-6) on glucagon secretion. METHODS: The correlations between inflammatory cytokines and glucagon or insulin were analyzed in rhesus monkeys and humans. IL-6 signaling was blocked by IL-6 receptor-neutralizing antibody tocilizumab in obese or T2D rhesus monkeys, glucose tolerance was evaluated by intravenous glucose tolerance test (IVGTT). Glucagon and insulin secretion were measured in isolated islets from wild-type mouse, primary pancreatic α-cells and non-α-cells sorted from GluCre-ROSA26EYFP (GYY) mice, in which the enhanced yellow fluorescent protein (EYFP) was expressed under the proglucagon promoter, by fluorescence-activated cell sorting (FACS). Particularly, glucagon secretion in α-TC1 cells treated with IL-6 was measured, and RNA sequencing was used to screen the mediator underlying IL-6-induced glucagon secretion. SLC39A5 was knocking-down or overexpressed in α-TC1 cells to determine its impact in glucagon secretion and cytosolic zinc density. Dual luciferase and chromatin Immunoprecipitation were applied to analyze the signal transducer and activator of transcription 3 (STAT3) in the regulation of SLC39A5 transcription. RESULTS: Plasma IL-6 correlate positively with plasma glucagon levels, but not insulin, in rhesus monkeys and humans. Tocilizumab treatment reduced plasma glucagon, blood glucose and HbA1c in spontaneously obese or T2D rhesus monkeys. Tocilizumab treatment also decreased glucagon levels during IVGTT, and improved glucose tolerance. Moreover, IL-6 significantly increased glucagon secretion in isolated islets, primary pancreatic α-cells and α-TC1 cells. Mechanistically, we found that IL-6-activated STAT3 downregulated the zinc transporter SLC39A5, which in turn reduced cytosolic zinc concentration and ATP-sensitive potassium channel activity and augmented glucagon secretion. CONCLUSIONS: This study demonstrates that IL-6 increases glucagon secretion via the downregulation of zinc transporter SLC39A5. This result revealed the molecular mechanism underlying the pathogenesis of hyperglucagonemia and a previously unidentified function of IL-6 in the pathophysiology of T2D, providing a potential new therapeutic strategy of targeting IL-6/glucagon to preventing or treating T2D.


Assuntos
Proteínas de Transporte de Cátions , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Resistência à Insulina , Humanos , Camundongos , Animais , Glucagon/metabolismo , Interleucina-6/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Macaca mulatta/metabolismo , Insulina/metabolismo , Glicemia/metabolismo , Células Secretoras de Glucagon/metabolismo , Obesidade/metabolismo , Inflamação/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Cátions/metabolismo
6.
Int J Surg ; 109(9): 2704-2713, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204443

RESUMO

BACKGROUND: Postoperative nerve palsy is a major complication following resection of neck peripheral nerve sheath tumours (PNSTs). Accurate preoperative identification of the nerve origin (NO) can improve surgical outcomes and patient counselling. MATERIAL AND METHODS: This study was a retrospective cohort and quantitative analysis of the literature. The authors introduced a parameter, the carotid-jugular angle (CJA), to differentiate the NO. A literature review of neck PNST cases from 2010 to 2022 was conducted. The CJA was measured from eligible imaging data, and quantitative analysis was performed to evaluate the ability of the CJA to predict the NO. External validation was performed using a single-centre cohort from 2008 to 2021. RESULTS: In total, 17 patients from our single-centre cohort and 88 patients from the literature were analyzed. Among them, 53, 45, and 7 patients had sympathetic, vagus, and cervical nerve PNSTs, respectively. Vagus nerve tumours had the largest CJA, followed by sympathetic tumours, whereas cervical nerve tumours had the smallest CJA ( P <0.001). Multivariate logistic regression identified a larger CJA as a predictor of vagus NO ( P <0.001), and receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.907 (0.831-0.951) for the CJA to predict vagus NO ( P <0.001). External validation showed an AUC of 0.928 (0.727-0.988) ( P <0.001). Compared with the AUC of the previously proposed qualitative method (AUC=0.764, 0.673-0.839), that of the CJA was greater ( P =0.011). The cut-off value identified to predict vagus NO was greater than or equal to 100°. Receiver operating characteristic analysis showed an AUC of 0.909 (0.837-0.956) for the CJA to predict cervical NO ( P <0.001), with a cut-off value less than 38.5°. CONCLUSIONS: A CJA greater than or equal to 100° predicted a vagus NO and a CJA less than 100° predicted a non-vagus NO. Moreover, a CJA less than 38.5 was associated with an increased likelihood of cervical NO.

7.
Adv Sci (Weinh) ; 10(23): e2301337, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211690

RESUMO

Mesenchymal migration usually happens on adhesive substrates, while cells adopt amoeboid migration on low/nonadhesive surfaces. Protein-repelling reagents, e.g., poly(ethylene) glycol (PEG), are routinely employed to resist cell adhering and migrating. Contrary to these perceptions, this work discovers a unique locomotion of macrophages on adhesive-nonadhesive alternate substrates in vitro that they can overcome nonadhesive PEG gaps to reach adhesive regions in the mesenchymal mode. Adhering to extracellular matrix regions is a prerequisite for macrophages to perform further locomotion on the PEG regions. Podosomes are found highly enriched on the PEG region in macrophages and support their migration across the nonadhesive regions. Increasing podosome density through myosin IIA inhibition facilitates cell motility on adhesive-nonadhesive alternate substrates. Moreover, a developed cellular Potts model reproduces this mesenchymal migration. These findings together uncover a new migratory behavior on adhesive-nonadhesive alternate substrates in macrophages.


Assuntos
Macrófagos , Macrófagos/fisiologia , Movimento Celular/fisiologia
8.
Global Spine J ; 13(2): 563-574, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36040160

RESUMO

STUDY DESIGN: Systematic review. OBJECTIVES: Surgical procedures for lumbar degenerative diseases (LDD), which have emerged in the 21-century, are commonly practiced worldwide. Regarding financial burdens and health costs, readmissions within 30days following surgery are inconvenient. We performed a systematic review to integrate real-world evidence and report the current risk factors associated with 30-day readmission following surgery for LDD. METHODS: The Cochrane Library, Embase, and Medline electronic databases were searched from inception to April 2022 to identify relevant studies reporting risk factors for 30-day readmission following surgery for LDD. RESULTS: Thirty-six studies were included in the review. Potential risk factors were identified in the included studies that reported multivariate analysis results, including age, race, obesity, higher American Society of Anesthesiologists score, anemia, bleeding disorder, chronic pulmonary disease, heart failure, dependent status, depression, diabetes, frailty, malnutrition, chronic steroid use, surgeries with anterior approach, multilevel spinal surgeries, perioperative transfusion, presence of postoperative complications, prolonged operative time, and prolonged length of stay. CONCLUSIONS: There are several potential perioperative risk factors associated with unplanned readmission following surgery for LDD. Preoperatively identifying patients that are at increased risk of readmission is critical for achieving the best possible outcomes.

9.
Dis Markers ; 2020: 8895968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282010

RESUMO

OBJECTIVE: Long noncoding RNAs (lncRNAs) have been strongly associated with various types of cancer. The present study aimed at exploring the diagnostic and prognostic value of lncRNA Zinc finger protein 667-antisense RNA 1 (ZNF667-AS1) in glioma patients. Patients and Methods. The expressions of ZNF667-AS1 were detected in 155 glioma tissues and matched normal brain tissue samples by qRT-PCR. The receiver operating characteristic (ROC) curve was performed to estimate the diagnostic value of ZNF667-AS1. The association between the ZNF667-AS1 expression and clinicopathological characteristics was analyzed by the chi-square test. The Kaplan-Meier method was performed to determine the influence of the ZNF667-AS1 expression on the overall survival and disease-free survival of glioma patients. The Cox regression analysis was used to evaluate the effect of independent prognostic factors on survival outcome. Cell proliferation was measured by the respective cell counting Kit-8 (CCK-8) assays. RESULTS: We observed that ZNF667-AS1 was significantly upregulated in glioma tissues compared to normal tissue samples (p < 0.01). Higher levels of ZNF667-AS1 were positively associated with the WHO grade (p = 0.018) and KPS score (p = 0.008). ROC assays revealed that the high ZNF667-AS1 expression had an AUC value of 0.8541 (95% CI: 0.8148 to 0.8934) for glioma. Survival data revealed that glioma patients in the high ZNF667-AS1 expression group had significantly shorter 5-year overall survival (p = 0.0026) and disease-free survival (p = 0.0005) time than those in the low ZNF667-AS1 expression group. Moreover, multivariate analyses confirmed that the ZNF667-AS1 expression was an independent predictor of the overall survival and disease-free survival for glioma patients. Functionally, we found that knockdown of ZNF667-AS1 suppressed the proliferation of glioma cells. CONCLUSIONS: Our results suggest that ZNF667-AS1 could be used as a potential diagnostic and prognostic biomarker in glioma.


Assuntos
Biomarcadores Tumorais/genética , Glioma/genética , Glioma/patologia , RNA Longo não Codificante/genética , Adulto , Idoso , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/diagnóstico , Glioma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico
10.
J Biol Chem ; 295(6): 1474-1488, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914406

RESUMO

Lysophosphatidic acid receptor 6 (LPAR6) is a G protein-coupled receptor that plays critical roles in cellular morphology and hair growth. Although LPAR6 overexpression is also critical for cancer cell proliferation, its role in liver cancer tumorigenesis and the underlying mechanism are poorly understood. Here, using liver cancer and matched paracancerous tissues, as well as functional assays including cell proliferation, quantitative real-time PCR, RNA-Seq, and ChIP assays, we report that LPAR6 expression is controlled by a mechanism whereby hepatocyte growth factor (HGF) suppresses liver cancer growth. We show that high LPAR6 expression promotes cell proliferation in liver cancer. More importantly, we find that LPAR6 is transcriptionally down-regulated by HGF treatment and that its transcriptional suppression depends on nuclear receptor coactivator 3 (NCOA3). We note that enrichment of NCOA3, which has histone acetyltransferase activity, is associated with histone 3 Lys-27 acetylation (H3K27ac) at the LPAR6 locus in response to HGF treatment, indicating that NCOA3 transcriptionally regulates LPAR6 through the HGF signaling cascade. Moreover, depletion of either LPAR6 or NCOA3 significantly inhibited tumor cell growth in vitro and in vivo (in mouse tumor xenograft assays), similar to the effect of the HGF treatment. Collectively, our findings indicate an epigenetic link between LPAR6 and HGF signaling in liver cancer cells, and suggest that LPAR6 can serve as a biomarker and new strategy for therapeutic interventions for managing liver cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Coativador 3 de Receptor Nuclear/genética , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Regulação para Cima/efeitos dos fármacos
11.
Chem Sci ; 11(32): 8506-8516, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34094186

RESUMO

Modern fluorescence-imaging methods promise to unveil organelle dynamics in live cells. Phototoxicity, however, has become a prevailing issue when boosted illumination applies. Mitochondria are representative organelles whose research heavily relies on optical imaging, yet these membranous hubs of bioenergy are exceptionally vulnerable to photodamage. We report that cyclooctatetraene-conjugated cyanine dyes (PK Mito dyes), are ideal mitochondrial probes with remarkably low photodynamic damage for general use in fluorescence cytometry. In contrast, the nitrobenzene conjugate of Cy3 exhibits enhanced photostability but unaffected phototoxicity compared to parental Cy3. PK Mito Red, in conjunction with Hessian-structural illumination microscopy, enables 2000-frame time-lapse imaging with clearly resolvable crista structures, revealing rich mitochondrial dynamics. In a rigorous stem cell sorting and transplantation assay, PK Mito Red maximally retains the stemness of planarian neoblasts, exhibiting excellent multifaceted biocompatibility. Resonating with the ongoing theme of reducing photodamage using optical approaches, this work advocates the evaluation and minimization of phototoxicity when developing imaging probes.

12.
Anal Chem ; 91(24): 15777-15783, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31718148

RESUMO

The power factories in cells, mitochondria, play important roles in all physiological processes. It is reported that progressive mitochondrial swelling and outer mitochondrial membrane rupture could be induced by a wide variety of apoptotic and necrotic stimuli. Regrettably, although a variety of mitochondrial probes have been developed, most of them are based on the detection of active species in mitochondria. Probes that can monitor the status and distribution of mitochondria for a long time are still urgently needed. In this study, a fluorescent sensor with excellent properties, EtNBEn, is described. Outstanding performance allows it to be observed not only in cells but also in living Daphnia and zebrafish under confocal microscopy for a long time. Moreover, the swelling process of mitochondria under light stimulation is also visualized under super-resolution (SR) microscopy. All these results suggest that EtNBEn could be employed for tagging mitochondria in various physiological processes, which makes a great contribution to the cure of diseases.


Assuntos
Corantes Fluorescentes/química , Microscopia Confocal/métodos , Mitocôndrias/química , Animais , Daphnia/química , Daphnia/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Imagem Óptica , Fotólise , Peixe-Zebra/metabolismo
13.
Sci Rep ; 9(1): 3975, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850711

RESUMO

In many non-excitable cells, the depletion of endoplasmic reticulum (ER) Ca2+ stores leads to the dynamic formation of membrane contact sites (MCSs) between the ER and the plasma membrane (PM), which activates the store-operated Ca2+ entry (SOCE) to refill the ER store. Two different Ca2+-sensitive proteins, STIM1 and extended synaptotagmin-1 (E-syt1), are activated during this process. Due to the lack of live cell super-resolution imaging, how MCSs are dynamically regulated by STIM1 and E-syt1 coordinately during ER Ca2+ store depletion and replenishment remain unknown. With home-built super-resolution microscopes that provide superior axial and lateral resolution in live cells, we revealed that extracellular Ca2+ influx via SOCE activated E-syt1s to move towards the PM by ~12 nm. Unexpectedly, activated E-syt1s did not constitute the MCSs per se, but re-arranged neighboring ER structures into ring-shaped MCSs (230~280 nm in diameter) enclosing E-syt1 puncta, which helped to stabilize MCSs and accelerate local ER Ca2+ replenishment. Overall, we have demonstrated different roles of STIM1 and E-syt1 in MCS formation regulation, SOCE activation and ER Ca2+ store replenishment.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Sinaptotagminas/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo
14.
Anal Chem ; 91(5): 3336-3341, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30724069

RESUMO

Many mitochondria-related diseases are associated with the mutation of mitochondrial DNA (mtDNA). Therefore, visualizing its dynamics in live cells is essential for the understanding of the function of mtDNA transcription and translation. By employing carbazole as the framework and designing a module for DNA minor-groove binding, here we have developed a novel fluorescent probe with a large Stokes shift (λab = 480 nm and λem = 620 nm), CNQ, for mtDNA detection and visualization. It is almost nonfluorescent in PBS buffer and exhibits 182-fold enhancement in fluorescence within 20 s after the application of mtDNA in the solution, with a detection limit of 55.1 µg/L. Using dual-color Hessian-structured illumination microscopy, we have demonstrated that CNQ-labeled mtDNA structures are distinct from those labeled by TFAM-EGFP. Finally, we have used two-photon confocal scanning microscopy (λex = 850 nm) to monitor the nondestructive doxorubicin-induced mtDNA damage in live cells.


Assuntos
Carbazóis/química , DNA Mitocondrial/metabolismo , Corantes Fluorescentes/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , DNA Mitocondrial/química , Humanos , Células MCF-7 , Mitocôndrias/metabolismo
15.
Blood ; 131(6): 686-698, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29208598

RESUMO

Nonmuscle myosin II has been implicated in regulation of von Willebrand factor (VWF) release from endothelial Weibel-Palade bodies (WPBs), but the specific role of myosin IIa isoform is poorly defined. Here, we report that myosin IIa is expressed both in primary human endothelial cells and intact mouse vessels, essential for cyclic adenosine monophosphate (cAMP)-mediated endothelial VWF secretion. Downregulation of myosin IIa by shRNAs significantly suppressed both forskolin- and epinephrine-induced VWF secretion. Endothelium-specific myosin IIa knockout mice exhibited impaired epinephrine-stimulated VWF release, prolonged bleeding time, and thrombosis. Further study showed that in resting cells, myosin IIa deficiency disrupted the peripheral localization of Rab27-positive WPBs along stress fibers; on stimulation by cAMP agonists, myosin IIa in synergy with zyxin promotes the formation of a functional actin framework, which is derived from preexisting cortical actin filaments, around WPBs, facilitating fusion and subsequent exocytosis. In summary, our findings not only identify new functions of myosin IIa in regulation of WPB positioning and the interaction between preexisting cortical actin filaments and exocytosing vesicles before fusion but also reveal myosin IIa as a physiological regulator of endothelial VWF secretion in stress-induced hemostasis and thrombosis.


Assuntos
AMP Cíclico/farmacologia , Células Endoteliais/efeitos dos fármacos , Miosina não Muscular Tipo IIA/fisiologia , Fator de von Willebrand/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina não Muscular Tipo IIA/genética , Via Secretória/efeitos dos fármacos , Via Secretória/genética
16.
Nat Commun ; 8: 14639, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256511

RESUMO

Endothelial exocytosis of Weibel-Palade body (WPB) is one of the first lines of defence against vascular injury. However, the mechanisms that control WPB exocytosis in the final stages (including the docking, priming and fusion of granules) are poorly understood. Here we show that the focal adhesion protein zyxin is crucial in this process. Zyxin downregulation inhibits the secretion of von Willebrand factor (VWF), the most abundant cargo in WPBs, from human primary endothelial cells (ECs) induced by cAMP agonists. Zyxin-deficient mice exhibit impaired epinephrine-stimulated VWF release, prolonged bleeding time and thrombosis, largely due to defective endothelial secretion of VWF. Using live-cell super-resolution microscopy, we visualize previously unappreciated reorganization of pre-existing actin filaments around WPBs before fusion, dependent on zyxin and an interaction with the actin crosslinker α-actinin. Our findings identify zyxin as a physiological regulator of endothelial exocytosis through reorganizing local actin network in the final stage of exocytosis.


Assuntos
Citoesqueleto de Actina/metabolismo , Células Endoteliais/metabolismo , Exocitose/fisiologia , Zixina/fisiologia , Fator de von Willebrand/metabolismo , Actinina/metabolismo , Animais , Tempo de Sangramento , Colforsina/farmacologia , AMP Cíclico/agonistas , Células Endoteliais/efeitos dos fármacos , Epinefrina/farmacologia , Exocitose/efeitos dos fármacos , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia Intravital , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Trombose/patologia , Corpos de Weibel-Palade/metabolismo
17.
Adv Mater ; 29(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28066985

RESUMO

A microwell-patterned membranous scaffold that integrates nano- and microscale topographical characteristics based on polyurethane is fabricated for transplanting syngeneic islets and allogeneic mesenchymal stem cells into diabetic rodents. The scaffold effectively allows for assembling of single cells/microtissues, enables the transplantation of cells with spatial control, and improves the transplant's engraftment efficacy in vivo for treating diabetes.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células Cultivadas , Células-Tronco Mesenquimais , Alicerces Teciduais
18.
Biomaterials ; 102: 249-58, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27344368

RESUMO

Implantable immunoisolation membranes need to possess superior biocompatibility to prohibit the fibrotic deposition that would reduce the nutrient supply and impair the viability/function of the encapsulated cells. Here, electrospun membranes based on thermoplastic polyurethane (TPU) were fabricated to contain microfibers (PU-micro) or nanofibers (PU-nano). The two types of membranes were compared in terms of their interaction with macrophage cells and the host tissues. It was found that the fibrous membranes of different topographies possess distinct material properties: PU-nano caused minimal macrophage responses in vitro and in vivo and induced only mild foreign body reactions compared to PU-micro membranes. A flat macroencapsulation device was fabricated using PU-nano membranes and its immunoisolation function investigated in subcutaneous transplantation models. The nanofibrous device demonstrated the capability to effectively shield the allografts from the immune attack of the host. Nanotopography may confer biocompatibility to materials and nanofibrous materials warrant further study for development of "invisible" immunoisolation devices for cell transplantation.


Assuntos
Materiais Biocompatíveis/química , Reação a Corpo Estranho/prevenção & controle , Transplante das Ilhotas Pancreáticas/métodos , Membranas Artificiais , Transplante de Células-Tronco Mesenquimais/métodos , Nanofibras/química , Poliuretanos/química , Animais , Materiais Biocompatíveis/uso terapêutico , Células Cultivadas , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/imunologia , Ilhotas Pancreáticas/imunologia , Transplante das Ilhotas Pancreáticas/efeitos adversos , Macrófagos/imunologia , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanofibras/uso terapêutico , Nanofibras/ultraestrutura , Poliuretanos/uso terapêutico , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
19.
Dev Cell ; 35(1): 120-30, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26439397

RESUMO

Many receptor-mediated endocytic processes are mediated by constitutive budding of clathrin-coated pits (CCPs) at spatially randomized sites before slowly pinching off from the plasma membrane (60-100 s). In contrast, clathrin-mediated endocytosis (CME) coupled with regulated exocytosis in excitable cells occurs at peri-exocytic sites shortly after vesicle fusion (∼10 s). The molecular mechanism underlying this spatiotemporal coupling remains elusive. We show that coupled endocytosis makes use of pre-formed CCPs, which hop to nascent fusion sites nearby following vesicle exocytosis. A dynamic cortical microtubular network, anchored at the cell surface by the cytoplasmic linker-associated protein on microtubules and the LL5ß/ELKS complex on the plasma membrane, provides the track for CCP hopping. Local diacylglycerol gradients generated upon exocytosis guide the direction of hopping. Overall, the CCP-cytoskeleton-lipid interaction demonstrated here mediates exocytosis-coupled fast recycling of both plasma membrane and vesicular proteins, and it is required for the sustained exocytosis during repetitive stimulations.


Assuntos
Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/fisiologia , Diglicerídeos/metabolismo , Exocitose/fisiologia , Insulinoma/metabolismo , Microtúbulos/fisiologia , Neoplasias Pancreáticas/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Eletrofisiologia , Processamento de Imagem Assistida por Computador , Insulinoma/patologia , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/patologia , Ratos , Células Tumorais Cultivadas
20.
Nat Cell Biol ; 17(10): 1339-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26322679

RESUMO

Specialized junctional sites that connect the plasma membrane (PM) and endoplasmic reticulum (ER) play critical roles in controlling lipid metabolism and Ca(2+) signalling. Store-operated Ca(2+) entry mediated by dynamic STIM1-ORAI1 coupling represents a classical molecular event occurring at ER-PM junctions, but the protein composition and how previously unrecognized protein regulators facilitate this process remain ill-defined. Using a combination of spatially restricted biotin labelling in situ coupled with mass spectrometry and a secondary screen based on bimolecular fluorescence complementation, we mapped the proteome of intact ER-PM junctions in living cells without disrupting their architectural integrity. Our approaches led to the discovery of an ER-resident multi-transmembrane protein that we call STIMATE (STIM-activating enhancer, encoded by TMEM110) as a positive regulator of Ca(2+) influx in vertebrates. STIMATE physically interacts with STIM1 to promote STIM1 conformational switch. Genetic depletion of STIMATE substantially reduces STIM1 puncta formation at ER-PM junctions and suppresses the Ca(2+)-NFAT signalling. Our findings enable further genetic studies to elucidate the function of STIMATE in normal physiology and disease, and set the stage to uncover more uncharted functions of hitherto underexplored ER-PM junctions.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Transporte Biológico , Células COS , Chlorocebus aethiops , Perfilação da Expressão Gênica , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Microscopia Confocal , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Molécula 1 de Interação Estromal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA