Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(15): 10495-10508, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38556991

RESUMO

Sonodynamic therapy (SDT) has promising application prospects in tumor therapy. However, SDT does not eradicate metastatic tumors. Herein, Cu-substituted ZnAl ternary layered double hydroxide nanosheets (ZCA NSs) were developed as both sonosensitizers and copper nanocarriers for synergistic SDT/cuproptosis cancer therapy. An optimized electronic structure more conducive to the sonodynamic process was obtained from ZCA NSs via the Jahn-Teller effect induced by the introduction of Cu2+, and the synthesized ZCA NSs regulated the intricate tumor microenvironment (TME) by depleting endogenous glutathione (GSH) to amplify oxidative stress for further enhanced SDT performance. Furthermore, cuproptosis was evoked by intracellular overload of Cu2+ and amplified by SDT, leading to irreversible proteotoxicity. In vitro results showed that such synergetic SDT/cuproptosis triggered immunogenic cell death (ICD) and promoted the maturation of dendritic cells (DCs). Furthermore, the as-synthesized ZCA NS-mediated SDT/cuproptosis thoroughly eradicated the in vivo solid tumors and simultaneously elicited antitumor immunity to suppress lung and liver metastasis. Overall, this work established a nanoplatform for synergistic SDT/cuproptosis with a satisfactory antitumor immunity.


Assuntos
Neoplasias Hepáticas , Neoplasias , Terapia por Ultrassom , Humanos , Cobre , Eletrônica , Glutationa , Hidróxidos , Neoplasias Hepáticas/tratamento farmacológico , Imunidade , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
ACS Nano ; 18(4): 3349-3361, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230639

RESUMO

Cancer vaccines with the ability to elicit tumor-specific immune responses have attracted significant interest in cancer immunotherapy. A key challenge for effective cancer vaccines is the spatiotemporal codelivery of antigens and adjuvants. Herein, we synthesized a copolymer library containing nine poly(ethylene glycol) methyl ether methacrylate-co-butyl methacrylate-co-2-(azepan-1-yl)ethyl methacrylate (PEGMA-co-BMA-co-C7AMA) graft copolymers with designed proportions of different components to regulate their properties. Among these polymers, C-25, with a C7AMA:BMA ratio at 1.5:1 and PEG wt % of 25%, was screened as the most effective nanovaccine carrier with enhanced ability to induce mouse bone marrow-derived dendritic cell (BMDC) maturation. Additionally, RNA-sequencing (RNA-Seq) analysis revealed that C-25 could activate dendritic cells (DCs) through multisignaling pathways to trigger potent immune effects. Then, the screened C-25 was used to encapsulate the model peptide antigen, OVA257-280, to form nanovaccine C-25/OVA257-280. It was found that the C-25/OVA257-280 nanovaccine could effectively facilitate DC maturation and antigen cross-presentation without any other additional adjuvant and exhibited excellent prophylactic efficacy in the B16F10-OVA tumor model. Moreover, in combination with antiprogrammed cell death protein-ligand 1 (anti-PD-L1), the C-25/OVA257-280 nanovaccine could significantly delay the growth of pre-existing tumors. Therefore, this work developed a minimalist nanovaccine with a simple formulation and high efficiency in activating tumor-specific immune responses, showing great potential for further application in cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Animais , Camundongos , Nanovacinas , Neoplasias/patologia , Antígenos/química , Polímeros , Imunoterapia , Metacrilatos , Células Dendríticas , Camundongos Endogâmicos C57BL , Nanopartículas/química
3.
J Control Release ; 363: 43-56, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734673

RESUMO

The gut microbiota is closely associated with the progression of colorectal cancer (CRC) in which Fusobacterium nucleatum (F. nucleatum) was found to induce cancer resistance to chemotherapeutics. To relieve F. nucleatum-induced drug resistance, herein, we found that short-chain fatty acid butyrate can inhibit the growth, enrichment and adhesion of F. nucleatum in colorectal cancer tissues by downregulating the expression of adhesion-associated outer membrane proteins, including RadD, FomA, and FadA, to reduce the colonization and invasion of F. nucleatum and relieve the chemoresistance induced by F. nucleatum. Leveraging the killing effect of butyrate on F. nucleatum, sodium butyrate (NaBu) was encapsulated in liposomes or prepared as NaBu tablets with Eudragit S100 coating and administered by intravenous injection or oral administration, respectively. Interestingly, both intravenous administration of NaBu liposomes and oral delivery of NaBu tablets could effectively inhibit the proliferation of F. nucleatum and significantly improve the therapeutic efficacy of oxaliplatin in mice with subcutaneous colorectal tumors, orthotopic colorectal tumors and even spontaneously formed colorectal tumors. Thus, our work provides a simple but effective formulation of NaBu to relieve F. nucleatum-induced chemoresistance, exhibiting ideal clinical application prospects.


Assuntos
Neoplasias Colorretais , Infecções por Fusobacterium , Animais , Camundongos , Fusobacterium nucleatum/metabolismo , Butiratos , Resistencia a Medicamentos Antineoplásicos , Lipossomos/metabolismo , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/metabolismo , Infecções por Fusobacterium/microbiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
4.
Adv Mater ; 35(45): e2306281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722134

RESUMO

Clinical evidence indicates that tumor-colonizing bacteria can be closely related to the tumor development and therapeutic responses. Selectively eliminating bacteria within tumors may be an attractive approach to enhance cancer treatment without additional side effects. Herein, it is found that, owing to the high affinity between the membrane protein Fap-2 on Fusobacterium nucleatum and d-galactose-ß (1-3)-N-acetyl-d-galactosamine (Gal-GalNAc) overexpressed on colorectal tumor cells, F. nucleatum can colonize in colorectal tumors, as evidenced by both clinical samples and animal tumor models. Notably, F. nucleatum colonized in colorectal tumors can lead to an immunosuppressive tumor microenvironment, greatly reducing their responses to immune checkpoint blockade (ICB) therapy. Inspired by this finding, an F. nucleatum-mimetic nanomedicine is designed by fusing F. nucleatum cytoplasmic membrane (FM) with Colistin-loaded liposomes to achieve selective killing of tumor-colonizing F. nucleatum without affecting gut microbes. As a result, the therapeutic responses of F. nucleatum-colonized tumors to ICB therapies can be successfully restored, as demonstrated in an F. nucleatum-infected subcutaneous CT-26 tumor model, chemically induced spontaneous colorectal cancer models, and MC-38 tumor model. In summary, this work presents an F. nucleatum-mimicking nanomedicine that can selectively eliminate tumor-colonized bacteria, which is promising for enhancing the responses of cancer immunotherapy against F. nucleatum-colonized colorectal cancer.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Animais , Nanomedicina , Neoplasias Colorretais/tratamento farmacológico , Antibacterianos , Imunoterapia , Microambiente Tumoral
5.
Adv Mater ; 35(29): e2302220, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178454

RESUMO

Radiotherapy (RT) is an extensively used strategy for cancer treatment, but its therapeutic effect is usually limited by the abnormal tumor microenvironment (TME) and it lacks the ability to control tumor metastases. In this work, a nanoscale coordination polymer, Hf-nIm@PEG (HNP), is prepared by the coordination of hafnium ions (Hf4+ ) with 2-nitroimidazole (2-nIm), and then modified with lipid bilayers containing poly(ethylene glycol) (PEG). Under low-dose X-ray irradiation, on the one hand, Hf4+ with high computed tomography signal enhancement ability can deposit radiation energy to induce DNA damage, and on the other hand, NO can be persistently released from 2-nIm, which can not only directly react with the radical DNA to prevent the repair of damaged DNA but also relieves the hypoxic immunosuppressive TME to sensitize radiotherapy. Additionally, NO can also react with superoxide ions to generate reactive nitrogen species (RNS) to induce cell apoptosis. More interestingly, it is discovered that Hf4+ can effectively activate the cyclic-di-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote the immune responses induced by radiotherapy. Thus, this work presents a simple but multifunctional nanoscale coordination polymer to deposit radiation energy, trigger the release of NO, modulate the TME, activate the cGAS-STING pathway, and finally realize synergistic radio-immunotherapy.


Assuntos
Neoplasias , Óxido Nítrico , Humanos , Raios X , Háfnio , Nucleotidiltransferases , Imunoterapia , Microambiente Tumoral , Neoplasias/radioterapia
6.
ACS Nano ; 17(5): 4373-4386, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802527

RESUMO

Therapeutic proteins are playing increasingly important roles in treating numerous types of diseases. However, oral administration of proteins, especially large ones (e.g., antibodies), remains a great challenge due to their difficulties in penetrating intestinal barriers. Herein, fluorocarbon-modified chitosan (FCS) is developed for efficient oral delivery of different therapeutic proteins, in particular large ones such as immune checkpoint blockade antibodies. In our design, therapeutic proteins are mixed with FCS to form nanoparticles, lyophilized with appropriate excipients, and then filled into enteric capsules for oral administration. It has been found that FCS could promote transmucosal delivery of its cargo protein via inducing transitory rearrangement of tight junction associated proteins between intestinal epithelial cells and subsequently release free proteins into blood circulation. It is shown that at a 5-fold dose oral delivery of anti-programmed cell death protein-1 (αPD1) or its combination with anti-cytotoxic T-lymphocyte antigen 4 (αCTLA4) using this method could achieve comparable antitumor therapeutic responses to that achieved by intravenous injection of corresponding free antibodies in various types of tumor models and, more excitingly, result in significantly reduced immune-related adverse events. Our work successfully demonstrates the enhanced oral delivery of antibody drugs to achieve systemic therapeutic responses and may revolutionize the future clinical usage of protein therapeutics.


Assuntos
Excipientes , Nanopartículas , Anticorpos , Polímeros , Imunoterapia
7.
ACS Nano ; 17(5): 4748-4763, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36809912

RESUMO

Obesity usually induces systemic metabolic disturbances, including in the tumor microenvironment (TME). This is because adaptive metabolism related to obesity in the TME with a low level of prolyl hydroxylase-3 (PHD3) depletes the major fatty acid fuels of CD8+ T cells and leads to the poor infiltration and unsatisfactory function of CD8+ T cells. Herein, we discovered that obesity could aggravate the immunosuppressive TME and weaken CD8+ T cell-mediated tumor cell killing. We have thus developed gene therapy to relieve the obesity-related TME to promote cancer immunotherapy. An efficient gene carrier was prepared by modifying polyethylenimine with p-methylbenzenesulfonyl (abbreviated as PEI-Tos) together with hyaluronic acid (HA) shielding, achieving excellent gene transfection in tumors after intravenous administration. HA/PEI-Tos/pDNA (HPD) containing the plasmid encoding PHD3 (pPHD3) can effectively upregulate the expression of PHD3 in tumor tissues, revising the immunosuppressive TME and significantly increasing the infiltration of CD8+ T cells, thereby improving the responsiveness of immune checkpoint antibody-mediated immunotherapy. Efficient therapeutic efficacy was achieved using HPD together with αPD-1 in colorectal tumor and melanoma-bearing obese mice. This work provides an effective strategy to improve immunotherapy of tumors in obese mice, which may provide a useful reference for the immunotherapy of obesity-related cancer in the clinic.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Microambiente Tumoral , Camundongos Obesos , Imunoterapia , Neoplasias/terapia , Linhagem Celular Tumoral
8.
ACS Nano ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595442

RESUMO

Oral administration of protein drugs has always been challenging owing to various intestinal barriers. Herein, we developed an efficient oral protein delivery strategy by using in situ polymerization of zwitterions to encapsulate proteins, which were then loaded into enteric coated capsules for oral feeding. After oral administration of such capsules, the enteric coating would be degraded once the capsule enters the intestine, releasing polyzwitterion/protein nanocomplexes. With the help of polyzwitterion modification, such nanocomplexes were able to pass through the mucus and cellular barriers, likely by the proton-assisted amino acid transporter 1 (PAT1) pathway. Such a polyzwitterion-based protein encapsulation strategy could allow for effective oral delivery of different proteins, including bovine serum albumin (BSA), insulin, and antibodies. Using this strategy, the oral bioavailabilities of insulin and immunoglobin G (IgG) were measured to be as high as 16.9% and 12.5%, respectively. Notably, oral feeding of polyzwitterion/insulin capsules could effectively lower the blood glucose level of diabetic animals (mice, rats, and pigs). Moreover, polyzwitterion/antiprogramed death-1 (αPD-1) capsules were able to induce efficient antitumor immune responses, showing significant tumor inhibition effects toward B16F10- and 4T1-tumor bearing mouse models after oral administration. No significant toxic effect was observed for such oral protein formulations in the treated animals. Our work presents a strategy for the efficient oral delivery of protein drugs, including those with large molecular weights (e.g., antibodies) that can hardly be orally delivered using existing technologies.

9.
Sci Adv ; 9(4): eabq3104, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706184

RESUMO

Therapeutic antibodies are extensively used to treat fundus diseases by intravitreal injection, as eyedrop formulation has been rather challenging due to the presence of ocular barriers. Here, an innovative penetrating carrier was developed for antibody delivery in eyedrop formulations. We found that fluorocarbon-modified chitosan (FCS) would self-assemble with proteins to form nanocomplexes, which could effectively pass across the complicated ocular structure to reach the posterior eye segments in both mice and rabbits. In a choroidal melanoma-bearing mouse model, eyedrops containing FCS/anti-PDL1 could induce stronger antitumor immune responses than those triggered by intravenous injection of anti-PDL1. Moreover, in choroidal neovascularization-bearing mouse and rabbit models, FCS/anti-VEGFA eyedrops effectively inhibited vascular proliferation, achieving comparable therapeutic responses to those observed with intravitreal injection of anti-VEGFA. Our work presents an effective delivery carrier to treat fundus diseases using eyedrop of therapeutic proteins, which may enable at-home treatment of many eye diseases with great patient compliance.


Assuntos
Neovascularização de Coroide , Coelhos , Animais , Camundongos , Soluções Oftálmicas , Fundo de Olho , Modelos Animais de Doenças , Neovascularização de Coroide/tratamento farmacológico
10.
ACS Nano ; 16(7): 10979-10993, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35723442

RESUMO

Sonodynamic therapy (SDT) has garnered extensive attention as a noninvasive treatment for deep tumors. Furthermore, imiquimod (R837), an FDA-approved toll-like receptor 7 agonist, is commonly used in clinical settings as an immune adjuvant. We prepared an activatable sonodynamic sensitizer platform (MR) based on glutathione-sensitive disulfide bonds linking Leu-MB, the reduced form of methylene blue (MB), and R837 to achieve efficient combinatory SDT and immunotherapy for tumors without harming normal tissues. We also used the amphiphilic polymer C18PMH-PEG to create self-assembled MB-R837-PEG (MRP) nanoparticles for immunosonodynamic therapy (iSDT). iSDT is a cancer treatment that combines activatable SDT and immunotherapy. Our iSDT demonstrated an excellent sonodynamic effect only at the tumor site, demonstrating high specificity in killing tumor cells when compared to SDT reported in the literature. The iSDT improves its tumor-killing effect by inducing an immune response, which is accomplished by secreted immune adjuvants in the tumor site. MRP was selectively activated by glutathione in the tumor microenvironment to release MB and R837, exhibiting excellent antitumor sonodynamic and immune responses. In addition, when combined with an α-PD-L1 antibody for immune checkpoint blockade, this therapy effectively inhibited tumor metastasis. Furthermore, mice treated with iSDT and α-PD-L1 antibody did not develop tumors even after tumor reinoculation, indicating that long-term immune memory was achieved. The concept of sonodynamic sensitizer preparation as a next-generation iSDT based on a noninvasive synergistic therapeutic modality applicable in the near future is presented in this study.


Assuntos
Imiquimode , Nanopartículas , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Antígeno B7-H1 , Linhagem Celular Tumoral , Glutationa , Imiquimode/farmacologia , Imunoterapia , Nanopartículas/química
11.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34292870

RESUMO

The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2), presents an urgent health crisis. More recently, an increasing number of mutated strains of SARS-CoV-2 have been identified globally. Such mutations, especially those on the spike glycoprotein to render its higher binding affinity to human angiotensin-converting enzyme II (hACE2) receptors, not only resulted in higher transmission of SARS-CoV-2 but also raised serious concerns regarding the efficacies of vaccines against mutated viruses. Since ACE2 is the virus-binding protein on human cells regardless of viral mutations, we design hACE2-containing nanocatchers (NCs) as the competitor with host cells for virus binding to protect cells from SARS-CoV-2 infection. The hACE2-containing NCs, derived from the cellular membrane of genetically engineered cells stably expressing hACE2, exhibited excellent neutralization ability against pseudoviruses of both wild-type SARS-CoV-2 and the D614G variant. To prevent SARS-CoV-2 infections in the lung, the most vulnerable organ for COVID-19, we develop an inhalable formulation by mixing hACE2-containing NCs with mucoadhesive excipient hyaluronic acid, the latter of which could significantly prolong the retention of NCs in the lung after inhalation. Excitingly, inhalation of our formulation could lead to potent pseudovirus inhibition ability in hACE2-expressing mouse model, without imposing any appreciable side effects. Importantly, our inhalable hACE2-containing NCs in the lyophilized formulation would allow long-term storage, facilitating their future clinical use. Thus, this work may provide an alternative tactic to inhibit SARS-CoV-2 infections even with different mutations, exhibiting great potential for treatment of the ongoing COVID-19 epidemic.


Assuntos
COVID-19/prevenção & controle , Nanoestruturas/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , Adesivos/administração & dosagem , Adesivos/química , Adesivos/farmacocinética , Administração por Inalação , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Crioprotetores/química , Armazenamento de Medicamentos , Células Epiteliais/metabolismo , Excipientes/administração & dosagem , Excipientes/química , Excipientes/farmacocinética , Células HEK293 , Humanos , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Nanoestruturas/química , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Ligação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA