Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37887662

RESUMO

Studies of the health impacts of the 11 September 2001 terrorist attacks on New York City's (NYC's) World Trade Center (WTC) towers have been hindered by imprecise estimates of exposure. We sought to identify potential biomarkers of WTC exposure by measuring trace and major metal concentrations in lung tissues from WTC-exposed individuals and less exposed community controls. We also investigated associations of lung tissue metal concentrations with self-reported exposure and respiratory symptoms. The primary analyses contrasted post-mortem lung tissue concentrations obtained from autopsies in 2007-2011 of 76 WTC Health Registry (WTCHR) enrollees with those of 55 community controls. Community controls were frequency-matched to WTCHR decedents by age at death, calendar quarter of death, gender, race, ethnicity and education and resided at death in NYC zip codes less impacted by WTC dust and fumes. We found WTCHR decedents to have significantly higher iron (Fe) lung tissue concentrations than community controls. Secondary analyses among WTCHR decedents adjusted for sex and age showed the log(molybdenum (Mo)) concentration to be significantly associated with non-rescue/recovery exposure. Post hoc analyses suggested that individuals whose death certificates listed usual occupation or industry as the Sanitation or Police Departments had elevated lung tissue Fe concentrations. Among WTCHR decedents, exposure to the WTC dust cloud was significantly associated with elevated lung tissue concentrations of titanium (Ti), chromium (Cr) and cadmium (Cd) in non-parametric univariable analyses but not in multivariable analyses adjusted for age and smoking status. Logistic regression adjusted for age and smoking status among WTCHR decedents showed one or more respiratory symptoms to be positively associated with log (arsenic (As)), log(manganese (Mn)) and log(cobalt (Co)) concentrations, while new-onset wheezing and sinus problems were negatively associated with log(Fe) concentration. Fe concentrations among individuals with wheezing, nonetheless, exceeded those in community controls. In conclusion, these data suggest that further research may be warranted to explore the utility as biomarkers of WTC exposure of Fe in particular and, to a lesser extent, Mo, Ti, Cr and Cd in digestions of lung tissue.


Assuntos
Sons Respiratórios , Ataques Terroristas de 11 de Setembro , Humanos , Cádmio , Poeira , Sistema de Registros , Pulmão , Biomarcadores , Cadáver , Cidade de Nova Iorque/epidemiologia
2.
Mutat Res Rev Mutat Res ; 789: 108409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35690412

RESUMO

The allure of tobacco smoking is linked to the instant gratification provided by inhaled nicotine. Unfortunately, tobacco curing and burning generates many mutagens including more than 70 carcinogens. There are two types of mutagens and carcinogens in tobacco smoke (TS): direct DNA damaging carcinogens and procarcinogens, which require metabolic activation to become DNA damaging. Recent studies provide three new insights on TS-induced DNA damage. First, two major types of TS DNA damage are induced by direct carcinogen aldehydes, cyclic-1,N2-hydroxy-deoxyguanosine (γ-OH-PdG) and α-methyl-1, N2-γ-OH-PdG, rather than by the procarcinogens, polycyclic aromatic hydrocarbons and aromatic amines. Second, TS reduces DNA repair proteins and activity levels. TS aldehydes also prevent procarcinogen activation. Based on these findings, we propose that aldehydes are major sources of TS induce DNA damage and a driving force for carcinogenesis. E-cigarettes (E-cigs) are designed to deliver nicotine in an aerosol state, without burning tobacco. E-cigarette aerosols (ECAs) contain nicotine, propylene glycol and vegetable glycerin. ECAs induce O6-methyl-deoxyguanosines (O6-medG) and cyclic γ-hydroxy-1,N2--propano-dG (γ-OH-PdG) in mouse lung, heart and bladder tissues and causes a reduction of DNA repair proteins and activity in lungs. Nicotine and nicotine-derived nitrosamine ketone (NNK) induce the same types of DNA adducts and cause DNA repair inhibition in human cells. After long-term exposure, ECAs induce lung adenocarcinoma and bladder urothelial hyperplasia in mice. We propose that E-cig nicotine can be nitrosated in mouse and human cells becoming nitrosamines, thereby causing two carcinogenic effects, induction of DNA damage and inhibition of DNA repair, and that ECA is carcinogenic in mice. Thus, this article reviews the newest literature on DNA adducts and DNA repair inhibition induced by nicotine and ECAs in mice and cultured human cells, and provides insights into ECA carcinogenicity in mice.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Poluição por Fumaça de Tabaco , Aerossóis , Aldeídos , Animais , Carcinogênese/genética , Carcinógenos/toxicidade , Adutos de DNA/genética , Dano ao DNA , Reparo do DNA/genética , Humanos , Camundongos , Mutagênicos , Nicotina/análise , Fumaça , Nicotiana/efeitos adversos , Poluição por Fumaça de Tabaco/análise
3.
Annu Rev Pharmacol Toxicol ; 62: 301-322, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34555289

RESUMO

Since the spread of tobacco from the Americas hundreds of years ago, tobacco cigarettes and, more recently, alternative tobacco products have become global products of nicotine addiction. Within the evolving alternative tobacco product space, electronic cigarette (e-cigarette) vaping has surpassed conventional cigarette smoking among adolescents and young adults in the United States and beyond. This review describes the experimental and clinical evidence of e-cigarette toxicity and deleterious health effects. Adverse health effects related to e-cigarette aerosols are influenced by several factors, including e-liquid components, physical device factors, chemical changes related to heating, and health of the e-cigarette user (e.g., asthmatic). Federal, state, and local regulations have attempted to govern e-cigarette flavors, manufacturing, distribution, and availability, particularly to underaged youths. However, the evolving e-cigarette landscape continues to impede timely toxicological studies and hinder progress made toward our understanding of the long-term health consequence of e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Adolescente , Humanos , Estados Unidos , Vaping/efeitos adversos , Adulto Jovem
4.
PLoS One ; 16(10): e0257241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648499

RESUMO

Isoflurane (ISO) is a widely used inhalation anesthetic in experiments with rodents and humans during surgery. Though ISO has not been reported to impart long-lasting side effects, it is unknown if ISO can influence gene regulation in certain tissues, including the heart. Such changes could have important implications for use of this anesthetic in patients susceptible to heart failure/other cardiac abnormalities. To test if ISO could alter gene regulation/expression in heart tissues, and if such changes were reversible, prolonged, or late onset with time, SHR (spontaneously hypertensive) rats were exposed by intratracheal inhalation to a 97.5% air/2.5% ISO mixture on two consecutive days (2 hr/d). Control rats breathed filtered air only. On Days 1, 30, 240, and 360 post-exposure, rat hearts were collected and total RNA was extracted from the left ventricle for global gene expression analysis. The data revealed differentially-expressed genes (DEG) in response to ISO (compared to naïve control) at all post-exposure timepoints. The data showed acute ISO exposures led to DEG associated with wounding, local immune function, inflammation, and circadian rhythm regulation at Days 1 and 30; these effects dissipated by Day 240. There were other significantly-increased DEG induced by ISO at Day 360; these included changes in expression of genes associated with cell signaling, differentiation, and migration, extracellular matrix organization, cell-substrate adhesion, heart development, and blood pressure regulation. Examination of consistent DEG at Days 240 and 360 indicated late onset DEG reflecting potential long-lasting effects from ISO; these included DEG associated with oxidative phosphorylation, ribosome, angiogenesis, mitochondrial translation elongation, and focal adhesion. Together, the data show acute repeated ISO exposures could impart variable effects on gene expression/regulation in the heart. While some alterations self-resolved, others appeared to be long-lasting or late onset. Whether such changes occur in all rat models or in humans remains to be investigated.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Coração/efeitos dos fármacos , Isoflurano/efeitos adversos , Transcriptoma/efeitos dos fármacos , Anestésicos Inalatórios/administração & dosagem , Animais , Exposição por Inalação/efeitos adversos , Isoflurano/administração & dosagem , Masculino , Ratos , Ratos Endogâmicos SHR
5.
Inflammation ; 44(3): 985-998, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33415536

RESUMO

Chronic obstructive pulmonary disease (COPD)/pulmonary emphysema is driven by the dysregulated airway inflammation and primarily influenced by the interaction between cigarette smoking (CS) and the individual's susceptibility. The inflammation in COPD involves both innate and adaptive immunity. By binding to its specific ligands, chemokine receptor CXCR3 plays an important role in regulating tissue inflammation and damage. In acute animal model challenged with either CS or pathogens, CXCR3 knockout (KO) attenuated lung inflammation and pathology. However, the role of CXCR3 in CS-induced chronic airway inflammation and pulmonary emphysema remains unknown. In this present study, we investigated the effect of CXCR3 in CS-induced pulmonary emphysema in an animal model, and the association between CXCR3 single nucleotide polymorphisms (SNPs) and COPD susceptibility in human subjects. We found that after chronic exposure to side stream CS (SSCS) for 24 weeks, CXCR3 KO mice demonstrated significant airspace enlargement expressed by mean linear intercept (Lm) compared with the wild-type (WT) mice. Consistently, CXCR3 KO mice had significantly higher BAL fluid macrophages and neutrophils, TNFα, and lung homogenate MMP-9 and MMP-12. Through genetic analysis of CXCR3 polymorphisms in a cohort of COPD patients with Han Chinese ethnicity, one CXCR3 SNP, rs2280964, was found to be genetically related to COPD susceptibility. Furthermore, CXCR3 SNP rs2280964 was significantly associated with the levels of serum MMP-9 in COPD patients. Our data from both animal and human studies revealed a novel role of CXCR3 possibly via influencing MMP9 production in the pathogenesis and progression of CS-associated COPD/pulmonary emphysema.


Assuntos
Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Receptores CXCR3/metabolismo , Adulto , Idoso , Animais , Estudos de Casos e Controles , China , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Receptores CXCR3/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Biomed Res Int ; 2020: 3259723, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110918

RESUMO

BACKGROUND: Acrolein is a major component of environmental pollutants, cigarette smoke, and is also formed by heating cooking oil. We evaluated the interstrain variability of response to subchronic inhalation exposure to acrolein among inbred mouse strains for inflammation, oxidative stress, and tissue injury responses. Furthermore, we studied the response to acrolein vapor in the lung mucosa model using human primary bronchial epithelial cells (PBEC) cultured at an air-liquid interface (ALI) to evaluate the findings of mouse studies. METHODS: Female 129S1/SvlmJ, A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, DBA/2J, and FVB/NJ mice were exposed to 1 part per million (ppm) acrolein or filtered air for 11 weeks. Total cell counts and protein concentrations were measured in bronchoalveolar lavage (BAL) fluid to assess airway inflammation and membrane integrity. PBEC-ALI models were exposed to acrolein vapor (0.1 and 0.2 ppm) for 30 minutes. Gene expression of proinflammatory, oxidative stress, and tissue injury-repair markers was assessed (cut off: ≥2 folds; p < 0.05) in the lung models. RESULTS: Total BAL cell numbers and protein concentrations remained unchanged following acrolein exposure in all mouse strains. BALB/cByJ, C57BL/6J, and 129S1/SvlmJ strains were the most affected with an increased expression of proinflammatory, oxidative stress, and/or tissue injury markers. DBA/2J, C3H/HeJ, A/J, and FVB/NJ were affected to a lesser extent. Both matrix metalloproteinase 9 (Mmp9) and tissue inhibitor of metalloproteinase 1 (Timp1) were upregulated in the strains DBA/2J, C3H/HeJ, and FVB/NJ indicating altered protease/antiprotease balance. Upregulation of lung interleukin- (IL-) 17b transcript in the susceptible strains led us to investigate the IL-17 pathway genes in the PBEC-ALI model. Acrolein exposure resulted in an increased expression of IL-17A, C, and D; IL-1B; IL-22; and RAR-related orphan receptor A in the PBEC-ALI model. CONCLUSION: The interstrain differences in response to subchronic acrolein exposure in mouse suggest a genetic predisposition. Altered expression of IL-17 pathway genes following acrolein exposure in the PBEC-ALI models indicates that it has a central role in chemical irritant toxicity. The findings also indicate that genetically determined differences in IL-17 signaling pathway genes in the different mouse strains may explain their susceptibility to different chemical irritants.


Assuntos
Acroleína/farmacologia , Brônquios/diagnóstico por imagem , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Animais , Brônquios/metabolismo , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Interleucina-17/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Part Fibre Toxicol ; 17(1): 28, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32611421

RESUMO

BACKGROUND: Particle matter (PM) has been associated with increased morbidity and mortality rates across the world. This study was designed to test the hypotheses that pyrotechnic firework displays introduce significant amounts of toxic metals into the atmosphere and are hazardous to human health. Size-selective emissions from 10 different fireworks displays were collected during particle generation in a dynamic, stainless steel chamber and tested for toxicity in cells. A subset of 2 particle types were tested in vivo in mice. At doses that did not produce cytotoxicity in an LDH assay, in vitro reactive oxygen species (ROS) formation was measured in bronchial epithelial airway (BEAS-2B) and human pulmonary microvascular endothelial (HPMEC-ST1.6R) cell lines treated with size-fractionated particles from the emissions of fireworks. RESULTS: Significant increases in ROS, in both cell types, were dependent upon the type of firework but not particle size. The in vitro ROS activity was correlated with lung inflammation produced in groups of mice treated by oropharyngeal aspiration with 0, 50, or 100 µg fireworks PM10/mouse. Trace metal analyses of the PM10 samples showed significant differences in metal content among fireworks type. Interestingly, the PM10 sample for the fireworks type producing the greatest in vitro ROS response in BEAS-2B cells contained ~ 40,000 and ~ 12,000 ppm of lead and copper, respectively. This sample also produced the greatest inflammatory response (i.e., increased neutrophils in bronchoalveolar lavage fluid) in mice. CONCLUSIONS: These findings demonstrate that pyrotechnic display particles can produce adverse effects in mammalian cells and lungs, thus suggesting that further research is needed to expand our understanding of the contribution of metal content to the adverse health effects of fireworks particles. This information will lead to the manufacture of safer fireworks.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Células Epiteliais , Pulmão/efeitos dos fármacos , Metais , Camundongos , Tamanho da Partícula , Pneumonia/induzido quimicamente
8.
Proc Natl Acad Sci U S A ; 116(43): 21727-21731, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591243

RESUMO

Electronic-cigarettes (E-cigs) are marketed as a safe alternative to tobacco to deliver the stimulant nicotine, and their use is gaining in popularity, particularly among the younger population. We recently showed that mice exposed to short-term (12 wk) E-cig smoke (ECS) sustained extensive DNA damage in lungs, heart, and bladder mucosa and diminished DNA repair in lungs. Nicotine and its nitrosation product, nicotine-derived nitrosamine ketone, cause the same deleterious effects in human lung epithelial and bladder urothelial cells. These findings raise the possibility that ECS is a lung and bladder carcinogen in addition to nicotine. Given the fact that E-cig use has become popular in the past decade, epidemiological data on the relationship between ECS and human cancer may not be known for a decade to come. In this study, the carcinogenicity of ECS was tested in mice. We found that mice exposed to ECS for 54 wk developed lung adenocarcinomas (9 of 40 mice, 22.5%) and bladder urothelial hyperplasia (23 of 40 mice, 57.5%). These lesions were extremely rare in mice exposed to vehicle control or filtered air. Current observations that ECS induces lung adenocarcinomas and bladder urothelial hyperplasia, combined with our previous findings that ECS induces DNA damage in the lungs and bladder and inhibits DNA repair in lung tissues, implicate ECS as a lung and potential bladder carcinogen in mice. While it is well established that tobacco smoke poses a huge threat to human health, whether ECS poses any threat to humans is not yet known and warrants careful investigation.


Assuntos
Adenocarcinoma de Pulmão/induzido quimicamente , Sistemas Eletrônicos de Liberação de Nicotina , Hiperplasia/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Fumaça/efeitos adversos , Fumar/efeitos adversos , Adenocarcinoma de Pulmão/patologia , Animais , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Hiperplasia/patologia , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Nicotina/administração & dosagem , Bexiga Urinária/patologia , Urotélio/patologia
9.
J Transl Med ; 17(1): 342, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601237

RESUMO

World Trade Center (WTC) responders were exposed to mixture of dust, smoke, chemicals and carcinogens. New York University (NYU) and Mount Sinai have recreated WTC exposure in rodents to observe the resulting systemic and local biological responses. These experiments aid in the interpretation of epidemiological observations and are useful for understanding the carcinogenesis process in the exposed human WTC cohort. Here we describe the implementation of a tissue bank system for the rodents experimentally exposed to WTC dust. NYU samples were experimentally exposed to WTC dust via intratracheal inhalation that mimicked conditions in the immediate aftermath of the disaster. Tissue from Mount Sinai was derived from genetically modified mice exposed to WTC dust via nasal instillation. All processed tissues include annotations of the experimental design, WTC dust concentration/dose, exposure route and duration, genetic background of the rodent, and method of tissue isolation/storage. A biobank of tissue from rodents exposed to WTC dust has been compiled representing an important resource for the scientific community. The biobank remains available as a scientific resource for future research through established mechanisms for samples request and utilization. Studies using the WTC tissue bank would benefit from confirming their findings in corresponding tissues from organs of animals experimentally exposed to WTC dust. Studies on rodent tissues will advance the understanding of the biology of the tumors developed by WTC responders and ultimately impact the modalities of treatment, and the probability of success and survival of WTC cancer patients.


Assuntos
Bancos de Espécimes Biológicos , Carcinogênese/patologia , Neoplasias/patologia , Animais , Poeira , Masculino , Camundongos Endogâmicos C57BL , Ratos Endogâmicos SHR , Ataques Terroristas de 11 de Setembro
10.
Mol Cancer Res ; 17(8): 1605-1612, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221798

RESUMO

An excess incidence of prostate cancer has been identified among World Trade Center (WTC) responders. In this study, we hypothesized that WTC dust, which contained carcinogens and tumor-promoting agents, could facilitate prostate cancer development by inducing DNA damage, promoting cell proliferation, and causing chronic inflammation. We compared expression of immunologic and inflammatory genes using a NanoString assay on archived prostate tumors from WTC Health Program (WTCHP) patients and non-WTC patients with prostate cancer. Furthermore, to assess immediate and delayed responses of prostate tissue to acute WTC dust exposure via intratracheal inhalation, we performed RNA-seq on the prostate of normal rats that were exposed to moderate to high doses of WTC dust. WTC prostate cancer cases showed significant upregulation of genes involved in DNA damage and G2-M arrest. Cell-type enrichment analysis showed that Th17 cells, a subset of proinflammatory Th cells, were specifically upregulated in WTC patients. In rats exposed to WTC dust, we observed upregulation of gene transcripts of cell types involved in both adaptive immune response (dendritic cells and B cells) and inflammatory response (Th17 cells) in the prostate. Unexpectedly, genes in the cholesterol biosynthesis pathway were also significantly upregulated 30 days after acute dust exposure. Our results suggest that respiratory exposure to WTC dust can induce inflammatory and immune responses in prostate tissue. IMPLICATIONS: WTC-related prostate cancer displayed a distinct gene expression pattern that could be the result of exposure to specific carcinogens. Our data warrant further epidemiologic and cellular mechanistic studies to better understand the consequences of WTC dust exposure.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/8/1605/F1.large.jpg.


Assuntos
Poeira/análise , Poluentes Ambientais/efeitos adversos , Inflamação/complicações , Exposição Ocupacional/efeitos adversos , Neoplasias da Próstata/diagnóstico , Transcriptoma/efeitos dos fármacos , Animais , Humanos , Inflamação/induzido quimicamente , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/etiologia , Ratos , Ataques Terroristas de 11 de Setembro/estatística & dados numéricos
11.
J Travel Med ; 26(5)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31058996

RESUMO

BACKGROUND: With the number of annual global travellers reaching 1.2 billion, many individuals encounter greater levels of air pollution when they travel abroad to megacities around the world. This study's objective was to determine if visits to cities abroad with greater levels of air pollution adversely impact cardiopulmonary health. METHODS: A total of 34 non-smoking healthy adult participants who travelled abroad to selected cities from the New York City (NYC) metropolitan area were pre-trained to measure lung function, blood pressure and heart rate (HR)/HR variability (HRV) and record symptoms before, during and after travelling abroad. Outdoor particulate matter (PM)2.5 concentrations were obtained from central monitors in each city. Associations between PM exposure concentrations and cardiopulmonary health endpoints were analysed using a mixed effects statistical design. RESULTS: East and South Asian cities had significantly higher PM2.5 concentrations compared with pre-travel NYC PM2.5 levels, with maximum concentrations reaching 503 µg/m3. PM exposure-related associations for lung function were statistically significant and strongest between evening Forced Expiratory Volume in the first second (FEV1) and same-day morning PM2.5 concentrations; a 10-µg/m3 increase in outdoor PM2.5 was associated with a mean decrease of 7 mL. Travel to a highly polluted city (PM2.5 > 100 µg/m3) was associated with a 209-ml reduction in evening FEV1 compared with a low polluted city (PM2.5 < 35 µg/m3). In general, participants who travelled to East and South Asian cities experienced increased respiratory symptoms/scores and changes in HR and HRV. CONCLUSIONS: Exposure to increased levels of PM2.5 in cities abroad caused small but statistically significant acute changes in cardiopulmonary function and respiratory symptoms in healthy young adults. These data suggest that travel-related exposure to increased PM2.5 adversely impacts cardiopulmonary health, which may be particularly important for travellers with pre-existing respiratory or cardiac disease.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Viagem , Adulto , Cidades , Feminino , Volume Expiratório Forçado , Voluntários Saudáveis , Testes de Função Cardíaca , Humanos , Masculino , New York , Doença Relacionada a Viagens , Adulto Jovem
12.
BMC Public Health ; 19(1): 173, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744631

RESUMO

BACKGROUND: In Xuan Wei, China, the lung cancer mortality rate is rising significantly more than that of the nation overall. However, it remains unclear 1) if improved diagnosis can just partially explain this observation and how other local risk factors may be correlated with the lung cancer mortality rate and 2) how the lung cancer mortality rates differ within Xuan Wei and how these spatiotemporal patterns are linked with local risk factors. To increase etiological knowledge, this study evaluated the spatial and temporal distributions of the health effects (the lung cancer mortality rates) from 2011 to 2015. METHODS: Four steps of spatial analysis were applied, as follows: 1) hotspot analysis to determine the geographical patterns of lung cancer mortality, 2) spatially-weighted sum to identify areas with higher health risks, 3) bivariate statistical analysis to assess the overall correlation between coal mines and lung cancer mortality, and 4) geographically-weighted regression to test for correlations among different towns within Xuan Wei. RESULTS: Women had higher lung cancer mortality rates than those in men, with an increasing trend in both sexes over time. The incidence rates in Laibin Town were the highest in Xuan Wei every year. Over the 5-year study period, the lung cancer mortality was increasingly concentrated in Laibin, Shuanglong, and Longchang, where the smoky coal mines are most concentrated. The population-level health risks from the coal mine in Xuan Wei were mapped and divided into five types of risk areas (Type I - Type IV). Correlation analysis revealed that there was no significant correlation between lung cancer mortality as a whole and coal mine distribution during the 5-year study period. However, the geographically-weighted regression revealed a stronger correlation in medium (Type III) and second-lowest (Type IV) health risks. CONCLUSIONS: Xuan Wei lung cancer mortality has increased continuously since the third national retrospective surveys on the causes of death by the Ministry of Health of the People's Republic of China (2004-2005), especially for local women and residents over 35 years of age. Geographically, lung cancer in Xuan Wei showed unique spatiotemporal clustering. The local lung cancer mortality was significantly correlated with the smoky coal mine geographically. Some specific towns (Laibin, Shuanglong, and Longchang) within Xuan Wei manifested high correlations between lung cancer mortality and coal mines. The effects of coal mines on lung cancer mortality rates also spread geographically outward from these areas. Public health concern regarding lung cancer in Xuan Wei should prioritize higher-risk towns surrounded by smoking coal mines. Intervention strategies for particular toxic coal types require further studies on their chemical characteristics and mechanisms of carcinogenesis. Additional studies are also warranted to systematically examine the local environmental health risks related to coal industries and combustion air pollution and eventually to conduct early screening of lung cancer for local people who are more exposed to smoky coal in high-risk areas.


Assuntos
Neoplasias Pulmonares/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Análise Espaço-Temporal
13.
Arch Toxicol ; 93(3): 573-583, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30649585

RESUMO

Indoor air pollution from bituminous coal combustion has been linked to the extremely high lung cancer rates of nonsmoking women in Xuan Wei County, Yunnan Province, China. Venting the smoke outdoors by installing chimneys was found to be effective at reducing the lung cancer risk in a cohort study of 21,232 farmers in central Xuan Wei. However, the lung cancer mortality rates in all 1.2 million residents of Xuan Wei have been increasing dramatically over the last four decades. It was higher than that in Yunnan Province and China overall, with significant heterogeneities in the geographic patterns of Xuan Wei. Intervention measures targeting certain types of coal or certain carcinogenic components in coal smoke need to be explored. To inform targeted intervention policies, it is essential to pinpoint the specific substance (particulate matter, organic extract, PAHs, free radicals, crystalline silica, and inorganic matter) that might account for the carcinogenicity of bituminous coal smoke. Exploring the underlying carcinogenesis mechanisms would also contribute to the intervention and control of the lung cancer epidemic in Xuan Wei, China. Here we review the suspected carcinogens and carcinogenesis mechanisms and discuss future research directions towards a better understanding of the etiology of lung cancer in Xuan Wei, China.


Assuntos
Poluição do Ar/estatística & dados numéricos , Carvão Mineral , Neoplasias Pulmonares/epidemiologia , Poluentes Atmosféricos , China/epidemiologia , Humanos
14.
PLoS One ; 14(12): e0226744, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891598

RESUMO

BACKGROUND: The popularity of electronic cigarettes (E-cigarettes) has risen considerably. Several studies have suggested that nicotine may affect insulin resistance, however, the impact of E-cigarette exposure on insulin resistance, an early measure of cardiometabolic risk, is not known. METHODS AND RESULTS: Using experimental animals and human data obtained from 3,989 participants of the United States National Health and Nutrition Examination Survey (NHANES), respectively, we assessed the association between E-cigarette and conventional cigarette exposures and insulin resistance, as modelled using the homeostatic model assessment of insulin resistance (HOMA-IR) and glucose tolerance tests (GTT). C57BL6/J mice (on standard chow diet) exposed to E-cigarette aerosol or mainstream cigarette smoke (MCS) for 12 weeks showed HOMA-IR and GTT levels comparable with filtered air-exposed controls. In the NHANES cohort, there was no significant association between defined tobacco product use categories (non-users; sole E-cigarette users; cigarette smokers and dual users) and insulin resistance. Compared with non-users of e-cigarettes/conventional cigarettes, sole E-cigarette users showed no significant difference in HOMA-IR or GTT levels following adjustment for age, sex, race, physical activity, alcohol use and BMI. CONCLUSION: E-cigarettes do not appear to be linked with insulin resistance. Our findings may inform future studies assessing potential cardiometabolic harms associated with E-cigarette use.


Assuntos
Resistência à Insulina , Fumar/efeitos adversos , Vaping/efeitos adversos , Adolescente , Adulto , Idoso , Animais , Estudos de Coortes , Estudos Transversais , Feminino , Teste de Tolerância a Glucose/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Inquéritos e Questionários , Estados Unidos , Adulto Jovem
15.
Proc Natl Acad Sci U S A ; 115(27): E6152-E6161, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915082

RESUMO

Tobacco smoke (TS) contains numerous cancer-causing agents, with polycyclic aromatic hydrocarbons (PAHs) and nitrosamines being most frequently cited as the major TS human cancer agents. Many lines of evidence seriously question this conclusion. To resolve this issue, we determined DNA adducts induced by the three major TS carcinogens: benzo(a)pyrene (BP), 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanoe (NNK), and aldehydes in humans and mice. In mice, TS induces abundant aldehyde-induced γ-hydroxy-propano-deoxyguanosine (γ-OH-PdG) and α-methyl-γ-OH-PdG adducts in the lung and bladder, but not in the heart and liver. TS does not induce the BP- and NNK-DNA adducts in lung, heart, liver, and bladder. TS also reduces DNA repair activity and the abundance of repair proteins, XPC and OGG1/2, in lung tissues. These TS effects were greatly reduced by diet with polyphenols. We found that γ-OH-PdG and α-methyl-γ-OH-PdG are the major adducts formed in tobacco smokers' buccal cells as well as the normal lung tissues of tobacco-smoking lung cancer patients, but not in lung tissues of nonsmokers. However, the levels of BP- and NNK-DNA adducts are the same in lung tissues of smokers and nonsmokers. We found that while BP and NNK can induce BPDE-dG and O6-methyl-dG adducts in human lung and bladder epithelial cells, these inductions can be inhibited by acrolein. Acrolein also can reduce DNA repair activity and repair proteins. We propose a TS carcinogenesis paradigm. Aldehydes are major TS carcinogens exerting dominant effect: Aldehydes induce mutagenic PdG adducts, impair DNA repair functions, and inhibit many procarcinogens in TS from becoming DNA-damaging agents.


Assuntos
Aldeídos/toxicidade , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Transformação Celular Neoplásica , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Neoplasias Pulmonares , Nitrosaminas/toxicidade , Poluição por Fumaça de Tabaco/efeitos adversos , Fumar Tabaco , Animais , Linhagem Celular , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Fumar Tabaco/efeitos adversos , Fumar Tabaco/patologia
16.
Proc Natl Acad Sci U S A ; 115(7): E1560-E1569, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378943

RESUMO

E-cigarette smoke delivers stimulant nicotine as aerosol without tobacco or the burning process. It contains neither carcinogenic incomplete combustion byproducts nor tobacco nitrosamines, the nicotine nitrosation products. E-cigarettes are promoted as safe and have gained significant popularity. In this study, instead of detecting nitrosamines, we directly measured DNA damage induced by nitrosamines in different organs of E-cigarette smoke-exposed mice. We found mutagenic O6-methyldeoxyguanosines and γ-hydroxy-1,N2 -propano-deoxyguanosines in the lung, bladder, and heart. DNA-repair activity and repair proteins XPC and OGG1/2 are significantly reduced in the lung. We found that nicotine and its metabolite, nicotine-derived nitrosamine ketone, can induce the same effects and enhance mutational susceptibility and tumorigenic transformation of cultured human bronchial epithelial and urothelial cells. These results indicate that nicotine nitrosation occurs in vivo in mice and that E-cigarette smoke is carcinogenic to the murine lung and bladder and harmful to the murine heart. It is therefore possible that E-cigarette smoke may contribute to lung and bladder cancer, as well as heart disease, in humans.


Assuntos
Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Coração/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nicotina/toxicidade , Nitrosaminas/toxicidade , Fumaça/efeitos adversos , Bexiga Urinária/efeitos dos fármacos , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Mutação/efeitos dos fármacos , Nicotina/química , Nitrosaminas/química , Bexiga Urinária/metabolismo
17.
Aerosol Sci Technol ; 52(11): 1219-1232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31456604

RESUMO

Electronic cigarettes (e-cigarette) have emerged as a popular electronic nicotine delivery system (ENDS) in the last decade. Despite the absence of combustion products and toxins such as carbon monoxide (CO) and tobacco-specific nitrosamines (TSNA), carbonyls including short-chain, toxic aldehydes have been detected in e-cigarette-derived aerosols up to levels found in tobacco smoke. Given the health concerns regarding exposures to toxic aldehydes, understanding both aldehyde generation in e-cigarette and e-cigarette exposure is critical. Thus, we measured aldehydes generated in aerosols derived from propylene glycol (PG):vegetable glycerin (VG) mixtures and from commercial e-liquids with flavorants using a state-of-the-art carbonyl trap and mass spectrometry. To track e-cigarette exposure in mice, we measured urinary metabolites of 4 aldehydes using ULPC-MS/MS or GC-MS. Aldehyde levels, regardless of abundance (saturated: formaldehyde, acetaldehyde >> unsaturated: acrolein, crotonaldehyde), were dependent on the PG:VG ratio and the presence of flavorants. The metabolites of 3 aldehydes - formate, acetate and 3-hydroxypropyl mercapturic acid (3-HPMA; acrolein metabolite) -- were increased in urine after e-cigarette aerosol and mainstream cigarette smoke (MCS) exposures, but the crotonaldehyde metabolite (3-hydroxy-1-methylpropylmercapturic acid, HPMMA) was increased only after MCS exposure. Interestingly, exposure to menthol-flavored e-cigarette aerosol increased the levels of urinary 3-HPMA and sum of nicotine exposure (nicotine, cotinine, trans-3'-hydroxycotinine) relative to exposure to a Classic Tobacco-flavored e-cigarette aerosol. Comparing these findings with aerosols of other ENDS and by measuring aldehyde-derived metabolites in human urine following exposure to e-cigarette aerosols will further our understanding of the relationship between ENDS use, aldehyde exposure and health risk.

18.
PLoS One ; 12(9): e0184331, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926576

RESUMO

World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is associated with WTC-LI. In our murine model, absence of RAGE mitigated acute deleterious effects of PM and may be a biologically plausible mediator of PM-related lung disease.


Assuntos
Volume Expiratório Forçado/efeitos dos fármacos , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Material Particulado/toxicidade , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ataques Terroristas de 11 de Setembro , Doença Aguda , Adulto , Animais , Biomarcadores/análise , Biomarcadores/sangue , Hiper-Reatividade Brônquica/etiologia , Líquido da Lavagem Broncoalveolar/química , Estudos de Casos e Controles , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Bombeiros , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiologia , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptor para Produtos Finais de Glicação Avançada/deficiência , Receptor para Produtos Finais de Glicação Avançada/genética
19.
FASEB J ; 31(10): 4600-4611, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28716969

RESUMO

Silver nanoparticles (AgNPs) are employed in a variety of consumer products; however, in vivo rodent studies indicate that AgNPs can cause lung inflammation and toxicity in a strain- and particle type-dependent manner, but mechanisms of susceptibility remain unclear. The aim of this study was to assess the variation in AgNP-induced lung inflammation and toxicity across multiple inbred mouse strains and to use genome-wide association (GWA) mapping to identify potential candidate susceptibility genes. Mice received doses of 0.25 mg/kg of either 20-nm citrate-coated AgNPs or citrate buffer using oropharyngeal aspiration. Neutrophils in bronchoalveolar lavage fluid (BALF) served as markers of inflammation. We found significant strain- and treatment-dependent variation in neutrophils in BALF. GWA mapping identified 10 significant single-nucleotide polymorphisms (false discovery rate, 15%) in 4 quantitative trait loci on mouse chromosomes 1, 4, 15, and 18, and Nedd4l (neural precursor cell expressed developmentally downregulated gene 4-like; chromosome 18), Ano6 (anocatmin 6; chromosome 15), and Rnf220 (Ring finger protein 220; chromosome 4) were considered candidate genes. Quantitative RT-PCR revealed significant inverse associations between mRNA levels of these genes and neutrophil influx. Nedd4l, Ano6, and Rnf220 are candidate susceptibility genes for AgNP-induced lung inflammation that warrant additional exploration in future studies.-Scoville, D. K., Botta, D., Galdanes, K., Schmuck, S. C., White, C. C., Stapleton, P. L., Bammler, T. K., MacDonald, J. W., Altemeier, W. A., Hernandez, M., Kleeberger, S. R., Chen, L.-C., Gordon, T., Kavanagh, T. J. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice.


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Suscetibilidade a Doenças/metabolismo , Nanopartículas Metálicas/toxicidade , Neutrófilos/efeitos dos fármacos , Pneumonia/genética , Animais , Estudo de Associação Genômica Ampla/métodos , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Neutrófilos/metabolismo , Pneumonia/induzido quimicamente , Polimorfismo de Nucleotídeo Único/genética , Prata
20.
Autophagy ; 12(10): 1687-1703, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27467530

RESUMO

Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.


Assuntos
Brônquios/patologia , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Níquel/efeitos adversos , Proteína Sequestossoma-1/genética , Regulação para Cima/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/patologia , Macrolídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA