Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
EBioMedicine ; 104: 105181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838469

RESUMO

BACKGROUND: Although several SARS-CoV-2-related coronaviruses (SC2r-CoVs) were discovered in bats and pangolins, the differences in virological characteristics between SARS-CoV-2 and SC2r-CoVs remain poorly understood. Recently, BANAL-20-236 (B236) was isolated from a rectal swab of Malayan horseshoe bat and was found to lack a furin cleavage site (FCS) in the spike (S) protein. The comparison of its virological characteristics with FCS-deleted SARS-CoV-2 (SC2ΔFCS) has not been conducted yet. METHODS: We prepared human induced pluripotent stem cell (iPSC)-derived airway and lung epithelial cells and colon organoids as human organ-relevant models. B236, SARS-CoV-2, and artificially generated SC2ΔFCS were used for viral experiments. To investigate the pathogenicity of B236 in vivo, we conducted intranasal infection experiments in hamsters. FINDINGS: In human iPSC-derived airway epithelial cells, the growth of B236 was significantly lower than that of the SC2ΔFCS. A fusion assay showed that the B236 and SC2ΔFCS S proteins were less fusogenic than the SARS-CoV-2 S protein. The infection experiment in hamsters showed that B236 was less pathogenic than SARS-CoV-2 and even SC2ΔFCS. Interestingly, in human colon organoids, the growth of B236 was significantly greater than that of SARS-CoV-2. INTERPRETATION: Compared to SARS-CoV-2, we demonstrated that B236 exhibited a tropism toward intestinal cells rather than respiratory cells. Our results are consistent with a previous report showing that B236 is enterotropic in macaques. Altogether, our report strengthens the assumption that SC2r-CoVs in horseshoe bats replicate primarily in the intestinal tissues rather than respiratory tissues. FUNDING: This study was supported in part by AMED ASPIRE (JP23jf0126002, to Keita Matsuno, Kazuo Takayama, and Kei Sato); AMED SCARDA Japan Initiative for World-leading Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine including new modality application (JP223fa727002, to Kei Sato); AMED SCARDA Hokkaido University Institute for Vaccine Research and Development (HU-IVReD) (JP223fa627005h0001, to Takasuke Fukuhara, and Keita Matsuno); AMED Research Program on Emerging and Re-emerging Infectious Diseases (JP21fk0108574, to Hesham Nasser; JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to Takasuke Fukuhara; JP22fk0108146, to Kei Sato; JP21fk0108494 to G2P-Japan Consortium, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke Fukuhara, and Kei Sato; JP21fk0108425, to Kazuo Takayama and Kei Sato; JP21fk0108432, to Kazuo Takayama, Takasuke Fukuhara and Kei Sato; JP22fk0108534, Terumasa Ikeda, and Kei Sato; JP22fk0108511, to Yuki Yamamoto, Terumasa Ikeda, Keita Matsuno, Shinya Tanaka, Kazuo Takayama, Takasuke Fukuhara, and Kei Sato; JP22fk0108506, to Kazuo Takayama and Kei Sato); AMED Research Program on HIV/AIDS (JP22fk0410055, to Terumasa Ikeda; and JP22fk0410039, to Kei Sato); AMED Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125008 to Keita Matsuno); AMED CREST (JP21gm1610005, to Kazuo Takayama; JP22gm1610008, to Takasuke Fukuhara; JST PRESTO (JPMJPR22R1, to Jumpei Ito); JST CREST (JPMJCR20H4, to Kei Sato); JSPS KAKENHI Fund for the Promotion of Joint International Research (International Leading Research) (JP23K20041, to G2P-Japan Consortium, Keita Matsuno, Takasuke Fukuhara and Kei Sato); JST SPRING (JPMJSP2108 to Shigeru Fujita); JSPS KAKENHI Grant-in-Aid for Scientific Research C (22K07103, to Terumasa Ikeda); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375, to Hesham Nasser; 20K15767, to Jumpei Ito); JSPS Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, to Kei Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JSPS Research Fellow DC1 (23KJ0710, to Yusuke Kosugi); JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to Terumasa Ikeda); World-leading Innovative and Smart Education (WISE) Program 1801 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to Naganori Nao); Ministry of Health, Labour and Welfare (MHLW) under grant 23HA2010 (to Naganori Nao and Keita Matsuno); The Cooperative Research Program (Joint Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to Kei Sato); International Joint Research Project of the Institute of Medical Science, the University of Tokyo (to Terumasa Ikeda and Takasuke Fukuhara); The Tokyo Biochemical Research Foundation (to Kei Sato); Takeda Science Foundation (to Terumasa Ikeda and Takasuke Fukuhara); Mochida Memorial Foundation for Medical and Pharmaceutical Research (to Terumasa Ikeda); The Naito Foundation (to Terumasa Ikeda); Hokuto Foundation for Bioscience (to Tomokazu Tamura); Hirose Foundation (to Tomokazu Tamura); and Mitsubishi Foundation (to Kei Sato).


Assuntos
COVID-19 , Quirópteros , SARS-CoV-2 , Animais , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Humanos , COVID-19/virologia , Quirópteros/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Organoides/virologia , Organoides/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/virologia , Cricetinae , Furina/metabolismo , Células Epiteliais/virologia , Células Vero , Chlorocebus aethiops
2.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284990

RESUMO

Human lung adenosquamous cell carcinoma (LUAS), containing both adenomatous and squamous pathologies, exhibits strong cancer plasticity. We find that ALK rearrangement is detectable in 5.1-7.5% of human LUAS, and transgenic expression of EML4-ALK drives lung adenocarcinoma (LUAD) formation initially and squamous transition at late stage. We identify club cells as the main cell-of-origin for squamous transition. Through recapitulating lineage transition in organoid system, we identify JAK-STAT signaling, activated by EML4-ALK phase separation, significantly promotes squamous transition. Integrative study with scRNA-seq and immunostaining identify a plastic cell subpopulation in ALK-rearranged human LUAD showing squamous biomarker expression. Moreover, those relapsed ALK-rearranged LUAD show notable upregulation of squamous biomarkers. Consistently, mouse squamous tumors or LUAD with squamous signature display certain resistance to ALK inhibitor, which can be overcome by combined JAK1/2 inhibitor treatment. This study uncovers strong plasticity of ALK-rearranged tumors in orchestrating phenotypic transition and drug resistance and proposes a potentially effective therapeutic strategy.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Pulmão , Receptores Proteína Tirosina Quinases , Proteínas de Fusão Oncogênica/genética
3.
Adv Sci (Weinh) ; 11(4): e2306157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032126

RESUMO

Insects pose significant challenges in cotton-producing regions. Here, they describe a high-throughput CRISPR/Cas9-mediated large-scale mutagenesis library targeting endogenous insect-resistance-related genes in cotton. This library targeted 502 previously identified genes using 968 sgRNAs, generated ≈2000 T0 plants and achieved 97.29% genome editing with efficient heredity, reaching upto 84.78%. Several potential resistance-related mutants (10% of 200 lines) their identified that may contribute to cotton-insect molecular interaction. Among these, they selected 139 and 144 lines showing decreased resistance to pest infestation and targeting major latex-like protein 423 (GhMLP423) for in-depth study. Overexpression of GhMLP423 enhanced insect resistance by activating the plant systemic acquired resistance (SAR) of salicylic acid (SA) and pathogenesis-related (PR) genes. This activation is induced by an elevation of cytosolic calcium [Ca2+ ]cyt flux eliciting reactive oxygen species (ROS), which their demoted in GhMLP423 knockout (CR) plants. Protein-protein interaction assays revealed that GhMLP423 interacted with a human epidermal growth factor receptor substrate15 (EPS15) protein at the cell membrane. Together, they regulated the systemically propagating waves of Ca2+ and ROS, which in turn induced SAR. Collectively, this large-scale mutagenesis library provides an efficient strategy for functional genomics research of polyploid plant species and serves as a solid platform for genetic engineering of insect resistance.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Humanos , Animais , Sistemas CRISPR-Cas/genética , Espécies Reativas de Oxigênio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Insetos
4.
Jt Dis Relat Surg ; 35(1): 20-26, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108162

RESUMO

OBJECTIVES: This study aims to investigate the high-risk factors for osteonecrosis of the femoral head (ONFH) after internal fixation with multiple cannulated compression screws for adult femoral neck fractures and to construct a prediction model. PATIENTS AND METHODS: Between from January 2012 and December 2020, a total of 268 patients (138 males, 130 females; mean age: 53±10 years; range, 23 to 70 years) with ONFH who had complete follow-up data were included. Closed reduction in combination with open reduction were performed. All patients received internal fixation with multiple cannulated compression screws and were assigned to ONFH and non-ONFH groups. Logistic regression model was utilized to identify independent risk factors for postoperative ONFH, followed by constructing a nomogram prediction model. The predictive ability of the model was evaluated by receiver operating characteristic curve, Hosmer-Lemeshow test, and calibration curve. RESULTS: Multivariate analysis revealed that older age (odds ratio [OR]: 2.307, 95% confidence interval [CI]: 1.295-4.108], Charlson Comorbidity Index (CCI) ≥2 (OR: 2.214, 95% CI: 1.035-4.739), fracture displacement (OR: 2.426, 95% CI: 1.122-5.247), unsatisfactory reduction (OR: 2.629, 95% CI: 1.275-5.423), postoperative removal of internal fixation implant (OR: 2.200, 95% CI: 1.051-4.604) were independent risk factors for postoperative ONFH (p<0.05). The nomogram prediction model constructed based on these clinical characteristics showed high predictive value (AUC=0.807) and consistency (p>0.05). CONCLUSION: Age, comorbidity index, fracture type, reduction quality and postoperative removal of internal fixation implant are of utmost importance for postoperative ONFH in patients with femoral neck fractures. The established nomogram prediction model can accurately predict the occurrence of postoperative ONFH.


Assuntos
Fraturas do Colo Femoral , Osteonecrose , Masculino , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Cabeça do Fêmur , Osteonecrose/etiologia , Osteonecrose/cirurgia , Fatores de Risco , Fraturas do Colo Femoral/cirurgia , Fixação Interna de Fraturas/efeitos adversos
5.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046850

RESUMO

We had previously shown that THY1 (CD90) is a tumor suppressor in nasopharyngeal carcinoma (NPC) and that its down-regulation and loss of expression are associated with tumor metastasis, yet the mechanism leading to such effects remains unknown. In this study we show that tumor invasion could be suppressed by THY1 via adherens junction formation in a few NPC cell lines, and knockdown of THY1 would disrupt this cell-cell adhesion phenotype. Mechanistically, the activity of the SRC family kinase (SFK) member, SRC, and canonical Wnt signaling were dramatically reduced when THY1 was constitutively expressed. Previous studies by others have found that high levels of SRC activity in NPCs are associated with EMT and a poor prognosis. We hypothesized that THY1 can suppress tumor invasion in NPC via inhibition of SRC. By gene silencing of SRC, we found that the in vitro NPC cell invasion was significantly reduced and adherens junctions were restored. Through proteomic analysis, we identified that platelet-derived growth factor receptor ß (PDGF-Rß) and protein tyrosine phosphatase nonreceptor type 22 (PTPN22) are novel and potential binding partners of THY1, which were subsequently verified by co-immunoprecipitation (co-IP) analysis. The ligand of PDGF-Rß (PDGF-BB) could highly induce SRC activation and NPC cell invasion, which could be almost completely suppressed by THY1 expression. On the other hand, the PTPN22 siRNA could enhance both the SRC activities and the cell invasion and could also disrupt the adherens junctions in the THY1-expressing NPC cells; the original THY1-induced phenotypes were reverted when the PTPN22 expression was reduced. Together, our results identified that PTPN22 is essential for THY1 to suppress cell invasion and SRC activity, maintain tight adherens junctions, and prevent NPC metastasis. These results suggested that PDGF-Rß and SRC can be used as drug targets for suppressing NPC metastasis. Indeed, our in vivo assay using the SRC inhibitor KX2-391, clearly showed that inhibition of SRC signaling can prevent the metastasis of NPC, indicating that targeting SRC can be a promising approach to control the NPC progression.

6.
Theranostics ; 13(2): 458-471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632221

RESUMO

Nasopharyngeal carcinoma (NPC) is a diverse cancer with no well-defined tumor antigen, associated with oncogenic Epstein-Barr Virus (EBV), and with usually late-stage diagnosis and survival <40%. Current radiotherapy and chemotherapy have low effectiveness and cause adverse effects, which calls for the need of new therapy. In this regard, adoptive immunotherapy using γδ T cells has potential, but needs to be coupled with butyrophilin 2A1 and 3A1 protein expression to achieve tumoricidal effect. Methods: Human γδ T cells were expanded (with Zol or PTA) and used for cytotoxicity assay against NPC cells, which were treated with the EBV EBNA1-targeting peptide (L2)P4. Effect of (L2)P4 on BTN2A1/BTN3A1 expression in NPC cells was examined by flow cytometry and Western blot. An NPC-bearing NSG mice model was established to test the effectiveness of P4 and adoptive γδ T cells. Immunofluorescence was performed on NPC tissue sections to examine the presence of γδ T cells and expression of BTN2A1 and BTN3A1. EBV gene expression post-(L2)P4 treatment was assessed by qRT-PCR, and the relationship of LMP1, NLRC5 and BTN2A1/BTN3A1 was examined by transfection, reporter assay, Western blot, and inhibition experiments. Results: Zol- or PTA-expanded the Vδ2 subset of γδ T cells that exerted killing against certain NPC cells. (L2)P4 reactivates latent EBV, which increased BTN2A1 and BTN3A1 expression and conferred higher susceptibility towards Vδ2 T cells cytotoxicity in vitro, as well as enhanced tumor regression in vivo by adoptive transfer of Vδ2 T cells. Mechanistically, (L2)P4 induced EBV LMP1, leading to IFN-γ/p-JNK and NLRC5 activation, and subsequently stimulated the expression of BTN2A1 and BTN3A1. Conclusions: This study demonstrated the effectiveness of using the EBV-targeting probe (L2)P4 and adoptive γδ T cells as a promising combinatorial immunotherapy against NPC. The identification of the LMP1-IFN-γ/p-JNK-NLRC5-BTN2A1/BTN3A1 axis may lead to new insight and therapeutic targets against NPC and other EBV+ tumors.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Neoplasias Nasofaríngeas , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Antígenos CD , Butirofilinas , Infecções por Vírus Epstein-Barr/complicações , Peptídeos e Proteínas de Sinalização Intracelular , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/virologia , Imunoterapia
7.
ACS Appl Mater Interfaces ; 15(1): 14-25, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35588160

RESUMO

Accurate identification of the resectable epileptic lesion is a precondition of operative intervention to drug-resistant epilepsy (DRE) patients. However, even when multiple diagnostic modalities are combined, epileptic foci cannot be accurately identified in ∼30% of DRE patients. Inflammation-associated low-density lipoprotein receptor-related protein-1 (LRP1) has been validated to be a surrogate target for imaging epileptic foci. Here, we reported an LRP1-targeted dual-mode probe that is capable of providing comprehensive epilepsy information preoperatively with SPECT imaging while intraoperatively delineating epileptic margins in a sensitive high-contrast manner with surface-enhanced resonance Raman scattering (SERRS) imaging. Notably, a novel and universal strategy for constructing self-assembled monolayer (SAM)-based Raman reporters was proposed for boosting the sensitivity, stability, reproducibility, and quantifiability of the SERRS signal. The probe showed high efficacy to penetrate the blood-brain barrier. SPECT imaging showed the probe could delineate the epileptic foci clearly with a high target-to-background ratio (4.11 ± 0.71, 2 h). Further, with the assistance of the probe, attenuated seizure frequency in the epileptic mouse models was achieved by using SPECT together with Raman images before and during operation, respectively. Overall, this work highlights a new strategy to develop a SPECT/SERRS dual-mode probe for comprehensive epilepsy surgery that can overcome the brain shift by the co-registration of preoperative SPECT and SERRS intraoperative images.


Assuntos
Epilepsia , Tomografia Computadorizada de Emissão de Fóton Único , Camundongos , Animais , Reprodutibilidade dos Testes , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Barreira Hematoencefálica , Análise Espectral Raman/métodos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade
8.
Cancers (Basel) ; 14(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35804897

RESUMO

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignancy ranking as the 23rd most common cancer globally, while its incidence rate ranked the 9th in southeast Asia. Tumor metastasis is the dominant cause for treatment failure in NPC and metastatic NPC is yet incurable. The Wnt/ß-catenin signaling pathway plays an important role in many processes such as cell proliferation, differentiation, epithelial-mesenchymal transition (EMT), and self-renewal of stem cells and cancer stem cells (CSCs). Both the EMT process and CSCs are believed to play a critical role in cancer metastasis. We here investigated whether the specific CBP/ß-catenin Wnt antagonist, IGC-001, affects the metastasis of NPC cells. We found that ICG-001 treatment could reduce the adhesion capability of NPC cells to extracellular matrix and to capillary endothelial cells and reduce the tumor cell migration and invasion, events which are closely associated with distant metastasis. Through a screening of EMT and CSC-related microRNAs, it was found that miR-134 was consistently upregulated by ICG-001 treatment in NPC cells. Very few reports have mentioned the functional role of miR-134 in NPC, except that the expression was found to be downregulated in NPC. Transient transfection of miR-134 into NPC cells reduced their cell adhesion, migration, and invasion capability, but did not affect the growth of CSC-enriched tumor spheres. Subsequently, we found that the ICG-001-induced miR-134 expression resulting in downregulation of integrin ß1 (ITGB1). Such downregulation reduced cell adhesion and migration capability, as demonstrated by siRNA-mediated knockdown of ITGB1. Direct targeting of ITGB1 by miR-134 was confirmed by the 3'-UTR luciferase assay. Lastly, using an in vivo lung metastasis assay, we showed that ICG-001 transient overexpression of miR-134 or stable overexpression of miR-134 could significantly reduce the lung metastasis of NPC cells. Taken together, we present here evidence that modulation of Wnt/ß-catenin signaling pathway could inhibit the metastasis of NPC through the miR-134/ITGB1 axis.

9.
BMC Biol ; 20(1): 45, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164736

RESUMO

BACKGROUND: Base editors (BEs) display diverse applications in a variety of plant species such as Arabidopsis, rice, wheat, maize, soybean, and cotton, where they have been used to mediate precise base pair conversions without the collateral generation of undesirable double-stranded breaks (DSB). Studies of single-nucleotide polymorphisms (SNPs) underpinning plant traits are still challenging, particularly in polyploidy species where such SNPs are present in multiple copies, and simultaneous modification of all alleles would be required for functional analysis. Allotetraploid cotton has a number of homoeologous gene pairs located in the A and D sub-genomes with considerable SNPs, and it is desirable to develop adenine base editors (ABEs) for efficient and precise A-to-G single-base editing without DSB in such complex genome. RESULTS: We established various ABE vectors based on different engineered adenosine deaminase (TadA) proteins fused to Cas9 variants (dCas9, nCas9), enabling efficient A to G editing up to 64% efficiency on-target sites of the allotetraploid cotton genome. Comprehensive analysis showed that GhABE7.10n exhibited the highest editing efficiency, with the main editing sites specifically located at the position A5 (counting the PAM as positions 21-23). Furthermore, DNA and RNA off-target analysis of cotton plants edited with GhABE7.10n and GhABE7.10d by whole genome and whole-transcriptome sequencing revealed no DNA off-target mutations, while very low-level RNA off-target mutations were detected. A new base editor, namely GhABE7.10dCpf1 (7.10TadA + dCpf1), that recognizes a T-rich PAM, was developed for the first time. Targeted A-to-G substitutions generated a single amino acid change in the cotton phosphatidyl ethanolamine-binding protein (GhPEBP), leading to a compact cotton plant architecture, an ideotype for mechanized harvesting of modern cotton production. CONCLUSIONS: Our data illustrate the robustness of adenine base editing in plant species with complex genomes, which provides efficient and precise toolkit for cotton functional genomics and precise molecular breeding.


Assuntos
Gossypium , Oryza , Adenina/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Gossypium/genética , Gossypium/metabolismo , Oryza/genética , RNA
10.
J Mol Cell Biol ; 13(9): 622-635, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097054

RESUMO

Tumor development is a process involving loss of the differentiation phenotype and acquisition of stem-like characteristics, which is driven by intracellular rewiring of signaling network. The measurement of network reprogramming and disorder would be challenging due to the complexity and heterogeneity of tumors. Here, we proposed signaling entropy (SR) to assess the degree of tumor network disorder. We calculated SR for 33 tumor types in The Cancer Genome Atlas database based on transcriptomic and proteomic data. The SR of tumors was significantly higher than that of normal samples and was highly correlated with cell stemness, cancer type, tumor grade, and metastasis. We further demonstrated the sensitivity and accuracy of using local SR in prognosis prediction and drug response evaluation. Overall, SR could reveal cancer network disorders related to tumor malignant potency, clinical prognosis, and drug response.


Assuntos
Carcinogênese/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Conjuntos de Dados como Assunto , Entropia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteômica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
11.
Oncoimmunology ; 10(1): 1932061, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34123575

RESUMO

The vast majority (>90%) of glioblastoma (GBM) patients belong to the isocitrate dehydrogenase 1 wild type (IDH1WT) group which exhibits a poor prognosis with a median survival of less than 15 months. This study demonstrated numerous immunosuppressive genes as well as ß-catenin gene, pivotal for Wnt/ß-catenin signaling, were upregulated in 206 IDH1WT glioma patients using the Chinese Glioma Genome Atlas (CGGA) database. The increase in microglia with an immunosuppressive phenotype and the overexpression of ß-catenin protein were further verified in IDH1WT GBM patients and IDH1WT GL261 glioma allografts. Subsequently, we found that IDH1WT GL261 cell-derived conditioned medium activated Wnt/ß-catenin signaling in primary microglia and triggered their transition to an immunosuppressive phenotype. Blocking Wnt/ß-catenin signaling not only attenuated microglial polarization to the immunosuppressive subtype but also reactivated immune responses in IDH1WT GBM allografts by simultaneously enhancing cytotoxic CD8+ T cell infiltration and downregulating regulatory T cells. Positron emission tomography imaging demonstrated enhanced proinflammatory activities in IDH1WT GBM allografts after the blockade of Wnt signaling. Finally, gavage administration of a Wnt signaling inhibitor significantly restrained tumor proliferation and improved the survival of model mice bearing IDH1WT GBM allografts. Depletion of CD8+ T cells remarkably abrogated the therapeutic efficacy induced by the Wnt signaling inhibitor. Overall, the present work indicates that the crosstalk between IDH1WT glioma cells and immunosuppressive microglia is important in maintaining the immunosuppressive glioma microenvironment. Blocking Wnt/ß-catenin signaling is a promising complement for IDH1WT GBM treatment by improving the hostile immunosuppressive microenvironment.


Assuntos
Glioblastoma , Glioma , Animais , Linfócitos T CD8-Positivos/metabolismo , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Microglia/metabolismo , Microambiente Tumoral , Via de Sinalização Wnt
12.
EBioMedicine ; 63: 103156, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33348091

RESUMO

BACKGROUND: In the setting of drug-resistant epilepsy (DRE), the success of surgery depends on the ability to accurately locate the epileptic foci to be resected or disconnected. However, the epileptic foci in a considerable percentage of the DRE patients cannot be adequately localised. This warrants the need for a reliable imaging strategy to identify the "concealed" epileptic regions. METHODS: Brain specimens from DRE patients and kainate-induced epileptic mouse models were immuno-stained to evaluate the integrity of the blood-brain barrier (BBB). The expression of low-density lipoprotein receptor-related protein-1 (LRP1) in the epileptic region of DRE patients and kainate models was studied by immunofluorescence. A micellar-based LRP1-targeted paramagnetic probe (Gd3+-LP) was developed and its ability to define the epileptic foci was investigated by magnetic resonance imaging (MRI). FINDINGS: The integrity of the BBB in the epileptic region of DRE patients and kainate mouse models were demonstrated. LRP1 expression levels in the epileptic foci of DRE patients and kainate models were 1.70-2.38 and 2.32-3.97 folds higher than in the control brain tissues, respectively. In vivo MRI demonstrated that Gd3+-LP offered 1.68 times higher (P < 0.05) T1-weighted intensity enhancement in the ipsilateral hippocampus of chronic kainite models than the control probe without LRP1 specificity. INTERPRETATION: The expression of LRP1 is up-regulated in vascular endothelium, activated glia in both DRE patients and kainate models. LRP1-targeted imaging strategy may provide an alternative strategy to define the "concealed" epileptic foci by overcoming the intact BBB. FUNDING: This work was supported by the National Natural Science Foundation, Shanghai Science and Technology Committee, Shanghai Municipal Science and Technology, Shanghai Municipal Health and Family Planning Commission and the National Postdoctoral Program for Innovative Talents.


Assuntos
Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Diagnóstico por Imagem , Epilepsia/diagnóstico , Epilepsia/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/fisiopatologia , Meios de Contraste/síntese química , Meios de Contraste/química , Diagnóstico por Imagem/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Eletrocardiografia , Epilepsia/etiologia , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
13.
Front Med (Lausanne) ; 8: 816802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127772

RESUMO

Chronic obstructive pulmonary disease (COPD) is a common obstructive respiratory disease characterized by persistent respiratory symptoms and limited airflow due to airway obstruction. The present study investigates the distribution characteristics of respiratory tract flora in both frequent and infrequent exacerbators of COPD. The 16S sequencing technique was adopted to differentiate the inherent differences of respiratory tract flora between frequent exacerbators and infrequent exacerbators. Additionally, cell counting kit 8 (CCK8), lactate dehydrogenase (LDH) test, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and western blot were carried out in human bronchial epithelial cells cultured in vitro and the regulatory effects of differential flora were verified. The results revealed that the observed species index, Chao1 index, and the ACE estimator of COPD frequent exacerbators were markedly higher than those of COPD infrequent exacerbators. The top five strains of COPD frequent exacerbators included g_Streptococcus (15.565%), g_Prevotella (10.683%), g_Veillonella (6.980%), g_Haemophilus (5.601%), and g_Neisseria (4.631%). Veillonella parvula generated obvious cytotoxicity and substantially reduced the activity of human bronchial epithelial cells (p < 0.01). Furthermore, the results of flow cytometry indicated that the proportion of human bronchial epithelial cells in both the S phase and G2 phase decreased following Veillonella parvula treatment indicated that Veillonella parvula inhibited cell proliferation. Meanwhile, being treated using Veillonella parvula, the expressions of interleukin-1 (IL-1), IL-6, Tumor Necrosis Factor α (TNF-α), and p-nuclear factor kappa B (NF-κB) of the cells were increased markedly (p < 0.01). Taken together, the current research demonstrated that the relative abundance of Veillonella in COPD frequent exacerbators was higher than that of infrequent exacerbators. Veillonella parvula activated the inflammatory pathway, ultimately destroyed the cell viability, and greatly impaired the activity of human bronchial epithelial cells, thereby inhibiting cell proliferation.

14.
Cancer Cell ; 38(5): 734-747.e9, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32888432

RESUMO

We integrate the genomics, proteomics, and phosphoproteomics of 480 clinical tissues from 146 patients in a Chinese colorectal cancer (CRC) cohort, among which 70 had metastatic CRC (mCRC). Proteomic profiling differentiates three CRC subtypes characterized by distinct clinical prognosis and molecular signatures. Proteomic and phosphoproteomic profiling of primary tumors alone successfully distinguishes cases with metastasis. Metastatic tissues exhibit high similarities with primary tumors at the genetic but not the proteomic level, and kinase network analysis reveals significant heterogeneity between primary colorectal tumors and their liver metastases. In vivo xenograft-based drug tests using 31 primary and metastatic tumors show personalized responses, which could also be predicted by kinase-substrate network analysis no matter whether tumors carry mutations in the drug-targeted genes. Our study provides a valuable resource for better understanding of mCRC and has potential for clinical application.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Genômica/métodos , Metástase Neoplásica/tratamento farmacológico , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteômica/métodos , Animais , Antineoplásicos/farmacologia , China , Estudos de Coortes , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Terapia de Alvo Molecular , Metástase Neoplásica/genética , Fosforilação , Medicina de Precisão , Prognóstico , Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Phytomedicine ; 63: 153058, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31394414

RESUMO

BACKGROUND: Sulforaphane (SFN), a natural compound present in cruciferous vegetable, has been shown to possess anti-cancer activities. Cancer stem cell (CSC) in bulk tumor is generally considered as treatment resistant cell and involved in cancer recurrence. The effects of SFN on nasopharyngeal carcinoma (NPC) CSCs have not yet been explored. PURPOSE: The present study aims to examine the anti-tumor activities of SFN on NPC cells with CSC-like properties and the underlying mechanisms. METHODS: NPC cells growing in monolayer culture, CSCs-enriched NPC tumor spheres, and also the NPC nude mice xenograft were used to study the anti-tumor activities of SFN on NPC. The population of cells expressing CSC-associated markers was evaluated using flow cytometry and aldehyde dehydrogenase (ALDH) activity assay. The effect of DNA methyltransferase 1 (DNMT1) on the growth of NPC cells was analyzed by using small interfering RNA (siRNA)-mediated silencing method. RESULTS: SFN was found to inhibit the formation of CSC-enriched NPC tumor spheres and reduce the population of cells with CSC-associated properties (SRY (Sex determining Region Y)-box 2 (SOX2) and ALDH). In the functional study, SFN was found to restore the expression of Wnt inhibitory factor 1 (WIF1) and the effect was accompanied with the downregulation of DNMT1. The functional activities of WIF1 and DNMT1 were confirmed using exogenously added recombinant WIF1 and siRNA knockdown of DNMT1. Moreover, SFN was found to inhibit the in vivo growth of C666-1 cells and enhance the anti-tumor effects of cisplatin. CONCLUSION: Taken together, we demonstrated that SFN could suppress the growth of NPC cells via the DNMT1/WIF1 axis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos Fitogênicos/farmacologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Isotiocianatos/farmacologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Brassicaceae/química , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , DNA (Citosina-5-)-Metiltransferase 1/genética , Humanos , Isotiocianatos/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Sulfóxidos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Med ; 8(11): 5000-5011, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31293053

RESUMO

PURPOSE: This study aimed to investigate the characteristics of colonic neuroendocrine neoplasms (NENs) and to validate the prognostic value of the European Neuroendocrine Tumor Society (ENETS) and American Joint Committee on Cancer (AJCC) 8th staging systems. METHODS: A total of 167 and 1248 patients with colonic NENs from 12 medical centers across China and from the Surveillance, Epidemiology, and End Results (SEER) cancer registry in the United States, respectively, were reviewed. Patients were staged according to the ENETS and AJCC 8th staging systems. RESULTS: Clinicopathological features of colonic NENs in the Chinese cohort and SEER cohort were significantly distinct. In both the Chinese cohort and the SEER cohort, colonic neuroendocrine carcinoma (NEC) and mixed adeno-neuroendocrine carcinoma (MANEC) were more frequent in the midgut than in the hindgut. Tumors originating from the midgut tended to be larger and at a more advanced stage than those from the hindgut. The AJCC 8th staging system and the ENETS system appeared to have similar prognostic ability for colonic NEC/MANEC. CONCLUSIONS: Our study revealed that tumors originating from the midgut and the hindgut shared different clinicopathological features. The AJCC 8th staging system and the ENETS system appeared to have similar prognostic ability for colonic NEC/MANEC.


Assuntos
Neoplasias do Colo/diagnóstico , Estadiamento de Neoplasias/métodos , Estadiamento de Neoplasias/normas , Tumores Neuroendócrinos/diagnóstico , Adulto , Idoso , China , Neoplasias do Colo/epidemiologia , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Tumores Neuroendócrinos/epidemiologia , Guias de Prática Clínica como Assunto , Prognóstico , Sistema de Registros , Estudos Retrospectivos , Programa de SEER , Carga Tumoral
17.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 35(3): 209-214, 2019 May 28.
Artigo em Chinês | MEDLINE | ID: mdl-31257800

RESUMO

OBJECTIVE: To investigate the effects of apple polyphenols on pulmonary vascular remodeling in rats with pulmonary arterial hypertension and its mechanism. METHODS: Rats were randomly divided into 4 groups:control (Con) group, monocrotaline (MCT) group, apple polyphenol (APP) group,monocrotaline + apple polyphenol (MCT+APP) group. In Con group, rats received a subcutaneous injection of physical saline. In APP group, rats received intraperitoneal injection of 20 mg/kg APP, every other day. In MCT group, rats received a single subcutaneous injection of MCT(60 mg/kg). In MCT+APP group, rats received subcutaneous injection of 60 mg/kg MCT followed by an intraperitoneal injection of 20 mg/kg APP every other day. All the disposal lasted 3 weeks. Then the PAH-relevant indicators, such as mean pulmonary artery pressure(mPAP), pulmonary vascular resistance(PVR), right ventricular hypertrophy index (RVHI) ,wall thickness (WT%) and wall area (WA%) were tested. After that, the inflammatory pathway related indicators, such as interleukin1(IL-1),interleukin1(IL-6), tumor necrosis factor α(TNF-α), cyclooxygenase 2(COX-2) and myeloperoxidase(MPO) in pulmonary tissue and free intracellular Ca2+ in pulmonary smooth muscle cell(PASMC), content of eNOS and NO in endothelial cells were determined. RESULTS: Compared with the control group, the levels of mPAP, PVR, RVHI, WA%, WT%, and IL-1, IL-6, TNF-α, COX-2, MPO in tissue and the expression of Ca2 + in PASMC of MCT group were increased significantly, while the contents of eNOS and NO in endothelial cells were decreased significantly (P<0.05). Compared with the MCT group, the apple polyphenol treatment could improve the above mentioned situation, and the COX-2 and Ca2+ indicators of the apple polyphenol treatment group were decreased significantly (P<0.05). CONCLUSION: MCT can increase COX-2 expression and intracellular Ca2+ in pulmonary artery smooth muscle cells, decrease the contents of eNOS and NO in endothelial cells, while apple polyphenols can significantly inhibit these effects.


Assuntos
Malus/química , Polifenóis/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Cálcio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Monocrotalina , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Pulmonar/patologia , Distribuição Aleatória , Ratos
18.
ACS Appl Mater Interfaces ; 11(17): 15241-15250, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30896915

RESUMO

Glioma is the most frequent form of malignant brain tumors. Surgical debulking is a major strategy for glioma treatment. However, there is a great challenge for the neurosurgeons to intraoperatively identify the true margins of glioma because of its infiltrative nature. Tumor residues or microscopic satellite foci left in the resection bed are the main reasons leading to early recurrence as well as poor prognosis. In this study, a surface-enhanced resonance Raman scattering (SERRS) probe was developed to intraoperatively guide glioma resection. In this probe, molecular reporters with absorptive maxima at the near-infrared wavelength range were covalently functionalized on the surface of gold nanostars. This SERRS probe demonstrated an ultrahigh sensitivity with a detection limit of 5.0 pM in aqueous solution. By the development of glioma xenografts in a mouse dorsal skin window chamber, extravasation of this probe from leaky tumor vasculature as functions of time and distance to tumor boundary was investigated. Importantly, the invasive margin of the tumor xenograft was demarcated by this probe with a high signal-to-background ratio. Preoperative magnetic resonance imaging (MRI) first defined the position of orthotopic glioma xenografts in the brain of rat models, and the craniotomy plan was designed. The brain tumor was then excised intraoperatively step-by-step with the assistance of a handheld Raman scanner till the Raman signals of the probe completely disappeared in the resection bed. Notably, longitudinal MRI showed that SERRS-guided surgery significantly reduced the tumor recurrence rate and improved the overall survival of rat models compared with the white light-guided surgery. Overall, this work demonstrates the prognostic benefit of SERRS-guided glioma surgery in animal models. Because delineation of tumor-invasive margins is a common challenge faced by the surgeons, this SERRS probe with a picomolar detection limit holds the promise in improving the surgical outcome of different types of infiltrated tumors.


Assuntos
Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Análise Espectral Raman/métodos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioma/diagnóstico por imagem , Glioma/patologia , Ouro/química , Indóis/química , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Nus , Nanoestruturas/química , Recidiva Local de Neoplasia , Prognóstico , Ratos , Ratos Sprague-Dawley , Cirurgia Assistida por Computador , Transplante Heterólogo , Transplante Homólogo
19.
Int J Oncol ; 54(3): 1010-1020, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569106

RESUMO

The Wnt signaling pathway is known to serve an important role in the control of cell migration. The present study analyzed the mechanisms underlying the in vitro modulation of the migration of nasopharyngeal carcinoma (NPC) cells by the CREB­binding protein/catenin antagonist and Wnt modulator ICG­001. The results revealed that ICG­001­mediated inhibition of tumor cell migration involved downregulated mRNA and protein expression of the Wnt target gene cluster of differentiation (CD)44. It was also demonstrated that ICG­001 downregulated the expression of CD44, and this effect was accompanied by restored expression of microRNA (miRNA)­150 in various NPC cell lines. Using a CD44 3'­untranslated region luciferase reporter assay, miR­150 was confirmed to be a novel CD44­targeting miRNA, which could directly target CD44 and subsequently regulate the migration of NPC cells. The present study provides further insight into the inhibition of tumor cell migration through the modulation of miRNA expression by the Wnt modulator ICG­001.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Movimento Celular/efeitos dos fármacos , Receptores de Hialuronatos/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/metabolismo , Pirimidinonas/farmacologia , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/antagonistas & inibidores , Receptores de Hialuronatos/metabolismo , Camundongos , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Via de Sinalização Wnt/efeitos dos fármacos
20.
EBioMedicine ; 28: 234-240, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29422288

RESUMO

Roux-en-Y Gastric bypass surgery (RYGB) is emerging as a powerful tool for treatment of obesity and may also cause remission of type 2 diabetes. However, the molecular mechanism of RYGB leading to diabetes remission independent of weight loss remains elusive. In this study, we profiled plasma metabolites and proteins of 10 normal glucose-tolerant obese (NO) and 9 diabetic obese (DO) patients before and 1-week, 3-months, 1-year after RYGB. 146 proteins and 128 metabolites from both NO and DO groups at all four stages were selected for further analysis. By analyzing a set of bi-molecular associations among the corresponding network of the subjects with our newly developed computational method, we defined the represented physiological states (called the edge-states that reflect the interactions among the bio-molecules), and the related molecular networks of NO and DO patients, respectively. The principal component analyses (PCA) revealed that the edge states of the post-RYGB NO subjects were significantly different from those of the post-RYGB DO patients. Particularly, the time-dependent changes of the molecular hub-networks differed between DO and NO groups after RYGB. In conclusion, by developing molecular network-based systems signatures, we for the first time reveal that RYGB generates a unique path for diabetes remission independent of weight loss.


Assuntos
Diabetes Mellitus Tipo 2/cirurgia , Biologia de Sistemas , Proteínas Sanguíneas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Derivação Gástrica , Redes Reguladoras de Genes , Humanos , Metaboloma , Obesidade/genética , Análise de Componente Principal , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA