Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562821

RESUMO

Given the safety, tumor tropism, and ease of genetic manipulation in non-pathogenic Escherichia coli (E. coli), we designed a novel approach to deliver biologics to overcome poor trafficking and exhaustion of immune cells in the tumor microenvironment, via the surface display of key immune-activating cytokines on the outer membrane of E. coli K-12 DH5α. Bacteria expressing murine decoy-resistant IL18 mutein (DR18) induced robust CD8+ T and NK cell-dependent immune responses leading to dramatic tumor control, extending survival, and curing a significant proportion of immune-competent mice with colorectal carcinoma and melanoma. The engineered bacteria demonstrated tumor tropism, while the abscopal and recall responses suggested epitope spreading and induction of immunologic memory. E. coli K-12 DH5α engineered to display human DR18 potently activated mesothelin-targeting CAR NK cells and safely enhanced their trafficking into the tumors, leading to improved control and survival in xenograft mice bearing mesothelioma tumor cells, otherwise resistant to NK cells. Gene expression analysis of the bacteria-primed CAR NK cells showed enhanced TNFα signaling via NFkB and upregulation of multiple activation markers. Our novel live bacteria-based immunotherapeutic platform safely and effectively induces potent anti-tumor responses in otherwise hard-to-treat solid tumors, motivating further evaluation of this approach in the clinic.

2.
Life Sci ; 336: 122340, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092143

RESUMO

AIMS: Structural cells play an important role in regulating immune cells during infection. Our aim was to determine whether structural porcine tracheal epithelial cells (PTECs) can regulate alveolar macrophages (AMs) to prevent bacterial pneumonia, explore the underlying mechanism(s) and therapeutic target. MATERIALS AND METHODS: Actinobacillus pleuropneumoniae (APP) was used as the model strain for infection studies. Small RNA sequencing was used to identify differentially abundant exosome-derived miRNAs. The role of PTECs exosome-derived miR-21-5p in regulating AMs autophagy, pyroptosis, reactive oxygen species (ROS) was determined using RT-qPCR, western-blotting, flow cytometry, immunohistochemistry. Luciferase reporter assays were conducted to identify potential binding targets of miR-21-5p. The universality of miR-21-5p action on resistance to bacterial pulmonary infection was demonstrated using Klebsiella pneumoniae or Staphylococcus aureus in vitro and in vivo infection models. KEY FINDINGS: MiR-21-5p was enriched in PETCs-derived exosomes, which protected AMs against pulmonary bacterial infection. Mechanistically, miR-21-5p targeted PIK3CD, to promote autophagy of AMs, which reduced the pyroptosis induced by APP infection via inhibiting the over-production of ROS, which in turn suppressed the over-expression of pro-inflammatory cytokines, and increased bacterial clearance. Importantly, the protective effect and mechanism of miR-21-5p were universal as they also occurred upon challenge with Klebsiella pneumoniae and Staphylococcus aureus. SIGNIFICANCE: Our data reveals miR-21-5p can promote pulmonary resistance to bacterial infection by inhibiting pyroptosis of alveolar macrophages through the PIK3CD-autophagy-ROS pathway, suggesting PIK3CD may be a potential therapeutic target for bacterial pneumonia.


Assuntos
Exossomos , MicroRNAs , Pneumonia Bacteriana , Animais , Suínos , Piroptose , Macrófagos Alveolares/metabolismo , Exossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Autofagia/genética
3.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076834

RESUMO

Lactic acid or lactate, a key byproduct of anaerobic glycolysis, plays pivotal roles in routine metabolism. An increase in lactic acid is observed in various pathological conditions such as cancer, diabetes, genetic mitochondrial disease, and aging. While several groups have proposed small molecule inhibitors to reduce circulating lactic acid, there are few clinically relevant ways to manage acute or chronic elevations in lactic acid in patients. In addition, recent evidence suggests that lactic acid exchanges between the gut, blood, and peripheral tissues, and professional marathon runners harbor specific gut microbial species that more efficiently metabolize lactic acid. Inspired by these findings, this work sought to engineer probiotic B. subtilis strains to express lactate oxidase that could increase circulating lactic acid catabolism after delivery to the gut. After optimization, oral administration of engineered B. subtilis to the gut of mice reduced the elevation in blood lactic acid levels after exogenous lactic acid challenge without affecting normal gut microbiota composition, inflammation or liver enzymes. Taken together, through the oral delivery of engineered probiotics to the gastrointestinal tract, our proof-of-concept study offers a new opportunity to therapeutically target diseases where blood lactic acid is elevated, and provides a new approach to "knocking down" metabolites to help understand the roles of metabolites in host physiological and pathological processes.

4.
Genes (Basel) ; 14(12)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136933

RESUMO

Leafy sweet potato is a new type of sweet potato, whose leaves and stems are used as green vegetables. However, sweet potato tips can be affected by pre-harvest factors, especially the intensity of light. At present, intercropping, greenhouse planting, and photovoltaic agriculture have become common planting modes for sweet potato. Likewise, they can also cause insufficient light conditions or even low light stress. This research aimed to evaluate the influence of four different shading levels (no shading, 30%, 50%, and 70% shading degree) on the growth profile of sweet potato leaves. The net photosynthetic rate, chlorophyll pigments, carbohydrates, and polyphenol components were determined. Our findings displayed that shading reduced the content of the soluble sugar, starch, and sucrose of leaves, as well as the yield and Pn. The concentrations of Chl a, Chl b, and total Chl were increased and the Chl a/b ratio was decreased for the more efficient interception and absorption of light under shading conditions. In addition, 30% and 50% shading increased the total phenolic, total flavonoids, and chlorogenic acid. Transcriptome analysis indicated that genes related to the antioxidant, secondary metabolism of phenols and flavonoids, photosynthesis, and MAPK signaling pathway were altered in response to shading stresses. We concluded that 30% shading induced a high expression of antioxidant genes, while genes related to the secondary metabolism of phenols and flavonoids were upregulated by 50% shading. And the MAPK signaling pathway was modulated under 70% shading, and most stress-related genes were downregulated. Moreover, the genes involved in photosynthesis, such as chloroplast development, introns splicing, and Chlorophyll synthesis, were upregulated as shading levels increased. This research provides a new theoretical basis for understanding the tolerance and adaptation mechanism of leafy sweet potato in low light environments.


Assuntos
Ipomoea batatas , Antioxidantes/metabolismo , Fotossíntese/genética , Clorofila/metabolismo , Perfilação da Expressão Gênica , Flavonoides , Fenóis
5.
RSC Chem Biol ; 4(2): 138-145, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794022

RESUMO

We have developed a non-cationic transfection vector in the form of bottlebrush polymer-antisense oligonucleotide (ASO) conjugates. Termed pacDNA (polymer-assisted compaction of DNA), these agents show improved biopharmaceutical characteristics and antisense potency in vivo while suppressing non-antisense side effects. Nonetheless, there still is a lack of the mechanistic understanding of the cellular uptake, subcellular trafficking, and gene knockdown with pacDNA. Here, we show that the pacDNA enters human non-small cell lung cancer cells (NCI-H358) predominantly by scavenger receptor-mediated endocytosis and macropinocytosis and trafficks via the endolysosomal pathway within the cell. The pacDNA significantly reduces a target gene expression (KRAS) in the protein level but not in the mRNA level, despite that the transfection of certain free ASOs causes ribonuclease H1 (RNase H)-dependent degradation of KRAS mRNA. In addition, the antisense activity of pacDNA is independent of ASO chemical modification, suggesting that the pacDNA always functions as a steric blocker.

6.
Angew Chem Int Ed Engl ; 61(41): e202204576, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35979844

RESUMO

Aptamers face challenges for use outside the ideal conditions in which they are developed. These difficulties are most palpable in vivo due to nuclease activities, rapid clearance, and off-target binding. Herein, we demonstrate that a polyphosphodiester-backboned molecular brush can suppress enzymatic digestion, reduce non-specific cell uptake, enable long blood circulation, and rescue the bioactivity of a conjugated aptamer in vivo. The backbone along with the aptamer is assembled via solid-phase synthesis, followed by installation of poly(ethylene glycol) (PEG) side chains using a two-step process with near-quantitative efficiency. The synthesis allows for precise control over polymer size and architecture. Consisting entirely of building blocks that are generally recognized as safe for therapeutics, this novel molecular brush is expected to provide a highly translatable route for aptamer-based therapeutics.


Assuntos
Aptâmeros de Nucleotídeos , Oligonucleotídeos , Aptâmeros de Nucleotídeos/química , Oligonucleotídeos/química , Polietilenoglicóis/química
7.
Proc Natl Acad Sci U S A ; 119(29): e2113180119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858356

RESUMO

The mutant form of the guanosine triphosphatase (GTPase) KRAS is a key driver in human tumors but remains a challenging therapeutic target, making KRASMUT cancers a highly unmet clinical need. Here, we report a class of bottlebrush polyethylene glycol (PEG)-conjugated antisense oligonucleotides (ASOs) for potent in vivo KRAS depletion. Owing to their highly branched architecture, these molecular nanoconstructs suppress nearly all side effects associated with DNA-protein interactions and substantially enhance the pharmacological properties of the ASO, such as plasma pharmacokinetics and tumor uptake. Systemic delivery to mice bearing human non-small-cell lung carcinoma xenografts results in a significant reduction in both KRAS levels and tumor growth, and the antitumor performance well exceeds that of current popular ASO paradigms, such as chemically modified oligonucleotides and PEGylation using linear or slightly branched PEG. Importantly, these conjugates relax the requirement on the ASO chemistry, allowing unmodified, natural phosphodiester ASOs to achieve efficacy comparable to that of chemically modified ones. Both the bottlebrush polymer and its ASO conjugates appear to be safe and well tolerated in mice. Together, these data indicate that the molecular brush-ASO conjugate is a promising therapeutic platform for the treatment of KRAS-driven human cancers and warrant further preclinical and clinical development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia de Alvo Molecular , Oligonucleotídeos Antissenso , Proteínas Proto-Oncogênicas p21(ras) , Animais , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Neoplasias Pulmonares/terapia , Camundongos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/uso terapêutico , Polietilenoglicóis , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nano Lett ; 22(10): 4058-4066, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35522597

RESUMO

Nucleic-acid-based immune adjuvants have been extensively investigated for the design of cancer vaccines. However, nucleic acids often require the assistance of a carrier system to improve cellular uptake. Yet, such systems are prone to carrier-associated adaptive immunity, leading to difficulties in a multidose treatment regimen. Here, we demonstrate that a spherical nucleic acid (SNA)-based self-adjuvanting system consisting of phosphodiester oligonucleotides and vitamin E can function as a potent anticancer vaccine without a carrier. The two functional modules work synergistically, serving as each other's delivery vector to enhance toll-like receptor 9 activation. The vaccine rapidly enters cells carrying OVA model antigens, which enables efficient activation of adaptive immunity in vitro and in vivo. In OVA-expressing tumor allograft models, both prophylactic and therapeutic vaccinations significantly retard tumor growth and prolong animal survival. Furthermore, the vaccinations were also able to reduce lung metastasis in a B16F10-OVA model.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias , Ácidos Nucleicos , Receptor Toll-Like 9 , Adjuvantes Imunológicos/uso terapêutico , Animais , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Ácidos Nucleicos/uso terapêutico , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/uso terapêutico
9.
Theranostics ; 12(1): 167-185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987640

RESUMO

Rationale: Despite evidence suggesting that the tumor microenvironment (TME) in malignant pleural mesothelioma (MPM) is linked with poor prognosis, there is a lack of studies that functionally characterize stromal cells and tumor-infiltrating lymphocytes (TILs). Here, we aim to characterize the stromal subsets within MPM, investigate their relationship to TILs, and explore the potential therapeutic targets. Methods: We curated a core set of genes defining stromal/immune signatures expressed by mesenchymal cells within the TME using molecular analysis of The Cancer Genome Atlas (TCGA) MPM cohort. Stromal and immune profiles were molecularly characterized using flow cytometry, immunohistochemistry, microarray, and functionally evaluated using T cell-activation/expansion, coculture assays and drug compounds treatment, based on samples from an independent MPM cohort. Results: We found that a high extracellular matrix (ECM)/stromal gene signature, a high ECM score, or the ratio of ECM to an immune activation gene signature are significantly associated with poor survival in the MPM cohort in TCGA. Analysis of an independent MPM cohort (n = 12) revealed that CD8+ and CD4+ TILs were characterized by PD1 overexpression and concomitant downregulation in degranulation and CD127. This coincided with an increase in CD90+ cells that overexpressed PD-L1 and were enriched for ECM/stromal genes, activated PI3K-mTOR signaling and suppressed T cells. Protein array data demonstrated that MPM samples with high PD-L1 expression were most associated with activation of the mTOR pathway. Further, to reactivate functionally indolent TILs, we reprogrammed ex vivo TILs with Ibrutinib plus Rapamycin to block interleukin-2-inducible kinase (ITK) and mTOR pathways, respectively. The combination treatment shifted effector memory (TEM) CD8+ and CD4+ TILs towards T cells that re-expressed CD45RA (TEMRA) while concomitantly downregulating exhaustion markers. Gene expression analysis confirmed that Ibrutinib plus Rapamycin downregulated coinhibitory and T cell signature pathways while upregulating pathways involved in DNA damage and repair and immune cell adhesion and migration. Conclusions: Our results suggest that targeting the TME may represent a novel strategy to redirect the fate of endogenous TILs with the goal of restoring anti-tumor immunity and control of tumor growth in MPM.


Assuntos
Adenina/análogos & derivados , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Mesotelioma Maligno/tratamento farmacológico , Piperidinas/farmacologia , Sirolimo/farmacologia , Adenina/farmacologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Humanos , Antígenos Thy-1 , Microambiente Tumoral/imunologia
10.
ACS Appl Mater Interfaces ; 13(36): 42533-42542, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472829

RESUMO

Despite potency against a variety of cancers in preclinical systems, melittin (MEL), a major peptide in bee venom, exhibits non-specific toxicity, severe hemolytic activity, and poor pharmacological properties. Therefore, its advancement in the clinical translation system has been limited to early-stage trials. Herein, we report a biohybrid involving a bottlebrush-architectured poly(ethylene glycol) (PEG) and MEL. Termed pacMEL, the conjugate consists of a high-density PEG arrangement, which provides MEL with steric inhibition against protein access, while the high molecular weight of pacMEL substantially enhances plasma pharmacokinetics with a ∼10-fold increase in the area under the curve (AUC∞) compared to free MEL. pacMEL also significantly reduces hepatic damage and unwanted innate immune response and all but eliminated hemolytic activities of MEL. Importantly, pacMEL passively accumulates at subcutaneously inoculated tumor sites and exhibits stronger tumor-suppressive activity than molecular MEL. Collectively, pacMEL makes MEL a safer and more appealing drug candidate.


Assuntos
Antineoplásicos/uso terapêutico , Meliteno/análogos & derivados , Meliteno/uso terapêutico , Neoplasias/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Feminino , Humanos , Meliteno/farmacocinética , Meliteno/toxicidade , Camundongos Endogâmicos C57BL , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Am Chem Soc ; 143(3): 1296-1300, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33433203

RESUMO

Oligonucleotide-based materials such as spherical nucleic acid (SNA) have been reported to exhibit improved penetration through the epidermis and the dermis of the skin upon topical application. Herein, we report a self-assembled, skin-depigmenting SNA structure, which is based upon a bifunctional oligonucleotide amphiphile containing an antisense oligonucleotide and a tyrosinase inhibitor prodrug. The two components work synergistically to increase oligonucleotide cellular uptake, enhance drug solubility, and promote skin penetration. The particles were shown to reduce melanin content in B16F10 melanoma cells and exhibited a potent antimelanogenic effect in an ultraviolet B-induced hyperpigmentation mouse model.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Hiperpigmentação/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Resorcinóis/uso terapêutico , Preparações Clareadoras de Pele/uso terapêutico , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Hiperpigmentação/patologia , Melaninas/metabolismo , Camundongos Endogâmicos C57BL , Monofenol Mono-Oxigenase/antagonistas & inibidores , Oligonucleotídeos Antissenso/genética , Pró-Fármacos/uso terapêutico , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Pele/patologia , Raios Ultravioleta
12.
ACS Appl Mater Interfaces ; 12(41): 45830-45837, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32936615

RESUMO

Herein, we report a novel strategy to enhance the antisense activity and the pharmacokinetics of therapeutic oligonucleotides. Through the DNA hybridization chain reaction, DNA hairpins modified with poly(ethylene glycol) (PEG) form a bottlebrush architecture consisting of a double-stranded DNA backbone, PEG side chains, and antisense overhangs. The assembled structure exhibits high PEG density on the surface, which suppresses unwanted interactions between the DNA and proteins (e.g., enzymatic degradation) while allowing the antisense overhangs to hybridize with the mRNA target and thereby deplete target protein expression. We show that these PEGylated bottlebrushes targeting oncogenic KRAS can achieve much higher antisense efficacy compared with unassembled hairpins with or without PEGylation and can inhibit the proliferation of lung cancer cells bearing the G12C mutant KRAS gene. Meanwhile, these structures exhibit elevated blood retention times in vivo due to the biological stealth properties of PEG and the high molecular weight of the overall assembly. Collectively, this self-assembly approach bears the characteristics of a simple, safe, yet highly translatable strategy to improve the biopharmaceutical properties of therapeutic oligonucleotides.


Assuntos
DNA/química , Oligonucleotídeos Antissenso/farmacocinética , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/sangue , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Oligonucleotídeos Antissenso/sangue , Oligonucleotídeos Antissenso/química , Distribuição Tecidual
13.
Biomaterials ; 221: 119399, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421314

RESUMO

Hernia repair outcomes have improved with more robust material options for surgeons and optimized surgical techniques. However, ventral hernia repairs remain challenging with an inherent risk of post-surgical adhesions in the peritoneal space which can occur regardless of interventional material or its surgical placement. Herein, amino acid-based poly(ester urea)s (PEUs) with varied amount of an allyl ether side chains were modified post polymerization modification with the zwitterionic sulfnate group (3-((3-((3-mercaptopropanoyl)oxy)propyl) dimethylammonio)propane-1-sulfonate) to promote anti-adhesive properties. These alloc-PEUs were processed using roll-to-roll fabrication methods to afford films that were amenable to surface functionalization via a zwitterion-thiol. Functional group availability on the surface was confirmed via fluorescence microscopy, x-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance (QCM) measurements. Zwitterionic treated PEUs exhibited reduced fibrinogen adsorption in vitro when compared to unfunctionalized control polymer. A rat intrabdominal cecal abrasion adhesion model was used to assess the extent and tenacity of adhesion formation in the presence of the PEUs. The 10% alloc-PEU zwitterion functionalized material was found to reduce the extent and tenacity of adhesions when compared to adhesion controls and the unfunctionalized PEU controls.


Assuntos
Aminoácidos Neutros/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Poliésteres/química , Poliésteres/uso terapêutico , Aderências Teciduais/prevenção & controle , Ureia/análogos & derivados , Animais , Feminino , Fibrinogênio/metabolismo , Herniorrafia/métodos , Técnicas de Microbalança de Cristal de Quartzo , Ratos , Ratos Sprague-Dawley , Ureia/uso terapêutico
14.
Ecotoxicol Environ Saf ; 163: 331-339, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059877

RESUMO

Cadmium (Cd) is one of the most toxic metals released into the environment. Here, we investigated the protective role of Zn2+ and/or N-acetyl-L-cysteine (NAC) against Cd cytotoxicity in the erythrocytes of Arbor Acres (AA) broiler chickens. Four hundred one-day-old AA chickens were divided into 12 groups for in vitro and in vivo studies. Zn2+ and/or NAC was given to the Cd exposed AA chickens to assess their protective roles. This was accomplished by investigating nuclear morphological abnormalities, oxidative stress (SOD, CAT, GPx, GSH and T-AOC), cell apoptosis, ROS accumulation and mitochondrial membrane potential (MMP). Results showed that Cd led to dose- and time-dependent cytotoxicity in the erythrocytes of AA chickens characterized by morphological abnormalities, nucleus damage, increased apoptosis rate and antioxidants depletion. Zn2+ or NAC significantly decreased the erythrocyte apoptosis, ROS production and mitochondrial membrane depolarization caused by Cd. SOD, CAT, GPx, GSH and T-AOC activities significantly decreased both in serum and erythrocytes of Cd exposed AA chickens. The supplementation with Zn2+ or NAC alleviated Cd induced oxidative stress through promoting SOD or GPx/GSH activities respectively. NAC presented a better role in reducing apoptosis, improving antioxidant activities more than Zn2+ in vitro. The combined use of Zn2+ and NAC enhanced cytoprotection in Cd exposed erythrocytes of AA chickens compared to Zn2+ or NAC alone. In conclusion, Zn2+ and NAC exerted remarkable protective roles in Cd exposed erythrocytes of AA chickens by inhibiting cell apoptosis and oxidative stress, and this provides a promising approach to antagonize Cd poisoning in poultry.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Cádmio/toxicidade , Eritrócitos/efeitos dos fármacos , Zinco/farmacologia , Animais , Apoptose/efeitos dos fármacos , Galinhas , Estresse Oxidativo/efeitos dos fármacos
15.
Biomed Res Int ; 2014: 695797, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250328

RESUMO

The purpose of this study was to investigate if PPARγ plays a role in the melanogenesis. B16/F10 cells were divided into five groups: control, melanin stimulating hormone (α-MSH), α-MSH+retinol, α-MSH+GW9662 (PPARγ antagonist), and GW9662. Cells in the control group were cultured in the Dulbecco's modified Eagle's medium (DMEM) for 48 hrs. To initiate the melanogenesis, cells in all α-MSH groups were cultured in medium containing α-MSH (10 nM) for 48 hrs. Cells were treated simultaneously with retinol (5 µM) in the α-MSH+retinol group. Instead of retinol, GW9662 (10 µM) was cocultured in the α-MSH+GW9662 group. Cells in the final group were cultured in the DMEM with GW9662. All the analyses were carried out 48 hours after treatments. The α-MSH was able to increase cell number, melanin production, and the activity of tyrosinase, the limiting enzyme in melanogenesis. These α-MSH-induced changes were prevented either by retinol or by GW9662. Further analyses of the activities of antioxidant enzymes including glutathione, catalase, and the superoxide dismutase (SOD) showed that α-MSH treatment raised the activity of SOD which was dependent on PPARγ level. According to our results, the α-MSH-induced melanogenesis was PPARγ dependent, which also modulated the expression of SOD.


Assuntos
Anilidas/administração & dosagem , Carcinogênese/efeitos dos fármacos , Melaninas/metabolismo , Melanoma/metabolismo , Melanoma/patologia , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , alfa-MSH/administração & dosagem
16.
BMC Musculoskelet Disord ; 15: 238, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25022571

RESUMO

BACKGROUND: Estradiol plays an important role in the regulation of collagen metabolism. Deficiency of estradiol has been reported to be associated with the degeneration of many connective tissues. However, the association of estradiol and hypertrophy of the ligamentum flavum was seldom explored. Therefore, we studied the effects of estradiol on cultured cells from the ligamentum flavum. METHODS: Primary cultures of human ligamentum flavum cells obtained from surgical specimens of 14 patients undergoing spinal surgery were used to investigate the effect of estradiol on cell proliferation and the expression of collagen, elastin, and matrix metalloproteinases. Downstream pathways of estrogen receptor underlying the regulation of metalloproteinases were also investigated. RESULTS: In our study, we revealed the existence of estrogen receptors on both female and male ligamentum flavum cells with a gender difference. 17ß-estradiol increased early (24 hours) proliferation of ligamentum flavum cells in a dose dependent manner and the effect could not be seen when the cell density increased. Estradiol with a concentration of 10(-9) M decreased collagen levels and increased the expression of MMP-13. Adding an antagonist of PI3K downstream pathway could reverse the expression of MMP-13 caused by estradiol. CONCLUSIONS: The results implied estradiol regulated the expression of MMP-13 via PI3K pathway and contributed to the homeostasis of extracellular matrix in the ligamentum flavum.


Assuntos
Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Estradiol/farmacologia , Ligamento Amarelo/efeitos dos fármacos , Idoso , Células Cultivadas , Colágeno/genética , Relação Dose-Resposta a Droga , Feminino , Humanos , Ligamento Amarelo/metabolismo , Ligamento Amarelo/patologia , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
17.
J Biol Chem ; 283(46): 31408-16, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18786925

RESUMO

Previously, we have demonstrated the induction of Src in lipopolysaccharide (LPS)-stimulated macrophages. In this study, we observed that pharmacological blockade or knockout of inducible nitric-oxide synthase (iNOS) reduced LPS-mediated Src induction and macrophage migration. Either SNAP (a NO donor) or 8-Br-cGMP (a cGMP analogue) could rescue these defects in iNOS-null macrophages, which indicated the participation of NO/cGMP in LPS-elicited Src expression and mobilization. In addition, Src family kinase (SFK)-specific inhibitor, PP2, inhibited SNAP- and 8-Br-cGMP-evoked motility implicating the involvement of SFKs downstream of NO/cGMP. Analysis of the expression of SFKs indicated LPS dramatically induced Src, which could be attributable to the increased level of the src transcript. Attenuation of Src by src-specific siRNA reduced LPS- and SNAP-evoked mobilization in Raw264.7 macrophages, and reintroduction of avian Src could rescue their motility. Furthermore, LPS-mediated Src induction led to increased FAK Pi-Tyr-397 and Pi-Tyr-861, which was also iNOS-dependent. With these findings, we concluded that iNOS was important for LPS-mediated macrophage locomotion and Src was a critical player in this process.


Assuntos
Movimento Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Quinases da Família src/metabolismo , Animais , Células Cultivadas , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Inibidores de Proteases/farmacologia , RNA Interferente Pequeno/genética , Ratos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Guanilil Ciclase Solúvel , Regulação para Cima/efeitos dos fármacos , Quinases da Família src/genética
18.
J Biomed Mater Res A ; 79(4): 846-57, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16886221

RESUMO

In the present study, NGF, BNDF from the neurotrophin family and IGF-1 were covalently immobilized on gelatin-tricalcium phosphate (GTG) membrane using carbodiimide. We investigated the effects of these growth factors released from the GTG composites on cultured PC12 cells and sciatic nerve regeneration across a 10-mm-long gap in rats. In PC12 cell culture, the total protein content and MTT assay indicated more cell attachment on the composites modified with growth factors. The IGF-1 group showed a higher survival promotion effect on PC12 cells than did BDNF and NGF groups. On the other hand, NGF released from the composite showed the highest level of neuritogenesis for PC12 cells in neurite outgrowth assay. In the animal study, the GTG conduits modified with various growth factors were well tolerated by the host tissue. In the regenerated nerves, the number of the axons per unit area of the BDNF group was significantly higher than that of NGF and GTG groups but similar to that of IGF-1 group. However, the average axon size was the largest in NGF group. This result was in concordance with the neurite outgrowth assay in which NGF showed the highest neuritogenic potential. In the assessment of motor and sensory recovery after nerve repair, conduits modified with various neurotrophic factors showed a more favorable outcome in compound muscle action potential. The BDNF group had a better gastrocnemic muscle weight ratio than blank GTG repair. Nevertheless, the different effects of GTG conduits modified with various neurotrophic factors on functional recovery cannot be simply illustrated in the sciatic function index.


Assuntos
Materiais Biocompatíveis , Fosfatos de Cálcio , Gelatina , Regeneração Tecidual Guiada , Peptídeos e Proteínas de Sinalização Intercelular , Membranas Artificiais , Regeneração Nervosa , Animais , Regeneração Tecidual Guiada/métodos , Masculino , Teste de Materiais/métodos , Células PC12 , Ratos , Ratos Wistar , Nervo Isquiático/lesões , Nervo Isquiático/patologia
19.
Biomaterials ; 26(33): 6579-87, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16023717

RESUMO

The gelatin-tricalcium phosphate membranes were cross-linking with low concentration glutaraldehyde solution (GTG). This material has good mechanical property, biocompatibility, and is feasible for surgical manipulation. For axonal regeneration, nerve growth factors (NGF) were immobilized onto the composite (GTG) with carbodiimide. The purpose of this study was to evaluate the release characteristics and bioactivity of NGF after covalent immobilization onto the GTG membranes (GEN). NGF immobilized onto and released from the composite was quantified using ELISA method. PC 12 cells were cultured on the GTG and GEN composites. Cell survival, cytotoxicity, and cellular activity were evaluated by total protein content, LDH activity, and MTT assay respectively. Neurite outgrowth assay was used to evaluate the biological activity of NGF released from GEN composite. From ELISA measurement, the releasing curve for NGF showing two distinctive parts with different slopes indicated that NGF were released from the composite in diffusion-controlled mechanism and degradation-controlled mechanism respectively. While culturing with PC 12 cells, LDH leakage results implied that whether GTG composite cross-linked with NGF or not showed little cytotoxicity. The total protein content and cellular activity of PC 12 cells were lower on GTG and GEN membranes than control group. However, 56%+/-3.98 of PC 12 cells showed significant neurite outgrowth on GEN membranes which was statistically higher than GTG without NGF immobilization. In addition, sustained release of bioactive NGF for two months had been demonstrated by neurite outgrowth assay. From these experiments, it can be concluded that the technique used in the present study is capable of immobilizing NGF onto GTG membranes covalently and remaining the bioactivity of NGF. Therefore, GEN composite can be materials for sustained release of bioactive NGF and a candidate for future therapeutic application in nerve repair.


Assuntos
Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Gelatina/química , Fatores de Crescimento Neural/química , Animais , Carbodi-Imidas/química , Membrana Celular/metabolismo , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Células Cultivadas , Reagentes de Ligações Cruzadas/farmacologia , Difusão , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Cinética , L-Lactato Desidrogenase/metabolismo , Modelos Químicos , Fatores de Crescimento Neural/metabolismo , Neuritos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Ratos , Temperatura , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA