Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1412035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975324

RESUMO

Background: The relationship between gut microbiota and hematologic malignancies has attracted considerable attention. As research progresses, it has become increasingly clear that the composition of gut microbiota may influence the onset and progression of hematologic malignancies. However, our understanding of this association remains limited. Methods: In our study, we classified gut microbiota into five groups based on information at the phylum, class, order, family, and genus levels. Subsequently, we obtained data related to common hematologic malignancies from the IEU Open GWAS project. We then employed a bidirectional Mendelian Randomization (MR) approach to determine whether there is a causal relationship between gut microbiota and hematologic malignancies. Additionally, we conducted bidirectional MR analyses to ascertain the directionality of this causal relationship. Results: Through forward and reverse MR analyses, we found the risk of lymphoid leukemia was significantly associated with the abundance of phylum Cyanobacteria, order Methanobacteriales, class Methanobacteria, family Peptococcaceae, family Methanobacteriaceae, and genera Lachnospiraceae UCG010, Methanobrevibacter, Eubacterium brachy group, and Butyrivibrio. The risk of myeloid leukemia was significantly associated with the abundance of phylum Actinobacteria, phylum Firmicutes, order Bifidobacteriales, order Clostridiales, class Actinobacteria, class Gammaproteobacteria, class Clostridia, family Bifidobacteriaceae, and genera Fusicatenibacter, Eubacterium hallii group, Blautia, Collinsella, Ruminococcus gauvreauii group, and Bifidobacterium. The risk of Hodgkin lymphoma was significantly associated with the abundance of family Clostridiales vadinBB60 group, genus Peptococcus, and genus Ruminococcaceae UCG010. The risk of malignant plasma cell tumor was significantly associated with the abundance of genera Romboutsia and Eubacterium rectale group. The risk of diffuse large B-cell lymphoma was significantly associated with the abundance of genera Erysipelatoclostridium and Eubacterium coprostanoligenes group. The risk of mature T/NK cell lymphomas was significantly associated with the abundance of phylum Verrucomicrobia, genus Ruminococcaceae UCG013, genus Lachnoclostridium, and genus Eubacterium rectale group. Lastly, the risk of myeloproliferative neoplasms was significantly associated with the abundance of genus Coprococcus 3 and Eubacterium hallii group. Conclusion: Our study provided new evidence for the causal relationship between gut microbiota and hematologic malignancies, offering novel insights and approaches for the prevention and treatment of these tumors.


Assuntos
Microbioma Gastrointestinal , Neoplasias Hematológicas , Análise da Randomização Mendeliana , Humanos , Microbioma Gastrointestinal/genética , Neoplasias Hematológicas/microbiologia , Neoplasias Hematológicas/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudo de Associação Genômica Ampla
2.
J Food Sci ; 89(3): 1428-1441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265167

RESUMO

Understanding quantitative relationships between protein and other chemical components in diverse soybean genotypes (lines) grown in different locations and the firmness of tofu can provide scientific insight for selecting soybean suitable for tofu making. Locations showed significant effects on seed components, including total protein, major storage proteins, subunits and polypeptides of the major storage proteins, and calcium, but not magnesium or phytic acid. Results showed that 11S content, but not 11S/7S ratio, was only correlated with filled tofu firmness when analyzed over all locations. A strong and positive correlation between firmness and A3 polypeptide of the 11S protein content was found for both pressed tofu (r = 0.80, p < 0.001) and filled tofu (r = 0.76, p < 0.001) over three locations (overall pooled data) and within most individual locations. The correlation of filled tofu firmness and A3 polypeptide was significant for each of the three individual locations. However, the correlation of pressed tofu firmness and A3 polypeptide content was significant at two of three locations. Mean calcium content was positively correlated with mean pressed and filled tofu firmness over all locations, but calcium was not correlated with pressed tofu firmness at any individual location, and only one location showed a significant correlation of calcium and filled tofu firmness. In addition, pressed tofu firmness was found to be negatively correlated with tofu yield. The findings that A3 polypeptide's strong relationship with tofu firmness within certain locations may be used by the food industry to select proper soybean for manufacturing tofu and to facilitate tofu soybean breeding for tofu making.


Assuntos
Glycine max , Alimentos de Soja , Proteínas de Soja/química , Cálcio , Melhoramento Vegetal , Peptídeos
3.
Front Public Health ; 11: 1329529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274540

RESUMO

Background: Our study examined the global, national, and regional trends in the incidence, mortality, and disability-adjusted life years (DALYs) associated with older people's acute myeloid leukemia (AML) over a 30 years period. AML, which predominantly affects individuals aged 60-89, is known for its severity and unfavorable prognosis. By providing insights into the growing burden of AML, our research highlights the urgent need for effective interventions and support at various levels. Methods: In this study, we analyzed older people with AML aged 60-89 using the Global Burden of Disease (GBD) database for 2019. Our goal was to assess trends and characteristics by examining the incidence rate, mortality rate, DALYs, and estimated annual percentage change (EAPC). We aimed to provide a comprehensive understanding of the disease's trajectory and development. Results: In 2019, the older age group of 60 to 89 years reported 61,559 new cases of AML, with the corresponding number of deaths being 53,620, and the estimated DALYs standing at 990,656. Over the last 30 years, the incidence rate of AML in this age bracket increased by 1.67 per 100,000 people, the mortality rate rose by 1.57 per 100,000 people, and the rate of DALYs, indicative of disease burden, climbed by 1.42 per 100,000 people. High Socio-demographic Index (SDI) regions, particularly high-income North America and Australia, had the highest incidence rates. Germany had the highest incidence rate among the 204 countries analyzed, while Monaco reported the highest mortality and DALY rates. Smoking, high body mass index, occupational exposure to benzene, and formaldehyde were identified as significant risk factors associated with mortality from older people with AML in 2019. Conclusion: Our study showed that the incidence, mortality, and DALY rates of AML in the older population were strongly correlated with the SDI, and these rates have been steadily increasing. This had become an increasingly serious global health issue, particularly in areas with a high SDI. We highlighted the urgency to focus more on this disease and called for the prompt implementation of appropriate preventive and control measures.


Assuntos
Carga Global da Doença , Leucemia Mieloide Aguda , Humanos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Anos de Vida Ajustados por Qualidade de Vida , Fatores de Risco , Efeitos Psicossociais da Doença , Leucemia Mieloide Aguda/epidemiologia
4.
Theor Appl Genet ; 135(11): 3773-3872, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35790543

RESUMO

KEY MESSAGE: This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.


Assuntos
Resistência à Doença , Glycine max , Glycine max/genética , Resistência à Doença/genética , Variações do Número de Cópias de DNA , Genômica
5.
J Food Sci Technol ; 54(1): 38-44, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28242901

RESUMO

In this study, we examined in vitro the bio-activity of peptide fractions obtained from soybeans against blood (CCRF-CEM and Kasumi-3), breast (MCF-7), and prostate (PC-3) cancer cell proliferation. Gastro-intestinal treated peptide fractions (<5, 5-10 and 10-50 kDa) prepared from seed proteins of two high oleic acid soybean lines-N98-4445A, S03-543CR and one high protein line-R95-1705, were tested for anticancer activity against human breast, blood and prostate cancer cell lines. Anti-proliferative cell titer assay was conducted to assess the inhibitory effects of the peptide fractions, while trypan blue dye exclusion assay was used to determine the dose response of most effective fractions. Results showed that the peptide fractions inhibited the cancer cell lines up to 68.0% and the minimum concentration to get 50% inhibitory activity (IC50) ranged between 608 and 678 µg/mL. This multiple site in vitro cancer inhibition by GI friendly peptides could have the potential use as food ingredients or nutritional supplements in an alternative cancer therapy.

6.
J Food Sci ; 82(3): 731-737, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28178372

RESUMO

Soybean hulls or seed coats consist of complex carbohydrates, proteins, lipids, and polyphenols such as anthocyanidins, proanthocyanidins, and isoflavones. The polyphenolics in the seed coats give them various colors such as black, brown, green, yellow, or even a mottled appearance. In this study, the antimicrobial effects of phenolic extracts from the seed coats of different colored soybeans (yellow, dark brown, brown, and black) were evaluated against foodborne pathogens such as Salmonella Typhimurium, Escherichia coli O157:H7, and Campylobacter jejuni in broth-cultures as well as on chicken skin. The highest total phenolic content was observed for the phenolic extract from soybean variety (R07-1927) with black colored seed coat (74.1 ± 2.1 mg chlorogenic acid equivalent [CAE]/g extract) and was significantly different (P <0.0001) from the extract of the conventional soybean variety (R08-4004) with yellow colored seed coat (7.4 ± 1.2 mg CAE/g extract). The extract from black colored soybean produced reductions of 2.10 ± 0.08 to 2.20 ± 0.08-log CFU/mL for both E. coli O157:H7 and C. jejuni after 3 d when incubated in broth-culture having 4-log CFU/mL of bacteria, whereas a 6 d incubation was found to reduce S. Typhimurium and E. coli O157:H7 at 2.03 ± 0.05 and 3.3 ± 0.08-log CFU/mL, respectively. The extract also reduced S. Typhimurium and E. coli O157:H7 attached to chicken skin by 1.39 ± 0.03 and 1.24 ± 0.06-log CFU/g, respectively, upon incubation for 6 d. Soybean seed coat extracts may have a potency as antimicrobial agents to reduce foodborne bacteria contaminating poultry products.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Flavonoides/farmacologia , Microbiologia de Alimentos , Glycine max/química , Fenóis/farmacologia , Sementes/química , Animais , Antocianinas/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Galinhas , Contagem de Colônia Microbiana , Escherichia coli O157/efeitos dos fármacos , Humanos , Isoflavonas/farmacologia , Carne/microbiologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proantocianidinas/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Glycine max/classificação , Especificidade da Espécie
7.
J Food Sci Technol ; 53(8): 3271-3281, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27784921

RESUMO

Protein beverages have been in demand due to an increasing consumers' interest in healthy eating habit. However, there is an increased concern on the use of genetic modified (GM) ingredient in the food product. This study aimed to develop protein hydrolysate beverages using a non-GM soybean (R08-4004/high protein line) grown in Arkansas. Protein isolate was prepared from the soybean using alkaline method (pH 9.5). Due to its poor solubility in acidic condition, alcalase 2.4 L (food grade protease) hydrolyzed soy protein was used to develop a beverage containing 20 g protein per serving (500 mL). Three flavored beverages: Chai tea (C), tangerine (T), and mixed berries (MB) were prepared using bitter blocker, masking agent, and citric acid to minimize an unpleasant bitter taste developed in the soy hydrolysates. Protein solubility, pH, microbial growth, instrumental color parameters, and turbidity were measured to evaluate the shelf-life stability of the beverages at refrigerated storage (5 °C) for 42 days. Beverages T and MB received overall highest scores from the sensory panel. Citric acid alone or in combination with bitter blocker or masking agent lowered the bitterness. Pasteurization (90-95 °C for 5 min) was effective in preventing microbial growth. Although pH remained constant, decrease in protein solubility and color changes were observed over the storage time in all the three flavored beverages. Cloudiness in beverage C increased over the storage period while beverages T and MB were very stable. Overall, T and MB flavored beverages have the potential for commercial application.

8.
J Food Sci Technol ; 52(9): 6067-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26345030

RESUMO

Functional properties of the soy protein need to improve to have better applications in food industry. Alkali extracted and acid precipitated soy protein isolate (SPI) was glycosylated using D-glucose (G) and Xanthan gum (X) via Maillard reaction to improve solubility. The effects of SPI to G and SPI to X ratios (SPI:G = 2:1, 1:1, and 1:2; SPI:X = 100:1 and 10:1) and incubation time (0, 6, 12, and 24 h) on the solubility and functional properties of glycosylated SPI were evaluated. The SPI:G ratio of 1:2 yielded a maximum degree of glycosylation of 71.1 %. The solubility of SPI after glycosylation significantly increased (P < 0.05) at pH 4.0-8.0 compared to SPI alone. Although the emulsion stability of glycosylated SPIs has not significantly increased (P > 0.05), the emulsifying activity improved significantly (P < 0.05). Glycosylation with SPI-X at a ratio of 10: 1 showed maximum emulsifying activity of 191.6 m(2)/g (SPI alone: 66.3 m(2)/g). Moreover, the SPI:X (ratio of 100:1) showed the maximum foaming activity (205 mL) compared to SPI alone (155 mL). The foaming stability of SPI (2.6 %) increased to 5.5 and 8.2 % when using xanthan gum at the ratio of 100:1 and 10:1, respectively. Glycosylated SPI with enhanced emulsifying and foaming properties has potential to improve the functional quality of the food products.

9.
BMC Genomics ; 15: 299, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24755115

RESUMO

BACKGROUND: Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. RESULTS: In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. CONCLUSIONS: As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.


Assuntos
Glycine max/genética , Polimorfismo Genético , Óleo de Soja/química , Transcriptoma , Cromossomos de Plantas , Análise por Conglomerados , Perfilação da Expressão Gênica , Genótipo , Mutação INDEL , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Família Multigênica , Especificidade de Órgãos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/genética , Sementes/metabolismo , Análise de Sequência de RNA , Glycine max/metabolismo
10.
J Agric Food Chem ; 58(7): 4428-33, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20225855

RESUMO

Bitter melon (Momordica charantia) is an exotic vegetable used for consumption and medicinal purposes mainly throughout Asia. Phenolics were extracted from pericarp (fleshy portion) and seeds of bitter melons harvested at three maturation stages (immature, mature, and ripe) using ethanol and water solvent systems. Total phenolic assessment demonstrated 80% of ethanol to be the optimal solvent level to extract phenolics either from pericarp or seed. Main phenolic constituents in the extracts were catechin, gallic acid, gentisic acid, chlorogenic acid, and epicatechin. Free radical scavenging assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH) demonstrated the bitter melon extracts as slow rate free radical scavenging agents. There were low correlations between the total phenolic contents and antiradical power values of the extracts, suggesting a possible interaction among the phenolic constituents occurred. Bitter melon phenolic extracts contain natural antioxidant substances, and could be used as antioxidant agents in suitable food products.


Assuntos
Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/isolamento & purificação , Momordica charantia/química , Momordica charantia/crescimento & desenvolvimento , Fenóis/análise , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/análise , Sementes/química , Sementes/crescimento & desenvolvimento
11.
Phytopathology ; 94(7): 687-92, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18943900

RESUMO

ABSTRACT Resistance to Soybean mosaic virus (SMV) was identified in PI 88788 soybean, a germ plasm accession from China that is used widely as a source of resistance to soybean cyst nematode. Strains SMV-G1 through -G7 infected the inoculated leaves of PI 88788 but were not detected in upper, noninoculated trifoliolate leaves. Inheritance of resistance was determined by inoculating progenies of crosses of PI 88788 with susceptible cvs. Essex and Lee 68 with SMV strains G1 and G7. Allelomorphic relationships with known genes for resistance to SMV were tested in crosses with the resistant genotypes PI 96983, L29, and V94-5152, possessing Rsv1, Rsv3, and Rsv4 genes, respectively. Data analyses showed that resistance in PI 88788 to SMV-G1 is controlled by a single, partially dominant gene; however, to SMV-G7, the same gene was completely dominant. The PI 88788 gene was independent of the Rsv1 and Rsv3 loci, but allelic to Rsv4 in V94-5152. Expression of the Rsv4 gene in PI 88788 resulted in a reduced number of infection sites and restricted short- and long-distance movement of virus, rather than hypersensitivity. A unique late susceptible phenotype was strongly associated with heterozygosity. This gene has potential value for use in gene pyramiding to achieve resistance to several SMV strains, as well as for rate-reducing resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA