Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 15(4)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37536321

RESUMO

Progenitor human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models through biofabrication. However, this approach has limitations in terms of achieving the intricate three-dimensional (3D) structure of the natural nasal epithelium. 3D bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of progenitor hNECs ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4 weeks air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes, such as disease modeling, immunological studies, and drug screening.


Assuntos
Bioimpressão , Humanos , Mucosa Nasal/metabolismo , Células Epiteliais , Mucosa Respiratória/metabolismo , Cílios
2.
Proc Natl Acad Sci U S A ; 119(42): e2123338119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36240321

RESUMO

5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.


Assuntos
Interferon Tipo I , Viroses , 5-Metilcitosina/metabolismo , Animais , Antivirais , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Interferons , Ligantes , Camundongos , RNA Polimerase III , Replicação Viral/genética
3.
PLoS Pathog ; 17(12): e1010142, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34929018

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in humans. A well-known challenge in the development of a live attenuated RSV vaccine is that interferon (IFN)-mediated antiviral responses are strongly suppressed by RSV nonstructural proteins which, in turn, dampens the subsequent adaptive immune responses. Here, we discovered a novel strategy to enhance innate and adaptive immunity to RSV infection. Specifically, we found that recombinant RSVs deficient in viral RNA N6-methyladenosine (m6A) and RSV grown in m6A methyltransferase (METTL3)-knockdown cells induce higher expression of RIG-I, bind more efficiently to RIG-I, and enhance RIG-I ubiquitination and IRF3 phosphorylation compared to wild-type virion RNA, leading to enhanced type I IFN production. Importantly, these m6A-deficient RSV mutants also induce a stronger IFN response in vivo, are significantly attenuated, induce higher neutralizing antibody and T cell immune responses in mice and provide complete protection against RSV challenge in cotton rats. Collectively, our results demonstrate that inhibition of RSV RNA m6A methylation enhances innate immune responses which in turn promote adaptive immunity.


Assuntos
Adenosina/análogos & derivados , RNA Viral , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Imunidade Adaptativa , Animais , Imunidade Inata , Metilação , Camundongos , Ratos
4.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177201

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in children of <5 years of age worldwide, infecting the majority of infants in their first year of life. Despite the widespread impact of this virus, no vaccine is currently available. For more than 50 years, live attenuated vaccines (LAVs) have been shown to protect against other childhood viral infections, offering the advantage of presenting all viral proteins to the immune system for stimulation of both B and T cell responses and memory. The RSV LAV candidate described here, rgRSV-L(G1857A)-G(L208A), contains two modifications: an attenuating mutation in the S-adenosylmethionine (SAM) binding site of the viral mRNA cap methyltransferase (MTase) within the large (L) polymerase protein and a mutation in the attachment (G) glycoprotein that inhibits its cleavage during production in Vero cells, resulting in virus with a "noncleaved G" (ncG). RSV virions containing the ncG have an increased ability to infect primary well-differentiated human bronchial epithelial (HBE) cultures which model the in vivo site of immunization, the ciliated airway epithelium. This RSV LAV candidate is produced efficiently in Vero cells, is highly attenuated in HBE cultures, efficiently induces neutralizing antibodies that are long lasting, and provides protection against an RSV challenge in the cotton rat, without causing enhanced disease. Similar results were obtained in a rhesus macaque.IMPORTANCE Globally, respiratory syncytial virus (RSV) is a major cause of death in children under 1 year of age, yet no vaccine is available. We have generated a novel RSV live attenuated vaccine candidate containing mutations in the L and G proteins. The L polymerase mutation does not inhibit virus yield in Vero cells, the cell type required for vaccine production, but greatly reduces virus spread in human bronchial epithelial (HBE) cultures, a logical in vitro predictor of in vivo attenuation. The G attachment protein mutation reduces its cleavage in Vero cells, thereby increasing vaccine virus yield, making vaccine production more economical. In cotton rats, this RSV vaccine candidate is highly attenuated at a dose of 105 PFU and completely protective following immunization with 500 PFU, 200-fold less than the dose usually used in such studies. It also induced long-lasting antibodies in cotton rats and protected a rhesus macaque from RSV challenge. This mutant virus is an excellent RSV live attenuated vaccine candidate.


Assuntos
Mutação , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sincicial Respiratório Humano/imunologia , S-Adenosilmetionina/metabolismo , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Sítios de Ligação , Feminino , Humanos , Macaca mulatta , Masculino , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Sigmodontinae , Vacinação , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Nat Commun ; 10(1): 4595, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597913

RESUMO

N6-methyladenosine (m6A) is the most prevalent internal modification of mRNAs in most eukaryotes. Here we show that RNAs of human respiratory syncytial virus (RSV) are modified by m6A within discreet regions and that these modifications enhance viral replication and pathogenesis. Knockdown of m6A methyltransferases decreases RSV replication and gene expression whereas knockdown of m6A demethylases has the opposite effect. The G gene transcript contains the most m6A modifications. Recombinant RSV variants expressing G transcripts that lack particular clusters of m6A display reduced replication in A549 cells, primary well differentiated human airway epithelial cultures, and respiratory tracts of cotton rats. One of the m6A-deficient variants is highly attenuated yet retains high immunogenicity in cotton rats. Collectively, our results demonstrate that viral m6A methylation upregulates RSV replication and pathogenesis and identify viral m6A methylation as a target for rational design of live attenuated vaccine candidates for RSV and perhaps other pneumoviruses.


Assuntos
Adenosina/análogos & derivados , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Replicação Viral/imunologia , Células A549 , Adenosina/genética , Adenosina/imunologia , Adenosina/metabolismo , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Feminino , Células HeLa , Humanos , Masculino , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/patogenicidade , Sigmodontinae , Regulação para Cima/imunologia , Vacinas Atenuadas/imunologia , Células Vero , Virulência/genética , Virulência/imunologia , Replicação Viral/genética
6.
Sci Rep ; 5: 9248, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25801123

RESUMO

Our intracranial implantation mouse model of ependymoma clearly demonstrates overexpression of the ephrin receptor EphB2 in Ink4a/Arf((-/-)) supratentorial embryonic neural stem cells (STeNSCs) to be essential for transformation and disease development; however the requirement for and consequence of receptor activation on transformation and neural stem cell function were not examined. We definitively illustrate the necessity for receptor activation in cellular transformation and the importance of implantation site and microenvironment in directing ependymoma development. In vitro assays of EphB2 overexpressing Ink4a/Arf((-/-)) STeNSCs showed no changes in their neural stem cell characteristics (stem cell marker expression and self-renewal) upon receptor activation, but EphB2 driven tumor cells were inhibited significantly in differentiation and exhibited increased tumorsphere formation and cellular proliferation in response to ephrin-B ligand mediated receptor activation. Additionally, we observed substantial differences in the phosphorylation state of several key proteins involved in Ras and p38 MAPK signaling when comparing EphB2 overexpressing Ink4a/Arf((-/-)) STeNSCs and tumor cells with relatively little change in total protein levels. We propose that EphB2 mediated ependymoma development is a multifactorial process requiring microenvironment directed receptor activation, resulting in changes in the phosphorylation status of key regulatory proteins, maintenance of a stem-like state and cellular proliferation.


Assuntos
Neoplasias Encefálicas/genética , Transformação Celular Neoplásica/genética , Ependimoma/genética , Regulação Neoplásica da Expressão Gênica , Receptor EphB2/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Ependimoma/metabolismo , Ependimoma/patologia , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fosforilação , Receptor EphB2/metabolismo , Transdução de Sinais , Microambiente Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
7.
Am J Physiol Renal Physiol ; 301(3): F660-71, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21632959

RESUMO

The state-of-the-art cultured podocyte is conditionally immortalized by expression of a temperature-sensitive mutant of the SV40 large-T antigen. These cultures proliferate at 33°C and differentiate at 37°C into arborized cells that more closely resemble in vivo podocytes. However, the degree of resemblance remains controversial. In this study, several parameters were measured in podocyte cell lines derived from mouse (JR, KE), human (MS), and rat (HK). In all lines, the quantities of NEPH1 and podocin proteins and NEPH1 and SYNPO mRNAs were comparable to glomeruli, while synaptopodin and nephrin proteins and NPHS1 and NPHS2 mRNAs were <5% of glomerular levels. Expression of Wilms' tumor-1 (WT1) mRNA in mouse lines was comparable to glomeruli, but rat and human lines expressed little WT1. Undifferentiated human and mouse lines had similar proliferation rates that decreased after differentiation, while the rate in rat cells remained constant. The motility of different lines varied as measured by both general motility and wound-healing assays. The toxicity of puromycin aminonucleoside was MS ∼ JR >> KE, and of doxorubicin was JR ∼ KE > MS, while HK cells were almost unaffected. Process formation was largely a result of contractile action after formation of lamellipodia. These findings demonstrate dramatic differences in marker expression, response to toxins, and motility between lines of podocytes from different species and even between similarly-derived mouse lines.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Podócitos/citologia , Podócitos/metabolismo , Animais , Biomarcadores/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/fisiologia , Células Cultivadas , Doxorrubicina/farmacologia , Humanos , Masculino , Camundongos , Modelos Animais , Podócitos/efeitos dos fármacos , Puromicina Aminonucleosídeo/farmacologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Proteínas WT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA