Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Anal Chim Acta ; 1316: 342824, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969403

RESUMO

BACKGROUND: As is well documented, prostate cancer (PCa) being the second most prevalent cancer in men worldwide, emphasizing the importance of early diagnosis for prognosis. However, conventional prostate-specific antigen (PSA) testing lacks sufficient diagnostic efficiency due to its relatively low sensitivity and limited detection range. Mounting evidence suggests that matrix metalloproteinase 9 (MMP-9) expression increases with the aggressive behavior of PCa, highlighting the significance of detecting the serum level of MMP-9 in patients. Developing a non-immune rapid, portable MMP-9 detection strategy and investigating its representativeness of PCa serum markers hold considerable implications. RESULTS: Herein, our study developed a simple, homogeneous dual fluorescence and smartphone-assisted red-green-blue (RGB) visualization peptide sensor of MMP-9, utilizing cadmium telluride quantum dots (CdTe QDs) and calcein as signal reporters. The essence of our approach revolves around the proteolytic ability of MMP-9, exploiting the selective recognition of molecule-Cu2+ complexes with different molecular weights by CdTe QDs and calcein. Under optimized conditions, the limits of detection (LODs) for MMP-9 were 0.5 pg/mL and 6 pg/mL using fluorescence and RGB values readouts, respectively. Indeed, this strategy exhibited robust specificity and anti-interference ability. MMP-9 was quantified in 42 clinical serum samples via dual-fluorescence analysis, with 12 samples being visually identified with a smartphone. According to receiver operating characteristic curve (ROC) analysis, its sensitivity and specificity were 90 % and 100 %, respectively, with an area under curve (AUC) value of 0.903. SIGNIFICANCE AND NOVELTY: Of note, the results of the aforementioned analysis were highly consistent with the serum level of PSA, clinical color Doppler flow imaging (CDFI), and histopathological results. Therefore, this simple, rapid, homogeneous fluorescence and visualization strategy can reliably measure MMP-9 levels and exhibit promising potential in point-of-care testing (POCT) applications for PCa patients.


Assuntos
Compostos de Cádmio , Corantes Fluorescentes , Metaloproteinase 9 da Matriz , Pontos Quânticos , Telúrio , Humanos , Corantes Fluorescentes/química , Telúrio/química , Metaloproteinase 9 da Matriz/sangue , Pontos Quânticos/química , Compostos de Cádmio/química , Masculino , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Smartphone , Espectrometria de Fluorescência , Limite de Detecção
2.
Biosens Bioelectron ; 261: 116493, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901393

RESUMO

Although circulating tumor cells (CTCs) have demonstrated considerable importance in liquid biopsy, their detection is limited by low concentrations and complex sample components. Herein, we developed a homogeneous, simple, and high-sensitivity strategy targeting breast cancer cells. This method was based on a non-immunological stepwise centrifugation preprocessing approach to isolate CTCs from whole blood. Precise quantification is achieved through the specific binding of aptamers to the overexpressed mucin 1 (MUC1) and human epidermal growth factor receptor 2 (HER2) proteins of breast cancer cells. Subsequently, DNAzyme cleavage and parallel catalytic hairpin assembly (CHA) reactions on the cholesterol-stacking DNA machine were initiated, which opened the hairpin structures T-Hg2+-T and C-Ag+-C, enabling multiple amplifications. This leads to the fluorescence signal reduction from Hg2+-specific carbon dots (CDs) and CdTe quantum dots (QDs) by released ions. This strategy demonstrated a detection performance with a limit of detection (LOD) of 3 cells/mL and a linear range of 5-100 cells/mL. 42 clinical samples have been validated, confirming their consistency with clinical imaging, pathology findings and the folate receptor (FR)-PCR kit results, exhibiting desirable specificity of 100% and sensitivity of 80.6%. These results highlight the promising applicability of our method for diagnosing and monitoring breast cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Colesterol , DNA Catalítico , Células Neoplásicas Circulantes , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/sangue , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Biópsia Líquida/métodos , Células Neoplásicas Circulantes/patologia , Colesterol/sangue , Colesterol/análise , Limite de Detecção , Pontos Quânticos/química , Receptor ErbB-2/análise , Mucina-1/análise , Mucina-1/sangue , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Telúrio/química , Compostos de Cádmio/química
3.
Adv Sci (Weinh) ; : e2403371, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923850

RESUMO

Here, a separation-free and label-free portable aptasensor is developed for rapid and sensitive analysis of tumor-derived exosomes (TEXs). It integrated a parallel rolling circle amplification (RCA) reaction, selective binding of metal ions or small molecules to nucleic acid-specific conformations, and a low-cost, highly sensitive handheld fluorometer. Lung cancer, for example, is targeted with two typical biomarkers (mucin 1 and programmed cell death ligand 1 (PD-L1)) on its exosomes. The affinity of aptamers to the targets modulated the amount of RCA products (T-Hg2+-T and cytosine (C)-rich single-stranded DNA), which in turn affected the fluorescence intensity of quantum dots (QDs) and methylene blue (MB). The results revealed that the limit of detection (LOD) of the handheld fluorometer for cell-derived exosomes can be as low as 30 particles mL-1. Moreover, its specificity, sensitivity, and area under the curve (AUC) are 93% (14/15), 92% (23/25), and 0.956, as determined by the analysis of 40 clinical samples. Retesting 16 of these samples with the handheld fluorometer yielded strong concordance between the fluorometer results and those acquired from clinical computed tomography (CT) and pathology.

4.
Anal Chem ; 96(26): 10705-10713, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38910291

RESUMO

Circulating tumor cells (CTCs) serve as important biomarkers in the liquid biopsy of hepatocellular carcinoma (HCC). Herein, a homogeneous dual fluorescence indicators aptasensing strategy is described for CTCs in HCC, with the core assistance of a steric hindrance-mediated enzymatic reaction. CTCs in the sample could specifically bind to a 5'-biotin-modified glypican-3 (GPC3) aptamer and remove the steric hindrance formed by the biotin-streptavidin system. This influences the efficiency of the terminal deoxynucleotidyl transferase enzymatic reaction. Then, methylene blue (MB) was introduced to react with the main product poly cytosine (polyC) chain, and trivalent cerium ion (Ce3+) was added to react with the byproduct pyrophosphate to form fluorescent pyrophosphate cerium coordination polymeric nanoparticles. Finally, the CTCs were quantified by dual fluorescence indicators analysis. Under optimized conditions, the linear range was 5 to 104 cells/mL, and the limits of detection reached 2 cells/mL. Then, 40 clinical samples (15 healthy and 25 HCC patients) were analyzed. The receiver operating characteristic curve analysis revealed an area under the curve of 0.96, a sensitivity of 92%, and a specificity of 100%. Therefore, this study established a sensitive and accurate CTCs sensing system for clinical HCC patients, promoting early tumor diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Hepatocelular , Corantes Fluorescentes , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Glipicanas/metabolismo , Técnicas Biossensoriais
5.
Research (Wash D C) ; 7: 0352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711475

RESUMO

In this study, we systematically investigated the interactions between Cu2+ and various biomolecules, including double-stranded DNA, Y-shaped DNA nanospheres, the double strand of the hybridization chain reaction (HCR), the network structure of cross-linked HCR (cHCR), and small molecules (PPi and His), using Cu2+ as an illustrative example. Our research demonstrated that the coordination between Cu2+ and these biomolecules not only is suitable for modulating luminescent material signals through complexation reactions with Cu2+ but also enhances signal intensities in materials based on chemical reactions by increasing spatial site resistance and local concentration. Building upon these findings, we harnessed the potential for signal amplification in self-assembled DNA nanospheres and the selective complexation modulation of calcein in conjunction with the aptamer targeting mucin 1 as a recognition probe. We applied this approach to the analysis of circulating tumor cells, with the lung cancer cell line A549 serving as a representative model. Our assay, utilizing both a fluorometer and a handheld detector, achieved impressive detection limits of ag/ml and single-cell levels for mucin 1 and A549 cells, and this approach was successfully validated using 46 clinical samples, yielding 100% specificity and 86.5% sensitivity. Consequently, our strategy has paved the way for more portable and precise disease diagnosis.

6.
Biosens Bioelectron ; 256: 116273, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621341

RESUMO

Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno B7-H1 , Técnicas Biossensoriais , Doxorrubicina , Técnicas Eletroquímicas , Exossomos , Neoplasias Pulmonares , Humanos , Técnicas Biossensoriais/métodos , Exossomos/química , Técnicas Eletroquímicas/métodos , Neoplasias Pulmonares/química , Aptâmeros de Nucleotídeos/química , Doxorrubicina/química , DNA/química , Azul de Metileno/química , Nanosferas/química , Quadruplex G
7.
ACS Nano ; 18(6): 5017-5028, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38305181

RESUMO

Herein, we propose a paper-based laboratory via enzyme-free nucleic acid amplification and nanomaterial-assisted cation exchange reactions (CERs) assisted single-cell-level analysis (PLACS). This method allowed for the rapid detection of mucin 1 and trace circulating tumor cells (CTCs) in the peripheral blood of lung cancer patients. Initially, an independently developed method requiring one centrifuge, two reagents (lymphocyte separation solution and erythrocyte lysate), and a three-step, 45 min sample pretreatment was employed. The core of the detection approach consisted of two competitive selective identifications: copper sulfide nanoparticles (CuS NPs) to C-Ag+-C and Ag+, and dual quantum dots (QDs) to Cu2+ and CuS NPs. To facilitate multimodal point-of-care testing (POCT), we integrated solution visualization, test strip length reading, and a self-developed hand-held fluorometer readout. These methods were detectable down to ag/mL of mucin 1 concentration and the single-cell level. Forty-seven clinical samples were assayed by fluorometer, yielding 94% (30/32) sensitivity and 100% (15/15) specificity with an area under the curve (AUC) of 0.945. Nine and 15 samples were retested by a test strip and hand-held fluorometer, respectively, with an AUC of 0.95. All test results were consistent with the clinical imaging and the folate receptor (FR)-PCR kit findings, supporting its potential in early diagnosis and postoperative monitoring.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Mucina-1/genética , Biópsia Líquida , Técnicas de Amplificação de Ácido Nucleico
8.
Biosens Bioelectron ; 249: 116030, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241796

RESUMO

This study presents a straightforward efficient technique for extracting circulating tumor cells (CTCs) and a rapid one-step electrochemical method (45 min) for detecting lung cancer A549 cells based on the specific recognition of mucin 1 using aptamers and the modulation of Cu2+ electrochemical signals by biomolecules. The CTCs separation and enrichment process can be completed within 45 min using lymphocyte separation solution (LSS), erythrocyte lysis solution (ELS), and three centrifugations. Besides, the influence of various biomolecules on Cu2+ electrochemical signals is comprehensively discussed, with DNA nanospheres selected as the medium. Three single-stranded DNA sequences were hybridized to form Y-shaped DNA (Y-DNA), creating DNA nanospheres. Upon specific capture of mucin 1 by the aptamer, most DNA nanospheres could form complexes with Cu2+ (DNA nanosphere-Cu2+), significantly reducing the concentration of free Cu2+. Our approach yielded the limit of detection (LOD) of 2 ag/mL for mucin 1 and 1 cell/mL for A549 cells. 39 clinical blood samples were used for further validation, yielding results closely correlated with pathological, computed tomography (CT) scan findings and folate receptor-polymerase chain reaction (FR-PCR) kits. The receiver operating characteristic (ROC) curve displayed an area under the curve (AUC) value of 0.960, demonstrating 100% specificity and 93.1% sensitivity for the assay. Taken together, our findings indicate that this straightforward and efficient pretreatment and rapid, highly sensitive electrochemical assay holds great promise for liquid biopsy-based tumor detection using CTCs.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Neoplasias Pulmonares/diagnóstico , Mucina-1/genética , Técnicas Biossensoriais/métodos , DNA/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos
9.
Biosens Bioelectron ; 246: 115865, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38035517

RESUMO

A homogeneous rapid (45 min) one-pot electrochemical (EC) aptasensor was established to quantitatively detect circulating tumor cells (CTCs) in lung cancer patients using mucin 1 as a marker. The core of this study is that the three single-stranded DNA (Y1, Y2, and Y3) could be hybridized to form Y-shaped DNA (Y-DNA) and further self-assemble to form DNA nanosphere. The aptamer of mucin 1 could be complementary and paired with Y1, thus disrupting the conformation of the DNA nanosphere. When mucin 1 was present, the aptamer combined specifically with mucin 1, thus preserving the DNA nanosphere structure. Methylene blue (MB) acted as a signal reporter, which could be embedded between two base pairs in the DNA nanosphere to form a DNA nanosphere-MB complex, reducing free MB and resulting in a lower electrochemical signal. The results demonstrated that the linear ranges for mucin 1 and A549 cells were 1 ag/mL-1 fg/mL and 1-100 cells/mL, respectively, with minimum detectable concentrations were 1 ag/mL and 1 cell/mL, respectively. The quantitative analysis of CTCs in 44 clinical blood samples was performed, and the results were consistent with the computerized tomography (CT) images, pathological findings and folate receptor-polymerase chain reaction (FR-PCR) kits. The receiver operating characteristic (ROC) curve exhibited an area under the curve (AUC) value of 0.970. The assay revealed 100% specificity and 94.1% sensitivity. It is believed that this electrochemical aptasensor could provide a new approach to detect CTCs.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Mucina-1/análise , Neoplasias Pulmonares/diagnóstico , Limite de Detecção , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , DNA/química , Azul de Metileno/química
10.
Anal Chem ; 95(38): 14244-14252, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37705297

RESUMO

The effective enrichment and hypersensitivity analysis of circulating tumor cells (CTCs) in clinical whole blood samples are highly significant for clinical tumor liquid biopsy. In this study, we established an easy operation and affordable CTCs extraction technique while simultaneously performing the homogeneous inductively coupled plasma mass spectrometry (ICP-MS) determination of CTCs in lung cancer clinical samples based on selective recognition reactions and prereduction phenomena. Our strategy allowed for the pretreatment of whole blood samples in less than 45 min after step-by-step centrifugation, which only required lymphocyte separation solution and erythrocyte lysate. Furthermore, a three-stage signal amplification system consisting of catalytic hairpin assembly (CHA), selective recognition for C-Ag+-C structures and Ag+ of copper sulfide nanoparticles (CuS NPs), and prereduction of Hg2+ through ascorbic acid (AA) was constructed by using mucin 1 as the CTCs marker and the aptamer for identification probes. In optimal conditions, the detection limits of ICP-MS were as low as 0.3 ag/mL for mucin 1 and 0.25 cells/mL for A549 cells. This method analyzed CTCs in 58 clinical samples quantitatively, and the results were consistent with clinical CT images and pathological findings. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.957, which provided a specificity of 100% and a sensitivity of 91.5% for the assay. Therefore, the simplicity of the extraction method, the accessibility, and the high sensitivity of the assay method make the strategies attractive for clinical CTCs testing applications.


Assuntos
Neoplasias Pulmonares , Mucina-1 , Humanos , Neoplasias Pulmonares/diagnóstico , Células A549 , Área Sob a Curva , Biópsia Líquida
11.
ACS Appl Mater Interfaces ; 15(32): 38285-38293, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37526600

RESUMO

Regularly measuring the level of CD4+ cells is necessary for monitoring progression and predicting prognosis in patients suffering from an infection with the human immunodeficiency virus (HIV). However, the current flow cytometry standard detection method is expensive and complicated. A parallel catalytic hairpin assembly (CHA)-assisted fluorescent aptasensor is reported for homogeneous CD4 count by targeting the CD4 protein expressed on the membrane of CD4+ cells. Detection was achieved using CdTe quantum dots (QDs) and methylene blue (MB) as signal reporters. CdTe QDs distinguished CHA-assisted release of Ag+ and C-Ag+-C and MB that has differentiated cytosine (C)-rich single-stranded DNA (ssDNA) and C-Ag+-C, generating changes in fluorescence intensity. With the assistance of the CHA strategy and luminescent nanomaterials, this method reached limits of detection of 0.03 fg/mL for the CD4 protein and 0.3 cells/mL for CD4+ cells with linear ranges of 0.1 to 100 fg/mL and 1 to 1000 cells/mL, respectively. The method was validated in 50 clinical whole blood samples consisting of 30 HIV-positive patients, 10 healthy volunteers, and 10 patients with cancer or other chronic infections. The findings from this method were in good agreement with the data from clinical flow cytometry. Due to its sensitivity, affordability, and ease of operation, the current method has demonstrated great potential for routine CD4 counts for the management of HIV, especially in communities and remote areas.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Infecções por HIV , Pontos Quânticos , Humanos , Fluorescência , Telúrio , DNA de Cadeia Simples , HIV , Técnicas Biossensoriais/métodos , Limite de Detecção
12.
Anal Chem ; 95(19): 7676-7684, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37129316

RESUMO

Herein, we report a fluorescence strategy for the homogeneous and simultaneous analysis of urine miRNA-375 and miRNA-148a. The target miRNAs in urine bonded the devised dumbbell-shaped "C-Ag+-C" and "T-Hg2+-T" hairpin structures that could trigger cascade enzyme-free amplification. Then, the fluorescent CdTe quantum dots (QDs) and carbon dots (CDs) could selectively recognize Ag+ and Hg2+, to quantify the dual miRNAs concurrently. Under optimized conditions, the linear range was from 0.1 to 1000 fM and the limits of detection (LOD) for dual miRNAs reached 30 and 25 aM, respectively. The practicality was further evaluated with 45 clinical urine samples including prostate cancer (PC) and other patients, and the results were consistent with the clinical polymerase chain reaction (PCR) kit and ultrasonic and pathological findings. The receiver operating characteristic (ROC) curve analysis showed that the estimates of the area under the curve (AUC) were 0.739 for the serum prostate-specific antigen (PSA) and 0.941 for miRNA-375 and 0.946 for miRNA-148a. The sensitivity and specificity reached 75 and 100% for miRNA-375 and 71 and 94% for miRNA-148a, respectively, which was better than serum PSA. This strategy constructed a reliable system for dual miRNA detection in urine samples and proposed new insights into the rapid and noninvasive diagnosis of PC.


Assuntos
Compostos de Cádmio , MicroRNAs , Neoplasias da Próstata , Pontos Quânticos , Masculino , Humanos , MicroRNAs/análise , Antígeno Prostático Específico , Compostos de Cádmio/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/urina , Pontos Quânticos/química , Telúrio/química , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/urina
13.
ACS Appl Mater Interfaces ; 14(25): 28697-28705, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699181

RESUMO

Simultaneous sensitive and cost-effective detection of multiple tumor markers has shown great potential for cancer diagnostics. Herein, we reported a simple enzyme-free parallel catalytic hairpin assembly (CHA) amplification strategy with N-methyl mesoporphyrin IX (NMM) and quantum dots (QDs) as signal reporters for the homogeneous fluorescent simultaneous detection of alpha-fetoprotein (AFP) and glypican-3 (GPC3). Upon selective binding, the released single-stranded DNA (ssDNA) from the two-aptamer double-stranded DNA (dsDNA) probes triggers CHA amplification, further releasing the G-quadruplex sequence and Ag+ from the C-Ag+-C structures at the same time. Then, NMM and CdTe QDs selectively recognize G-quadruplex and Ag+, respectively. Under optimized conditions, limits of detections (LODs) as low as 3 fg/mL for AFP and 0.25 fg/mL for GPC3 were achieved using fluorescence readout. Using color- and distance-based visual readouts, an LOD of 1 fg/mL for GPC3 was reached. This method was applied to quantitatively analyze AFP and GPC3 in 41 clinical serum samples of hepatocellular carcinoma (HCC) patients. The quantitative test results for AFP and GPC3 were consistent with those obtained using the electrochemiluminescence immunoassay (ECL-IA) clinical kit and correlated with radiological and pathological findings. The results of clinical tests demonstrated the potential of GPC3 as a tumor biomarker, and we propose a cut-off value of 2 ng/mL GPC3 for HCC.


Assuntos
Compostos de Cádmio , Carcinoma Hepatocelular , Neoplasias Hepáticas , Pontos Quânticos , Biocatálise , Biomarcadores Tumorais , Carcinoma Hepatocelular/patologia , Glipicanas/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Telúrio , alfa-Fetoproteínas
14.
Front Surg ; 9: 830852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574549

RESUMO

Primary giant cell tumors of soft tissues (GCT-STs) are extremely rare soft tissue tumors located both in superficial and in deep soft tissues. Clinically, GCT-ST manifests as a slow-growing, well-defined, painless mass. We report a case of an 88-year-old female patient with upper abdominal distension, fever, and anemia. Laparoscopic exploration revealed a tumor located in the left lobe of the liver with localized rupture and hemorrhage. Postoperative pathology revealed that the tumor was composed of monocytes and osteoclast-like multinucleated giant cells, accompanied by extensive hemorrhage, necrosis, and cytologic atypia. Because mitotic cells are difficult to be detected in pathological diagnosis, combined with immunohistochemistry, the tumor was diagnosed as a giant cell tumor of soft tissue. This case report highlights the primary choice of histology and immunohistochemistry for the correct diagnosis of GCT-ST because preoperative radiological diagnosis is nonspecific and prone to mistakes.

15.
Front Surg ; 9: 855904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558382

RESUMO

Introduction: Small bowel obstruction is a common surgical emergency abdominal condition in clinical practice. Fecalith is one of the rare causative factors, especially phytobezoars. Case Report: We report the case of a 66-year-old man admitted with "abdominal pain with vomiting for 1 day." Enhanced CT of the abdomen suggested incomplete small bowel obstruction. The symptomatic treatment with fasting, fluid replacement, gastrointestinal decompression, and antibiotics was conducted after the patient was admitted to the hospital. After 2 days of treatment, the patient's abdominal pain was not significantly relieved, so a decision was made to perform laparoscopic examination surgery. During surgery, a columnar foreign body was found embedded in the lumen of the small intestine about 10 cm away from the ileocecal region. Combined with the patient's preoperative history of consuming a large number of persimmons, the primary diagnosis of small intestinal fecalith obstruction was considered. We performed an enterotomy to remove the foreign body, and the procedure was uneventful. On postoperative day 7, the patient was successfully discharged. Conclusion: When we encounter a patient with intestinal obstruction without a history of surgery in our clinical work, we should take a careful history, especially about the consumption of foods that can cause phytoliths. When a patient has consumed a large amount of food that can cause phytobezoars before the abdominal pain, we should diagnostically consider it as phytobezoars intestinal obstruction, which helps to reduce the incidence of misdiagnosis and allows the patient to receive treatment timely and effectively.

17.
Front Oncol ; 12: 783109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155229

RESUMO

BACKGROUND: High recurrence incidence and poor survival after hepatectomy are enormous threats to hepatocellular carcinoma (HCC) patients, which can be caused by microvascular invasion (MVI). However, it is difficult to predict preoperative MVI status. In this study, we focus on cancer genomic alterations to comprehensively explore potential MVI and early recurrence biomarkers and provide clues to the mechanisms of HCC invasion and metastasis. METHODS: Forty-one patients with initially suspected HCC who were undergoing hepatectomy were finally enrolled. High-throughput targeted sequencing was performed on genomic alterations in their preoperative plasma and surgical fresh tumor tissues utilizing the 1,021-gene panel. RESULTS: HCC patients without MVI had longer RFS than MVI ones (p < 0.0001). The mutant incidence of genes like KEAP1, TP53, HIST1H3D, NFKBIA, PIK3CB, and WRN was higher in both MVI and early-recurrence patients than their counterparts. Besides, the alteration rates of Rap1 and Ras signaling pathways were significantly higher in MVI patients than NMVI ones (p < 0.05), and a similar trend of differences was also found in early-recurrence/non-recurrence comparison. The maximal variant allele frequency (VAF) of circulating tumor DNA (ctDNA) was statistically higher in MVI patients than NMVI ones (0.038 vs. 0.012, p = 0.0048). With the cutoff value of 0.018, ctDNA maximal VAF could potentially predict the presence of MVI with an AUC of 0.85 (95% CI 0.693-0.998, p = 0.0062). CONCLUSION: The integration of a panel containing specific mutated genes and ctDNA maximal VAF for predicting MVI and early recurrence of HCC may achieve better performance.

18.
Biosens Bioelectron ; 202: 114009, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065481

RESUMO

Oncology detection technology is significant for the early detection of tumors. The current study reports a new method that uses folate receptor (FR) as circulating tumor cells (CTCs) marker and only folate modified T30 as a probe. This method also uses dual-enzyme assisted amplification strategy for homogeneous fluorescence as well as two-dimensional visual (color and distance) detection of SMMC-7721 liver cancer cells from clinical blood samples. This work was based on the steric hindrance caused by binding between FR and folate to regulate cleavage of folate-T30 by exonuclease I (Exo I) and to inhibit subsequent polymerization and extension reaction of the cleavage product by terminal deoxynucleotidyl transferase (TdT). It explores the use of CdTe QDs to selectively identify Cu2+ and polyT-template Cu NPs as a bridge combined with inkjet printing technology to make test strips that can be read through distance changes. Under fluorometer mode, limit of detection as low as 1 cells/mL was achieved. The color and distance reading modes can identify cells with concentrations as low as 5 and 1 cells/mL, respectively. This CTCs detection approach of fluorescence mode was further validated by using 50 clinical samples of liver cancer patients (19 negative and 31 positive). The results were in good agreement with FR-polymerase chain reaction (FR-PCR) kits, radiologic and pathological techniques. In addition, the quantitative results of distance reading test strips of CTCs in 22 clinical samples (8 negative and 14 positive) were also in 100% agreement with the findings of clinical kits, computed tomography (CT) and pathological tests.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Células Neoplásicas Circulantes , Pontos Quânticos , Humanos , Células Neoplásicas Circulantes/patologia , Telúrio
19.
ACS Nano ; 15(7): 11634-11643, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34129315

RESUMO

Here we report a simple all-nucleic-acid enzyme-free catalyzed hairpin assembly assisted amplification strategy with quantum dots (QDs) as the nanoscale signal reporter for homogeneous visual and fluorescent detection of A549 lung cancer cells from clinical blood samples. This work was based on the phenomenon that CdTe QDs can selectively recognize Ag+ and C-Ag+-C and by using mucin 1 as the circulating tumor cells (CTCs) marker and aptamer as the recognition probe. Under optimized conditions, the limits of detections as low as 0.15 fg/mL of mucin 1 and 3 cells/mL of A549 cells were achieved with fluorescence signals. A 1 fg/mL concentration of mucin 1 and 100 cells/mL of A549 can be distinguished by the naked eye. This method was used to quantitatively analyze CTCs in 51 clinical whole blood samples of patients with lung cancer. The levels of CTCs detected in clinical samples by this method were consistent with those obtained using the folate receptor-polymerase chain reaction clinical test kit and correlated with radiologic and pathological findings.


Assuntos
Compostos de Cádmio , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Pontos Quânticos , Humanos , Telúrio , Mucina-1 , Espectrometria de Fluorescência/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Limite de Detecção
20.
ACS Appl Mater Interfaces ; 13(18): 21030-21039, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33905228

RESUMO

The characterization of circulating tumor cells (CTCs) by liquid biopsy has a great potential for precision medicine in oncology. Here, a universal and tandem logic-based strategy is developed by combining multiple nanomaterials and nanopore sensing for the determination of mucin 1 protein (MUC1) and breast cancer CTCs in real samples. The strategy consists of analyte-triggered signal conversion, cascaded amplification via nanomaterials including copper sulfide nanoparticles (CuS NPs), silver nanoparticles (Ag NPs), and biomaterials including DNA hydrogel and DNAzyme, and single-molecule-level detection by nanopore sensing. The amplification of the non-DNA nanomaterial gives this method considerable stability, significantly lowers the limit of detection (LOD), and enhances the anti-interference performance for complicated samples. As a result, the ultrasensitive detection of MUC1 could be achieved in the range of 0.0005-0.5 pg/mL, with an LOD of 0.1 fg/mL. Moreover, we further tested MUC1 as a biomarker for the clinical diagnosis of breast cancer CTCs under double-blind conditions on the basis of this strategy, and MCF-7 cells could be accurately detected in the range from 5 to 2000 cells/mL, with an LOD of 2 cells/mL within 6 h. The detection results of the 19 clinical samples were highly consistent with those of the clinical pathological sections, nuclear magnetic resonance imaging, and color ultrasound. These results demonstrate the validity and reliability of our method and further proved the feasibility of MUC1 as a clinical diagnostic biomarker for CTCs.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , DNA/metabolismo , Mucina-1/sangue , Nanoporos , Células Neoplásicas Circulantes , Humanos , Limite de Detecção , Células MCF-7 , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA