Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 15(11): 6425-6436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074801

RESUMO

BACKGROUND: Despite a crucial role of miR-155 in human cancers, its function in heart failure (HF) is still under investigation. This study was designed to explore its association with HF. METHODS: The abdominal transverse aortic constriction (TAC) was adopted for establishment of mouse HF models. qRT-PCR and WB were adopted to detect the changes of miR-155, HIF-1α, Cle-caspase-3, BCL2 and Bax levels in myocardial cells and heart tissues. The changes of cardiac function were checked by ultrasound. Additionally, luciferase reporter gene was adopted for interaction analysis of miR-155 with HIF-1α, and in situ end labelling method was used for detecting myocardial apoptosis. RESULTS: MiR-155 in myocardial tissue of HF mice was significantly down regulated. In HF mice injected with agomiR-155, the up-regulation of miR-155 strongly improved cardiac function, and also significantly lowered the protein levels of apoptosis-associated markers, C-caspase-3 and Bax, but up regulated Bcl-2. Additionally, HIF-1α was identified as the direct target of miR-155. As expected, over-expression of HIF-1α greatly reversed the effects of agomiR-155 on cardiac function and the expression of apoptosis-associated markers in heart tissues of HF mice. CONCLUSION: MiR-155 overexpression can suppress myocardial cell apoptosis through HIF-1α, and strongly alleviate the cardiac function damage in HF mice, indicating the potential of miR-155/HIF-1α axis to be a target for the diagnosis and therapy of HF.

2.
PLoS Pathog ; 19(11): e1011792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956198

RESUMO

Melanoma differentiation-associated gene-5 (MDA5) acts as a cytoplasmic RNA sensor to detect viral dsRNA and mediates antiviral innate immune responses to infection by RNA viruses. Upon recognition of viral dsRNA, MDA5 is activated with K63-linked polyubiquitination and then triggers the recruitment of MAVS and activation of TBK1 and IKKα/ß, subsequently leading to IRF3 and NF-κB phosphorylation. However, the specific E3 ubiquitin ligase for MDA5 K63-polyubiquitination has not been well characterized. Great numbers of symptomatic and severe infections of SARS-CoV-2 are spreading worldwide, and the poor efficacy of treatment with type I interferon and antiviral immune agents indicates that SARS-CoV-2 escapes from antiviral immune responses via several unknown mechanisms. Here, we report that SARS-CoV-2 nonstructural protein 8 (nsp8) acts as a suppressor of antiviral innate immune and inflammatory responses to promote infection of SARS-CoV-2. It downregulates the expression of type I interferon, IFN-stimulated genes and proinflammatory cytokines by binding to MDA5 and TRIM4 and impairing TRIM4-mediated MDA5 K63-linked polyubiquitination. Our findings reveal that nsp8 mediates innate immune evasion during SARS-CoV-2 infection and may serve as a potential target for future therapeutics for SARS-CoV-2 infectious diseases.


Assuntos
COVID-19 , Interferon Tipo I , SARS-CoV-2 , Humanos , COVID-19/genética , Imunidade Inata , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais
3.
J Exp Clin Cancer Res ; 42(1): 183, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37501079

RESUMO

Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias , Humanos , Neoplasias/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Carcinogênese/genética
4.
Int Immunopharmacol ; 120: 110410, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37270929

RESUMO

Accumulating evidence suggests that sialic acids is closely related to atherosclerosis. However, the effects and underlying mechanisms of sialic acids in atherosclerosis have been not defined. Macrophages are one of the most important cells during plaque progression. In this study, we investigated the role of sialic acids in the M1 macrophage polarization and pathogenesis of atherosclerosis. Here we found that sialic acids can promote the polarization of RAW264.7 cells to the M1 phenotype, thereby promoting the expression of proinflammatory cytokines in vitro. The proinflammatory effect of sialic acids may result from the inhibition of LKB1-AMPK-Sirt3 signaling pathway to upregulate intracellular ROS and impairing autophagy-lysosome system to block autophagic flux. In the APOE-/- mice, sialic acids in plasma increased during the development of atherosclerosis. Moreover, exogenous supplement of sialic acids can promote plaque progression in aortic arch and aortic sinus being accompanied by the differentiation of macrophages into M1 type in peripheral tissues. These studies demonstrated that sialic acids can promote macrophage polarization toward the M1 phenotype to accentuate atherosclerosis via inducing mitochondrial ROS and blocking autophagy, thus providing clue to a novel therapeutic strategy for atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Ácidos Siálicos/uso terapêutico , Aterosclerose/metabolismo , Macrófagos , Autofagia
5.
J Virol ; 96(23): e0145622, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377873

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-oncogenic herpesvirus, and both lytic and latent infections play important roles in its pathogenesis and tumorigenic properties. Multiple cellular pathways and diverse mediators are hijacked by viral proteins and are used to support KSHV lytic replication. In previous studies, we revealed that KSHV ORF45 promoted KSHV transcription and translation by inducing sustained p90 ribosomal S6 kinase (RSK) activation and the phosphorylation of its substrates c-Fos and eIF4B. However, the cellular mediators required for lytic replication remain largely unknown. Here, we reveal that ORF45 activates eIF2α phosphorylation and ATF4 translation and then upregulates the expression of lysosome-associated membrane protein 3 (LAMP3) in an ATF4-dependent manner during KSHV lytic replication. Consequently, LAMP3 promotes Akt and ERK activation and then facilitates lytic gene expression and virion production. Furthermore, ATF4 enhances lytic replication through LAMP3, and LAMP3 acts in an ATF4-independent manner. Our findings suggest that the ATF4-LAMP3 axis is upregulated by ORF45 through ER stress activation during the KSHV lytic life cycle and, in turn, facilitates optimal lytic replication. IMPORTANCE The lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) reprograms cellular transcription and translation to generate viral proteins and virion particles. Here, we show that the mediator of ER stress ATF4 and the expression of the downstream gene LAMP3 are upregulated by ORF45 during lytic replication. Consequently, increased LAMP3 expression activates Akt and ERK and promotes lytic replication. Although several UPR transcription factors are able to promote KSHV lytic replication, the proviral effect of ATF4 on lytic replication is attenuated by LAMP3 silencing, whereas the effect of LAMP3 does not directly require ATF4 expression, indicating that LAMP3 primarily exerts effects on KSHV lytic replication downstream of ATF4 and ER stress. Taken together, our findings suggest that the ORF45-upregulated ATF4-LAMP3 axis plays an essential role in KSHV lytic replication.


Assuntos
Fator 4 Ativador da Transcrição , Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Proteínas de Membrana Lisossomal , Replicação Viral , Linhagem Celular , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Proteínas Virais/genética , Proteínas Virais/metabolismo , Humanos , Fator 4 Ativador da Transcrição/genética , Proteínas de Membrana Lisossomal/genética
6.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142837

RESUMO

Conformational changes are fundamental events in the transport mechanism. The serotonin transporter (SERT) catalyzes reuptake of the neurotransmitter serotonin after its release by serotonergic neurons and is the molecular target for antidepressant drugs and psychostimulants. Despite significant progress in characterizing the structure-function relationship of SERT, its conformational mechanism has not been fully understood. We present here a cell-based method for determining conformational changes in SERT with its fluorescent substrates by fluorescence imaging analysis. This method fluorometrically measures accessibility of strategically positioned cysteine residues in the substrate permeation pathway to calculate the rate constants of reactivity with MTS reagents in live or permeabilized cells. We validated this method by investigating ligand and ion-induced conformational changes in both the extracellular and cytoplasmic pathways of SERT. Furthermore, we applied this method for examining the influence of Cl- binding and vilazodone inhibition on SERT conformation. Our results showed that Cl- ion, in the presence of Na+, facilitates the conformational conversion from outward to inward open states, and that vilazodone binding stabilizes SERT in an outward open and inward-closed conformation. The present work provided insights into the conformational mechanism of SERT and also indicated that the cell-based fluorometric method is robust, straightforward to perform, and potentially applicable to any monoamine transporters in exploring the transport mechanism and mechanism of action of therapeutic agents for the treatment of several psychiatric disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Cisteína , Humanos , Ligantes , Neurotransmissores , Conformação Proteica , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Cloridrato de Vilazodona
7.
Nutr Hosp ; 39(3): 569-579, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35227068

RESUMO

Introduction: Objective: bioinformatic methods and molecular docking technology were used to predict the active components, targets, and related biological pathways of the Xiexin capsule in the intervention for dyslipidemia, exploring its mechanism. Methods: the active components and targets of the Xiexin capsule were screened by the TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform )database. Genecards (The Human Gene Database), OMIM (Online Mendelian Inheritance in Man), PharmGkb (Pharmacogenomics Knowledge Base database), TTD (Therapeutic Target Database), and Drugbank platforms were used to search the disease targets of dyslipidemia. The Cytoscape 3.8.0 software was used to construct the 'component-target' network diagram, and the STRING (functional protein association networks) platform was used to analyze protein-protein interaction (PPI). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) enrichment analyses were performed by R language data packets to predict the mechanism of action. The AutoDockVina and PyMol software were used to dock the key active components in the Xiexin capsule and the core proteins in PPI. Results: a total of 66 effective components were screened, involving 114 targets; 87 key active compounds were screened from the 'drug-component-target' diagram. The PPI network mainly involved core proteins such as PTGS2 (prostaglandin-endoperoxide synthase 2), PTGS1 (prostaglandin-endoperoxide synthase 1), and HSP90AA1 (heat shock protein 90 alpha family class A member 1). GO and KEGG enrichment analysis results of common targets mainly involved hormone-mediated signaling pathway, steroid hormone response, lipid transport and metabolism, regulation of cholesterol storage, cyclooxygenase pathway, and other biological pathways, as well asMM PPAR (peroxisome proliferators-activated receptor) signaling pathway, IL-17 (interleukin 17) signaling pathway, PI3K-Akt (protein kinase b) signaling pathway, FcεRI signaling pathway, and other related pathways. Molecular docking verification showed that quercetin had the best binding with the core target protein HSP90AA1, and HSP90AA1 was the target protein with the best binding activity for the key chemical components in Xiexin capsules. Conclusion: the main chemical components in the Xiexin capsules may participate in the regulation of PPAR and other signaling pathways by regulating key genes such as ESR1 (estrogen receptor 1), MAPK14 (mitogen-activated protein kinase 14), and HSP90AA1, to exert the pharmacological effect of the intervention on dyslipidemia.


Introducción: Objetivo: se utilizaron métodos bioinformáticos y técnicas de acoplamiento molecular para predecir componentes efectivos, objetivos y vías biológicas relacionadas de la cápsula Xiexin en la intervención de dislipidemia y explorar su mecanismo. Métodos: los componentes activos y los objetivos de la cápsula Xiexin fueron seleccionados por la base de datos TCMSP. Se utilizaron plataformas Genecards, OMIM, PharmGkb, Therapeutic Target Database y Drugbank para buscar dianas de la enfermedad en la dislipidemia. El diagrama reticular "componente-diana" fue construido por el software Cytoscape 3.7.0, y la interacción proteína-proteína (PPI) fue analizada por la plataforma STRING. Los análisis de enriquecimiento de Gene Ontology (GO) y Kyoto Encyclopedia of Genes and Genomics se realizaron mediante paquetes de datos en lenguaje R para predecir mecanismo de acción. El software AutoDockVina y PyMol se utilizó para unir componentes activos clave de la cápsula Xiexin y las proteínas clave de la PPI. Resultados: se seleccionaron 65 componentes activos y 114 dianas. Veintitrés compuestos activos clave fueron seleccionados a partir de la tabla "componentes farmacéuticos-dianas". Las redes PPI incluyen principalmente proteínas básicas como PTGS2, PTGS1 y HSP90AA1. Los resultados del análisis de enriquecimiento de GO y KEGG en los objetivos comunes se refieren principalmente a la vía de señalización mediada por esteroides, la respuesta hormonal esteroidea, el transporte y metabolismo lipídicos, la regulación del almacenamiento de colesterol, la vía de la ciclooxigenasa y otras vías biológicas, así como la vía de señalización de PPAR, IL-17, PI3K-Akt, FcεRI y otras vías relacionadas. La prueba de acoplamiento molecular mostró que la quercetina se une mejor a la proteína diana central HSP90AA1, que es la proteína diana con la mejor actividad de unión de los componentes químicos clave de la cápsula Xiexin. Conclusión: los principales componentes químicos de la cápsula Xiexin pueden participar en la regulación de la PPAR y otras vías de señalización mediante la regulación de genes clave como ESR1, MAPK14 (mitogen-activated protein kinase 14), HSP90AA1, por lo que pueden desempeñar un papel farmacológico en la intervención de dislipidemia.


Assuntos
Medicamentos de Ervas Chinesas , Dislipidemias , Cápsulas , Biologia Computacional/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Dislipidemias/tratamento farmacológico , Hormônios , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Receptores Ativados por Proliferador de Peroxissomo , Fosfatidilinositol 3-Quinases , Prostaglandina-Endoperóxido Sintases
8.
Artigo em Inglês | MEDLINE | ID: mdl-34408781

RESUMO

Chronic heart failure (CHF) is a complex clinical syndrome caused by a variety of heart problems, with a high incidence. The 5-year survival rate of patients with clinical symptoms is similar to that of malignant tumors. Wenyang Zhenshuai granules are a safe and effective granule of traditional Chinese medicine components, including aconite, dried ginger, licorice, and red ginseng. In contemporary clinical applications, it is widely used in acute and chronic heart insufficiency, coronary heart disease, and arrhythmia. This research cultured H9C2 cardiomyocytes and divided them into the normal control group, LncRNA-MiR143HG overexpression group, LncRNA-MiR143HG silence group, Adriamycin (ADR) group, ADR + medicated serum group, ADR + LncRNA-MiR143HG overexpression + medicated serogroup, and ADR + LncRNA-MiR143HG silence + medicated serogroup. The cells of each group were treated differently, and the survival rate of each group of cells and the expression levels of LncRNA-MiR143HG/miR-143 and ERK5 were detected at the end of the experiment, and the expression of LncRNA-MiR143HG/miR-143 in H9C2 cardiomyocytes was regulated by Wenyang Zhenshuai granules' impact. The results of this study showed that, in the doxorubicin-induced H9C2 cardiomyocyte injury model, the expression of miR-143 was upregulated, and the expression of LncRNA-MiR143HG and ERK5 was significantly downregulated. Wenyang Zhenshuai granules can downregulate the expression of miR-143 to promote ERK5 protein expression and phosphorylation. The process is regulated by LncRNA-MiR143HG/miR-143, which may be one of its important mechanisms for the treatment of chronic heart failure.

9.
Zhongguo Gu Shang ; 34(5): 485-8, 2021 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-34032055

RESUMO

Since the concept of "safe area" put forward by Lewinnek, it has been widely recognized. While in recent years, many scholars have found that even if the acetabular prosthesis was placed on the "safe area", there were still many unexplained dislocation after total hip arthroplasty. And scholars began to question whether the "safe area" is really suitable for all patients. Spinal degeneration, deformity, lumbar fusion, etc. will lead to spine sagittal imbalance and changes in pelvic activity, which could lead to changes in acetabular orientation, and ultimately lead to edge loading, wear, impact, and even dislocation after total hip replacement. From the perspective of wear, impact and dislocation, it is determined by the functional positioning of the acetabular cup, not the anatomical positioning. The anatomical positioning and functional positioning of the neutral pelvic acetabular cup in the standing position can be considered equivalent. For pelvic rotation more than 20°, functional placement needs to be considered. In recent years, as the understanding of the internal relationship between the spine-pelvis-hip joint has become more and more profound, some scholars further classify the hip-spine relationship according to whether the spine is stiff or deformed, and propose corresponding acetabulums according to different types of hip-spine relationships The function of placement, so as to achieve a stable artificial hip joint. Therefore, it is of great significance to fully assess whether the patient's sagittal plane is balanced before surgery to guide artificial hip replacement surgery.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Acetábulo/cirurgia , Articulação do Quadril , Humanos , Coluna Vertebral
10.
AJR Am J Roentgenol ; 210(3): 648-656, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29364726

RESUMO

OBJECTIVE: We provide a brief review of the tumor microenvironment, the impact of six interventional radiology treatments on the tumor microenvironment, and potential methods to improve treatment efficacy. CONCLUSION: Interventional oncology plays a unique role in cancer therapy, contributing to both antitumorigenic and protumorigenic effects.


Assuntos
Oncologia , Neoplasias/terapia , Radiografia Intervencionista/métodos , Microambiente Tumoral , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA