RESUMO
Fibroblast growth factor (FGF) and its receptor (FGFR) play crucial roles in gastric cancer (GC). Long non-coding RNAs (lncRNAs) are defined as RNA molecules of around 200 nucleotides or more, which are not translated into proteins. As well-known regulatory factors, lncRNAs are considered as biomarkers for prognosis and treatment response in GC. It is of importance to identify FGF/FGFR-related lncRNAs in GC. Here, some FGF/FGFR-related lncRNAs were identified in GC based on the data from public databases, the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Then a four-lncRNAs (FGF10-AS1, MIR2052HG, POU6F2-AS2, and DIRC1) risk score (RS) model was established for predicting GC's prognosis by using Cox analysis. According to the median value of RS, GC patients were divided into low and high RS group. Low RS group displayed high tumor mutation burden and infiltration of immune cells, as well as more sensitivity to immunotherapy or chemotherapy. High RS group showed high infiltration of stromal cells and more oncogenic signatures. In addition, a comprehensive analysis was carried out and found that high RS group may exhibit specific sensitivity to Panobinostat (histone deacetylases inhibitor) and Tivantinib (MET inhibitor). In summary, our study not only offers a novel personalized prognostication classification model according to FGF/FGFR-related lncRNAs, but also provides a new strategy for subclass-specific precision treatment in GC.
RESUMO
Although the emerging of immunotherapy conferred a new landscape of gastric cancer (GC) treatment, its response rate was of significant individual differences. Insight into GC immune microenviroment may contribute to breaking the dilemma. To this end, the enrichment score of NF-κB signaling pathway was calculated in each GC sample from The Cancer Genome Atlas (TCGA) via ssGSEA algorithm, and its association with immune infiltration was estimated. Based on NF-κB-related genes, a risk score was established and its involvement in immune infiltration, tumor mutational burden (TMB), and N6-methyladenosine (M6A) modification was analyzed in GC. The results showed that NF-κB signaling pathway promoted the infiltration of immune cells in GC. In addition, GC samples were divided into low- and high-risk groups according to a seven-gene (CARD11, CCL21, GADD45B, LBP, RELB, TRAF1, and VCAM1) risk score. Although the high-risk group displayed high immune infiltration and high expression of M6A regulatory genes, it remains in an immunosuppressive microenviroment and whereby suffers a poorer outcome. Of note, most of hub genes were related to immune infiltration and could serve as an independent prognostic biomarker. Conclusively, our study emphasized the crucial role of NF-κB signaling pathway in GC immune microenviroment and provided several candidate genes that may participate in immune infiltration.
Assuntos
NF-kappa B , Neoplasias Gástricas , Biologia Computacional , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismoRESUMO
To deeply analyze the influences of doctor-nurse-patient integrated nursing management on cardiac interventional surgery, 120 patients with coronary heart disease undergoing cardiac interventional therapy were selected as the subjects and randomly divided into two groups, 60 cases in each group. The experimental group used the doctor-nurse-patient integrated nursing, while the control group adopted the routine nursing. The Hessian matrix enhanced filter segmentation algorithm was used to process the cardiac computed tomography angiography (CTA) images of patients to assess the algorithm performance and the safety of nursing methods. The results showed that the Jaccard, Dice, sensitivity, and specificity of cardiac CTA images of patients with coronary heart disease processed by Hessian matrix enhanced filter segmentation algorithm were 0.86, 0.93, 0.94, and 0.95, respectively; the disease self-management ability score and quality of life score of patients in the experimental group after nursing intervention were significantly better than those before nursing intervention, with significant differences (P < 0.05). The number of cases with adverse vascular events in the experimental group was 3 cases, which was obviously lower than that in the control group (15 cases). The diagnostic accuracy of the two groups of patients after segmentation algorithm processing was 0.87 and 0.88, respectively, which was apparently superior than the diagnostic accuracy of conventional CTA (0.58 and 0.61). In summary, cardiac CTA evaluation of doctor-nurse-patient integrated nursing management cardiac interventional surgery based on segmentation algorithm had good safety and was worthy of further promotion in clinical cardiac interventional surgery.
Assuntos
Angiografia por Tomografia Computadorizada , Qualidade de Vida , Algoritmos , Angiografia , Angiografia Coronária , Humanos , Tomografia Computadorizada por Raios XRESUMO
The development of highly active and earth-rich electrocatalysts remains a formidable challenge for the commercialization of fuel cells. Herein, a composite carrier composed of cobaltous telluride (CoTe) and carbon (C) has been designed for the first time to enhance the electrocatalytic performance of palladium (Pd) nanoparticles (NPs) for the electro-oxidation of ethylene glycol (EG). Remarkably, the mass activity for the as-prepared Pd/CoTe-C catalyst during the ethylene glycol oxidation reaction (EGOR) is found to reach up to 3917.3 mA mg-1, which is 2.2 times higher than that of Pd/Co-C (1785.0 mA mg-1) and 4.1 times greater than that of commercial Pd/C catalyst (962.4 mA mg-1), exceeding that obtained for most Pd-based electrocatalysts reported thus far. In particular, the Pd/CoTe-C catalyst shows better electrochemical stability toward the EGOR than the Pd/Co-C and commercial Pd/C catalysts. Thus, the Pd/CoTe-C electrocatalyst is expected to exhibit broad application prospects in the field of fuel cells.
RESUMO
BACKGROUND: Sufficient evidence indicated the crucial role of NF-κB family played in gastric cancer (GC). The novel discovery that NF-κB could regulate cancer metabolism and immune evasion greatly increased its attraction in cancer research. However, the correlation among NF-κB, metabolism, and cancer immunity in GC still requires further improvement. METHODS: TCGA, hTFtarget, and MSigDB databases were employed to identify NF-κB-related metabolic genes (NFMGs). Based on NFMGs, we used consensus clustering to divide GC patients into two subtypes. GSVA was employed to analyze the enriched pathway. ESTIMATE, CIBERSORT, ssGSEA, and MCPcounter algorithms were applied to evaluate immune infiltration in GC. The tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict patients' response to immunotherapy. We also established a NFMG-related risk score by using the LASSO regression model and assessed its efficacy in TCGA and GSE62254 datasets. RESULTS: We used 27 NFMGs to conduct an unsupervised clustering on GC samples and classified them into two clusters. Cluster 1 was characterized by high active metabolism, tumor mutant burden, and microsatellite instability, while cluster 2 was featured with high immune infiltration. Compared to cluster 2, cluster 1 had a better prognosis and higher response to immunotherapy. In addition, we constructed a 12-NFMG (ADCY3, AHCY, CHDH, GUCY1A2, ITPA, MTHFD2, NRP1, POLA1, POLR1A, POLR3A, POLR3K, and SRM) risk score. Followed analysis indicated that this risk score acted as an effectively prognostic factor in GC. CONCLUSION: Our data suggested that GC subtypes classified by NFMGs may effectively guide prognosis and immunotherapy. Further study of these NFMGs will deepen our understanding of NF-κB-mediated cancer metabolism and immunity.
Assuntos
Biomarcadores Tumorais/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , NF-kappa B/metabolismo , Proteínas de Neoplasias/imunologia , Neoplasias Gástricas , Microambiente Tumoral/imunologia , Humanos , Proteínas de Neoplasias/metabolismo , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/terapia , Microambiente Tumoral/genéticaRESUMO
Prostate cancer (PCa) is one of the most common types of malignant tumor, which places a major burden on the health of men, worldwide. A prerequisite to ensure good treatment outcomes for patients with PCa is an accurate diagnosis. The present study aimed to investigate the diagnostic value of prostate-specific antigen (PSA) and α-methylacyl-CoA racemase (P504S) in PCa, using the tumor-associated immunolabels. In total, clinical data was collected from 125 patients undergoing prostate biopsy or surgery between January 2015 and September 2019, and stratified into: PCa (45), benign prostatic hyperplasia (BPH) (60) and unconfirmed diagnosis (20). Immunohistochemistry analysis was performed to assess PSA and P504S expression levels in each group compared with that in the controls (the normal tissue in each group was the internal control). The results demonstrated that the expression level of P504S was significantly higher in the PCa group compared with that in the BPH group. Furthermore, no significant association was observed in the PCa group between PSA and P504S expression levels, and the Gleason grading groups. A total of 20 unconfirmed diagnoses was verified via PSA/P504S. Taken together, the results suggest that combination PSA and P504S have a positive effect in identifying prostate cancer. However, PSA and P504S still have limitations in their diagnosis and the final results need to be carefully and comprehensively analyzed, thus further studies are required to determine their diagnostic values.
RESUMO
Resistance becomes major clinical issue in cancer treatment, which strongly limits patients to benefit from oncotherapy. Growing evidences have been indicative of the critical role of fibroblast growth factor (FGF)/receptor (FGFR) signaling played in resistance to oncotherapy. In this review we discussed the underlying mechanisms of FGF/FGFR signaling mediated resistance to chemotherapy, radiotherapy and target therapy in various cancers. Meanwhile, we summarized the reported mechanism of FGF/FGFR inhibitors resistance in cancers.
RESUMO
BACKGROUND: The hunt for the molecular markers with specificity and sensitivity has been a hot area for the tumor treatment. Due to the poor diagnosis and prognosis of pancreatic cancer (PC), the excision rate is often low, which makes it more urgent to find the ideal tumor markers. METHODS: Robust Rank Aggreg (RRA) methods was firstly applied to identify the differentially expressed genes (DEGs) between PC tissues and normal tissues from GSE28735, GSE15471, GSE16515, and GSE101448. Among these DEGs, the highly correlated genes were clustered using WGCNA analysis. The co-expression networks and molecular complex detection (MCODE) Cytoscape app were then performed to find the sub-clusters and confirm 35 candidate genes. For these genes, least absolute shrinkage and selection operator (lasso) regression model was applied and validated to build a diagnostic risk score model. Cox proportional hazard regression analysis was used and validated to build a prognostic model. RESULTS: Based on integrated transcriptomic analysis, we identified a 19 gene module (SYCN, PNLIPRP1, CAP2, GNMT, MAT1A, ABAT, GPT2, ADHFE1, PHGDH, PSAT1, ERP27, PDIA2, MT1H, COMP, COL5A2, FN1, COL1A2, FAP and POSTN) as a specific predictive signature for the diagnosis of PC. Based on the two consideration, accuracy and feasibility, we simplified the diagnostic risk model as a four-gene model: 0.3034*log2(MAT1A)-0.1526*log2(MT1H) + 0.4645*log2(FN1) -0.2244*log2(FAP), log2(gene count). Besides, a four-hub gene module was also identified as prognostic model = - 1.400*log2(CEL) + 1.321*log2(CPA1) + 0.454*log2(POSTN) + 1.011*log2(PM20D1), log2(gene count). CONCLUSION: Integrated transcriptomic analysis identifies two four-hub gene modules as specific predictive signatures for the diagnosis and prognosis of PC, which may bring new sight for the clinical practice of PC.
Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias Pancreáticas , Transcriptoma/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , PrognósticoRESUMO
BACKGROUND: ceRNAs have emerged as pivotal players in the regulation of gene expression and play a crucial role in the physiology and development of various cancers. Nevertheless, the function and underlying mechanisms of ceRNAs in esophageal cancer (EC) are still largely unknown. METHODS: In this study, profiles of DEmRNAs, DElncRNAs, and DEmiRNAs between normal and EC tumor tissue samples were obtained from the Cancer Genome Atlas database using the DESeq package in R by setting the adjusted P<0.05 and |log2(fold change)|>2 as the cutoff. The ceRNA network (ceRNet) was initially constructed to reveal the interaction of these ceRNAs during carcinogenesis based on the bioinformatics of miRcode, miRDB, miRTarBase, and TargetScan. Then, independent microarray data of GSE6188, GSE89102, and GSE92396 and correlation analysis were used to validate molecular biomarkers in the initial ceRNet. Finally, a least absolute shrinkage and selection operator logistic regression model was built using an oncogenic ceRNet to diagnose EC more accurately. RESULTS: We successfully constructed an oncogenic ceRNet of EC, crosstalk of hsa-miR372-centered CADM2-ADAMTS9-AS2 and hsa-miR145-centered SERPINE1-PVT1. In addition, the risk-score model -0.0053*log2(CADM2)+0.0168*log2(SERPINE1)-0.0073*log2(ADAMTS9-AS2)+0.0905*log2(PVT1)+0.0047*log2(hsa-miR372)-0.0193*log2(hsa-miR145), (log2[gene count]) could improve diagnosis of EC with an AUC of 0.988. CONCLUSION: We identified two novel pairs of ceRNAs in EC and its role of diagnosis. The pairs of hsa-miR372-centered CADM2-ADAMTS9-AS2 and hsa-miR145-centered SERPINE1-PVT1 were likely potential carcinogenic mechanisms of EC, and their joint detection could improve diagnostic accuracy.
RESUMO
Due to the complex function of the Notch signal pathway in gastric cancer (GC), the association between Notch homolog 1 (Notch1) intracellular domain (NICD) and differentiation of GC remains unknown. The present study aimed to investigate the potential association between NICD and GC differentiation, and demonstrated that poorly differentiated GC expressed increased NICD levels compared with well differentiated GC. A γ-secretase inhibitor inhibited the growth of AGS cells through downregulating NICD level. Additional data suggested that a COX-2 inhibitor caused a marked reduction of NICD level in comparison with a control group treated with dimethyl sulfoxide. Combined administration of γ-secretase and COX-2 inhibitor produced a marked inhibition of growth in AGS cells, which suggests that patients with poorly differentiated GC may benefit from the blockage of NICD, which potentially serves a role in GC differentiation.
RESUMO
EF24 is an IKKß inhibitor (IC50: 72 µM) containing various anti-tumor activities. In this study, a series of EF24 analogs targeting IKKß were designed and synthesized. Several IKKß inhibitors with better activities than EF24 were screened out and B3 showed best IKKß inhibitory (IC50: 6.6 µM). Molecular docking and dynamic simulation experiments further confirmed this inhibitory effect. B3 obviously suppressed the viability of Hela229, A549, SGC-7901 and MGC-803 cells. Then, in SGC-7901 and MGC-803 cells, B3 blocked the NF-κB signal pathway by inhibiting IKKß phosphorylation, and followed arrested the cell cycle at G2/M phase by suppressing the Cyclin B1 and Cdc2 p34 expression, induced the cell apoptosis by down-regulating Bcl-2 protein and up-regulating cleaved-caspase3. Moreover, B3 significantly reduced tumor growth and suppressed the IKKß-NF-κB signal pathway in SGC-7901 xenograft model. In total, this study present a potential IKKß inhibitor as anti-tumor precursor.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos de Benzilideno/química , Compostos de Benzilideno/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Piperidonas/química , Piperidonas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/uso terapêutico , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Quinase I-kappa B/metabolismo , Camundongos Nus , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Piperidonas/síntese química , Piperidonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacosRESUMO
Fibroblast growth factor receptor 1 (FGFR1), belonging to receptor tyrosine kinases (RTKs), possesses various biological functions. Over-expression of FGFR1 has been observed in multiple human malignancies. Hence, targeting FGFR1 is an attractive prospect for the advancement of cancer treatment options. Here, we present a novel small molecular FGFR1 inhibitor L16H50, which can inhibit FGFR1 kinase in an ATP-independent manner. It potently inhibits FGFR1-mediated signaling in a gastric cancer cell line, resulting in inhibition of cell growth, survival and migration. It also displays an outstanding anti-tumor activity in a gastric cancer xenograft tumor model by targeting FGFR1 signaling. These results show that L16H50 is a potent non-ATP-competitive FGFR1 inhibitor and may provide strong rationale for its evaluation in gastric cancer patients.
Assuntos
Trifosfato de Adenosina/metabolismo , Hidrocarbonetos Clorados/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Células HEK293 , Humanos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/farmacologia , Camundongos , Mitose/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: The transcription factor nuclear factor-κB (NF-κB) is constitutively activated in a variety of human cancers, including gastric cancer. NF-κB inhibitors that selectively kill cancer cells are urgently needed for cancer treatment. Curcumin is a potent inhibitor of NF-κB activation. Unfortunately, the therapeutic potential of curcumin is limited by its relatively low potency and poor cellular bioavailability. In this study, we presented a novel NF-κB inhibitor named Da0324, a synthetic asymmetric mono-carbonyl analog of curcumin. The purpose of this study is to research the expression of NF-κB in gastric cancer and the antitumor activity and mechanism of Da0324 on human gastric cancer cells. METHODS: The expressions between gastric cancer tissues/cells and normal gastric tissues/cells of NF-κB were evaluated by Western blot. The inhibition viability of compounds on human gastric cancer cell lines SGC-7901, BGC-823, MGC-803, and normal gastric mucosa epithelial cell line GES-1 was assessed with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Absorption spectrum method and high-performance liquid chromatography method detected the stability of the compound in vitro. The compound-induced changes of inducible NF-κB activation in the SGC-7901 and BGC-823 cells were examined by Western blot analysis and immunofluorescence methods. The antitumor activity of compound was performed by clonogenic assay, matrigel invasion assay, flow cytometric analysis, Western blot analysis, and Hoechst 33258 staining assay. RESULTS: High levels of p65 were found in gastric cancer tissues and cells. Da0324 displayed higher growth inhibition against several types of gastric cancer cell lines and showed relatively low toxicity to GES-1. Moreover, Da0324 was more stable than curcumin in vitro. Western blot analysis and immunofluorescence methods showed that Da0324 blocked NF-κB activation. In addition, Da0324 significantly inhibited tumor proliferation and invasion, arrested the cell cycle, and induced apoptosis in vitro. CONCLUSION: The asymmetric mono-carbonyl analog of curcumin Da0324 exhibited significantly improved antigastric cancer activity. Da0324 may be a promising NF-κB inhibitor for the selective targeting of cancer cells. However, further studies are needed in animals to validate these findings for the therapeutic use of Da0324.
Assuntos
Antineoplásicos/farmacologia , Compostos de Benzilideno/farmacologia , Curcumina/análogos & derivados , Ciclopentanos/farmacologia , NF-kappa B/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Antineoplásicos/química , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Ciclopentanos/síntese química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neoplasias Gástricas/metabolismo , Relação Estrutura-AtividadeRESUMO
Fibroblast growth factor 2 (FGF2) is closely involved in a variety of tumors, including gastric cancer (GC). FGF2 inhibitors exert good antitumor activity, but no FGF2 inhibitor has been employed for clinical use. To obtain a low-toxicity, stable peptidomimetic (called P29) target to FGF2, the affinity between P29 and FGF2 was detected by surface plasmon resonance. The stability of P29 was measured by high performance liquid chromatography. MTT assay and transwell assay were used to access the proliferative and invasive ability of GC cells, respectively. Western blot assay and flow cytometric analysis were applied to study the mechanism of P29. P29 possessed high affinity with FGF2 and a longer half-life in vitro. P29 suppressed the FGF2-induced proliferation of GC cells. It also inhibited the phosphorylation of FRS2, ERK1/2, and AKT triggered by FGF2 in GC. In addition, P29 blocked GC cell transformation from the G1/G0 phase to the S phase and weakened the invasive capability of GC cells. In this paper, we present a novel FGF2 inhibitor that could exert improved anticancer effect in GC in vitro.
Assuntos
Antineoplásicos/farmacologia , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Oligopeptídeos/farmacologia , Peptidomiméticos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Transdução de SinaisRESUMO
The therapeutic agent selectively killing cancer cells is urgently needed for gastric cancer treatment. Curcumin has been investigated for its effect on the cancer treatment because of its significant therapeutic potential and safety profile. A synthetic unsymmetry mono-carbonyl compound termed W346 was developed from curcumin. In this study, we investigated the potential antineoplastic effect and mechanism of W346 against human gastric cancer cells. W346 suppressed the proliferation and invasion, blocked cell cycle arrest at G2/M phase, and increased apoptosis in gastric cancer cells, and it presented obviously improved anticancer activity than curcumin. Moreover, W346 effectively inhibited tumor necrosis factor (TNF-α)-induced NF-κB activation by suppressing IKK phosphorylation, inhibiting IκB-α degradation, and restraining the accumulation of NF-κB subunit p65 nuclear translocation. W346 also affected NF-κB-regulated downstream products involved in cycle arrest and apoptosis. In a word, W346 exhibited significantly improved anti-gastric cancer activity over curcumin by targeting NF-κB signaling pathway, and it is likely to be a promising starting point for the development of curcumin-based therapeutic agent.
Assuntos
Curcumina/análogos & derivados , Curcumina/administração & dosagem , Ciclopentanos/administração & dosagem , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Fator de Transcrição RelA/biossíntese , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Proteínas I-kappa B/genética , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Invasividade Neoplásica/genética , Fosforilação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genéticaRESUMO
In this paper, we describe a novel label-free fluorescence method for microRNA-21 (miR-21) detection based on terbium (Tb(3+)) and duplex-specific nuclease (DSN) assisted target recycling. Capture probes (Cps), containing a target-binding part and a signal-output part, are immobilized on magnetic beads (MBs). In the presence of the target miR-21, it hybridizes with the target-binding part of a Cp to form a DNA-RNA heteroduplex. Due to the considerable cleavage preference for DNA in DNA-RNA hybrids, DSN hydrolyzes the target-binding part of the Cp while liberating the intact target miR-21 to hybridize with a new Cp and initiate the second cycle of hydrolysis. Eventually, through magnetic separation, only the signal-output part of the Cp could remain in solution and function as a signalling flare to increase the fluorescence intensity of Tb(3+) dramatically. By employing the above strategy, this approach can gain an amplified fluorescent signal and detect as low as 8 fM miR-21 under the optimized conditions. Moreover, due to the high selectivity of DSN, the method shows little cross-hybridization among the closely related miRNA family members even at the single-base-mismatched level. Successful attempts were made in applying the approach to detect miR-21 in human cell lysate samples of breast cancer patients.
Assuntos
Técnicas Biossensoriais/métodos , MicroRNAs/análise , Térbio/química , Endonucleases/metabolismo , Células HeLa , Humanos , Células MCF-7 , Hibridização de Ácido Nucleico/métodos , Espectrometria de Fluorescência/métodosRESUMO
Breast cancer is the most common type of malignant tumor in women. Recently, it has been shown that detection of breast cancer tumor cells outside the primitive tumor is an effective early diagnosis with great prognostic and clinical utility. For this purpose, we developed a signal-on fluorescence aptasensor for label-free, facile and sensitive detection of MCF-7 breast cancer cells. Due to target-aptamer specific recognition and single-stranded DNA-sensitized luminescence of terbium (III), the proposed aptasensor exhibits excellent sensitivity with detection limit as low as 70 cells mL(-1). Compared with common organic dyes and the emerging nano-technological probes, the combination of terbium (III) and single-stranded DNA signal probe (Tb(3+)-SP) serves as a more powerful bio-probe because of its stable optical property, good biocompatibility and free from complex synthesis. The feasibility investigations have illustrated the potential applicability of this aptasensor for selective and sensitive detection of MCF-7 breast cancer cells. Moreover, this proposed aptasensor can be also extended for the determination of other tumor cancers or bio-molecules by altering corresponding aptamers. Taken together, this easy-to-perform aptasensor may represent a promising way for early screening and detection of tumor cancers or other bio-molecules in clinical diagnosis.
Assuntos
Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/instrumentação , Neoplasias da Mama/diagnóstico , DNA de Cadeia Simples/análise , Substâncias Luminescentes/química , Térbio/química , Neoplasias da Mama/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Feminino , Humanos , Limite de Detecção , Espectrometria de FluorescênciaRESUMO
Previous studies showed that fibroblast growth factor receptor 1 (FGFR1) is an attractive target in gastric cancer therapy. In the current study, we aimed to investigate whether the compound L6123, a novel non-ATP-competitive FGFR1 inhibitor, could show better antitumor activity than the leading compound, nordihydroguaiaretic acid (NDGA), in FGFR1-overexpressing gastric cancer cells. Using an MTT assay, we investigated the inhibitory effect of L6123 on the viability of three gastric cancer cells (MGC-803, SGC-7901, and BGC-823) overexpressing FGFR1, wild-type mouse embryonic fibroblast (MEF), and MEF expressing FGFR1, FGFR2, and FRS2α gene knockout (MEF). We studied the antitumor mechanism of L6123 against the gastric cancer cell line SGC-7901 by western blot analysis. The antitumor effects of L6123 on the gastric cancer cell line SGC-7901 were detected by flow cytometry, Hoechst staining, western blot analysis, and Transwell invasion assay. L6123 had lower IC50 in all three gastric cancer cells than NDGA and showed better inhibitory activity against MEF cells than against MEF cells. In the SGC-7901 gastric cell, L6123 inhibited the FGF2-induced phosphorylation of FGFR1/FRS2α/ERK1/2 in a dose-dependent manner, induced the activation of the apoptosis-related proteins, cleaved-PARP and cleaved-caspase-3, decreased the expression of pro-caspase-3 and Bcl-2, and induced tumor cell apoptosis. L6123 also dose-dependently reduced cell invasion ability, and showed better activity than NDGA at the same concentration. A novel non-ATP-competitive inhibitor L6123 showed excellent antigastric cancer activity by inhibiting the FGFR1 signaling pathway. Thus, we discovered a potential agent for the treatment of FGFR1-overexpressing gastric cancer.