Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Nat Commun ; 15(1): 5763, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982051

RESUMO

While high circulating tumor DNA (ctDNA) levels are associated with poor survival for multiple cancers, variant-specific differences in the association of ctDNA levels and survival have not been examined. Here we investigate KRAS ctDNA (ctKRAS) variant-specific associations with overall and progression-free survival (OS/PFS) in first-line metastatic pancreatic ductal adenocarcinoma (mPDAC) for patients receiving chemoimmunotherapy ("PRINCE", NCT03214250), and an independent cohort receiving standard of care (SOC) chemotherapy. For PRINCE, higher baseline plasma levels are associated with worse OS for ctKRAS G12D (log-rank p = 0.0010) but not G12V (p = 0.7101), even with adjustment for clinical covariates. Early, on-therapy clearance of G12D (p = 0.0002), but not G12V (p = 0.4058), strongly associates with OS for PRINCE. Similar results are obtained for the SOC cohort, and for PFS in both cohorts. These results suggest ctKRAS G12D but not G12V as a promising prognostic biomarker for mPDAC and that G12D clearance could also serve as an early biomarker of response.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , DNA Tumoral Circulante , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Feminino , Masculino , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mutação , Intervalo Livre de Progressão , Metástase Neoplásica
3.
Nat Med ; 30(4): 1174-1190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38641744

RESUMO

Despite increasing numbers of regulatory approvals, deep learning-based computational pathology systems often overlook the impact of demographic factors on performance, potentially leading to biases. This concern is all the more important as computational pathology has leveraged large public datasets that underrepresent certain demographic groups. Using publicly available data from The Cancer Genome Atlas and the EBRAINS brain tumor atlas, as well as internal patient data, we show that whole-slide image classification models display marked performance disparities across different demographic groups when used to subtype breast and lung carcinomas and to predict IDH1 mutations in gliomas. For example, when using common modeling approaches, we observed performance gaps (in area under the receiver operating characteristic curve) between white and Black patients of 3.0% for breast cancer subtyping, 10.9% for lung cancer subtyping and 16.0% for IDH1 mutation prediction in gliomas. We found that richer feature representations obtained from self-supervised vision foundation models reduce performance variations between groups. These representations provide improvements upon weaker models even when those weaker models are combined with state-of-the-art bias mitigation strategies and modeling choices. Nevertheless, self-supervised vision foundation models do not fully eliminate these discrepancies, highlighting the continuing need for bias mitigation efforts in computational pathology. Finally, we demonstrate that our results extend to other demographic factors beyond patient race. Given these findings, we encourage regulatory and policy agencies to integrate demographic-stratified evaluation into their assessment guidelines.


Assuntos
Glioma , Neoplasias Pulmonares , Humanos , Viés , Negro ou Afro-Americano , População Negra , Demografia , Erros de Diagnóstico , Glioma/diagnóstico , Glioma/genética , Brancos
4.
Nat Med ; 30(3): 850-862, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504018

RESUMO

Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks, requiring the objective characterization of histopathological entities from whole-slide images (WSIs). The high resolution of WSIs and the variability of morphological features present significant challenges, complicating the large-scale annotation of data for high-performance applications. To address this challenge, current efforts have proposed the use of pretrained image encoders through transfer learning from natural image datasets or self-supervised learning on publicly available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using more than 100 million images from over 100,000 diagnostic H&E-stained WSIs (>77 TB of data) across 20 major tissue types. The model was evaluated on 34 representative CPath tasks of varying diagnostic difficulty. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient artificial intelligence models that can generalize and transfer to a wide range of diagnostically challenging tasks and clinical workflows in anatomic pathology.


Assuntos
Inteligência Artificial , Fluxo de Trabalho
5.
Oncotarget ; 15: 200-218, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484152

RESUMO

We describe the analytical validation of NeXT Personal®, an ultra-sensitive, tumor-informed circulating tumor DNA (ctDNA) assay for detecting residual disease, monitoring therapy response, and detecting recurrence in patients diagnosed with solid tumor cancers. NeXT Personal uses whole genome sequencing of tumor and matched normal samples combined with advanced analytics to accurately identify up to ~1,800 somatic variants specific to the patient's tumor. A personalized panel is created, targeting these variants and then used to sequence cell-free DNA extracted from patient plasma samples for ultra-sensitive detection of ctDNA. The NeXT Personal analytical validation is based on panels designed from tumor and matched normal samples from two cell lines, and from 123 patients across nine cancer types. Analytical measurements demonstrated a detection threshold of 1.67 parts per million (PPM) with a limit of detection at 95% (LOD95) of 3.45 PPM. NeXT Personal showed linearity over a range of 0.8 to 300,000 PPM (Pearson correlation coefficient = 0.9998). Precision varied from a coefficient of variation of 12.8% to 3.6% over a range of 25 to 25,000 PPM. The assay targets 99.9% specificity, with this validation study measuring 100% specificity and in silico methods giving us a confidence interval of 99.92 to 100%. In summary, this study demonstrates NeXT Personal as an ultra-sensitive, highly quantitative and robust ctDNA assay that can be used to detect residual disease, monitor treatment response, and detect recurrence in patients.


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , DNA Tumoral Circulante/genética , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , DNA de Neoplasias/genética , Bioensaio , Biomarcadores Tumorais/genética
7.
Adv Ophthalmol Pract Res ; 3(4): 187-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928946

RESUMO

Purpose: Patients with diabetes mellitus have an elevated chance of developing cataracts, a degenerative vision-impairing condition often needing surgery. The process of the reduction of glucose to sorbitol in the lens of the human eye that causes cataracts is managed by the Aldose Reductase Enzyme (AR), and it is been found that AR inhibitors may mitigate the onset of diabetic cataracts. There exists a large pool of natural and synthetic AR inhibitors that can prevent diabetic complications, and the development of a machine-learning (ML) prediction model may bring new AR inhibitors with better characteristics into clinical use. Methods: Using known AR inhibitors and their chemical-physical descriptors we created the ML model for prediction of new AR inhibitors. The predicted inhibitors were tested by computational docking to the binding site of AR. Results: Using cross-validation in order to find the most accurate ML model, we ended with final cross-validation accuracy of 90%. Computational docking testing of the predicted inhibitors gave a high level of correlation between the ML prediction score and binding free energy. Conclusions: Currently known AR inhibitors are not used yet for patients for several reasons. We think that new predicted AR inhibitors have the potential to possess more favorable characteristics to be successfully implemented after clinical testing. Exploring new inhibitors can improve patient well-being and lower surgical complications all while decreasing long-term medical expenses.

8.
PLoS One ; 18(9): e0284309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708236

RESUMO

Tetrahymena are ciliated protists that have been used to study the effects of toxic chemicals, including anticancer drugs. In this study, we tested the inhibitory effects of six pyrimidine analogs (5-fluorouracil, floxuridine, 5'-deoxy-5-fluorouridine, 5-fluorouridine, gemcitabine, and cytarabine) on wild-type CU428 and conditional mutant NP1 Tetrahymena thermophila at room temperature and the restrictive temperature (37°C) where NP1 does not form the oral apparatus. We found that phagocytosis was not required for pyrimidine analog entry and that all tested pyrimidine analogs inhibited growth except for cytarabine. IC50 values did not significantly differ between CU428 and NP1 for the same analog at either room temperature or 37°C. To investigate the mechanism of inhibition, we used two pyrimidine bases (uracil and thymine) and three nucleosides (uridine, thymidine, and 5-methyluridine) to determine whether the inhibitory effects from the pyrimidine analogs were reversible. We found that the inhibitory effects from 5-fluorouracil could be reversed by uracil and thymine, from floxuridine could be reversed by thymidine, and from 5'-deoxy-5-fluorouridine could be reversed by uracil. None of the tested nucleobases or nucleosides could reverse the inhibitory effects of gemcitabine or 5-fluorouridine. Our results suggest that the five pyrimidine analogs act on different sites to inhibit T. thermophila growth and that nucleobases and nucleosides are metabolized differently in Tetrahymena.


Assuntos
Tetrahymena thermophila , Floxuridina/farmacologia , Nucleosídeos , Timina/farmacologia , Antimetabólitos , Gencitabina , Pirimidinas/farmacologia , Uracila/farmacologia , Fluoruracila/farmacologia , Citarabina
9.
ArXiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693180

RESUMO

Tissue phenotyping is a fundamental computational pathology (CPath) task in learning objective characterizations of histopathologic biomarkers in anatomic pathology. However, whole-slide imaging (WSI) poses a complex computer vision problem in which the large-scale image resolutions of WSIs and the enormous diversity of morphological phenotypes preclude large-scale data annotation. Current efforts have proposed using pretrained image encoders with either transfer learning from natural image datasets or self-supervised pretraining on publicly-available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using over 100 million tissue patches from over 100,000 diagnostic haematoxylin and eosin-stained WSIs across 20 major tissue types, and evaluated on 33 representative CPath clinical tasks in CPath of varying diagnostic difficulties. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree code classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient AI models that can generalize and transfer to a gamut of diagnostically-challenging tasks and clinical workflows in anatomic pathology.

10.
Clin Pract Cases Emerg Med ; 7(3): 202-204, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37595298

RESUMO

CASE PRESENTATION: Early diagnosis and rapid treatment of cancer is essential for good clinical outcomes for patients. In this case, an 85-year-old man presented with failure to thrive and was noted to have rapid-onset, multiple seborrheic keratoses (Leser-Trélat sign) on his chest and back. He was ultimately diagnosed with pancreatic cancer using computed tomography. DISCUSSION: Leser-Trélat sign is a rare cutaneous marker for underlying malignancy. Identification of this sign can help guide diagnostic imaging and lab work to identify an occult internal malignancy, resulting in more rapid diagnosis, earlier treatment, and potentially better clinical outcomes.

11.
Oncotarget ; 14: 789-806, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646774

RESUMO

We describe the analytic validation of NeXT Dx, a comprehensive genomic profiling assay to aid therapy and clinical trial selection for patients diagnosed with solid tumor cancers. Proprietary methods were utilized to perform whole exome and whole transcriptome sequencing for detection of single nucleotide variants (SNVs), insertions/deletions (indels), copy number alterations (CNAs), and gene fusions, and determination of tumor mutation burden and microsatellite instability. Variant calling is enhanced by sequencing a patient-specific normal sample from, for example, a blood specimen. This provides highly accurate somatic variant calls as well as the incidental reporting of pathogenic and likely pathogenic germline alterations. Fusion detection via RNA sequencing provides more extensive and accurate fusion calling compared to DNA-based tests. NeXT Dx features the proprietary Accuracy and Content Enhanced technology, developed to optimize sequencing and provide more uniform coverage across the exome. The exome was validated at a median sequencing depth of >500x. While variants from 401 cancer-associated genes are currently reported from the assay, the exome/transcriptome assay is broadly validated to enable reporting of additional variants as they become clinically relevant. NeXT Dx demonstrated analytic sensitivities as follows: SNVs (99.4%), indels (98.2%), CNAs (98.0%), and fusions (95.8%). The overall analytic specificity was >99.0%.


Assuntos
Bioensaio , Exoma , Humanos , Exoma/genética , Fusão Gênica , Mutação INDEL , Genômica
12.
Mol Cell Proteomics ; 22(4): 100506, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796642

RESUMO

Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past 2 decades. However, improvement in the accuracy of prediction algorithms is needed for clinical applications like the development of personalized cancer vaccines, the discovery of biomarkers for response to immunotherapies, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic Human Leukocyte Antigen (HLA) Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA allele to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC diversity in the training data and extend allelic coverage in underprofiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.17-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications.


Assuntos
Neoplasias , Peptídeos , Humanos , Peptídeos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade , Antígenos HLA/genética , Antígenos HLA/metabolismo
14.
Cancer Cell ; 40(10): 1095-1110, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220072

RESUMO

In oncology, the patient state is characterized by a whole spectrum of modalities, ranging from radiology, histology, and genomics to electronic health records. Current artificial intelligence (AI) models operate mainly in the realm of a single modality, neglecting the broader clinical context, which inevitably diminishes their potential. Integration of different data modalities provides opportunities to increase robustness and accuracy of diagnostic and prognostic models, bringing AI closer to clinical practice. AI models are also capable of discovering novel patterns within and across modalities suitable for explaining differences in patient outcomes or treatment resistance. The insights gleaned from such models can guide exploration studies and contribute to the discovery of novel biomarkers and therapeutic targets. To support these advances, here we present a synopsis of AI methods and strategies for multimodal data fusion and association discovery. We outline approaches for AI interpretability and directions for AI-driven exploration through multimodal data interconnections. We examine challenges in clinical adoption and discuss emerging solutions.


Assuntos
Inteligência Artificial , Radiologia , Registros Eletrônicos de Saúde , Genômica , Humanos , Oncologia
15.
Cancer Cell ; 40(8): 865-878.e6, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944502

RESUMO

The rapidly emerging field of computational pathology has demonstrated promise in developing objective prognostic models from histology images. However, most prognostic models are either based on histology or genomics alone and do not address how these data sources can be integrated to develop joint image-omic prognostic models. Additionally, identifying explainable morphological and molecular descriptors from these models that govern such prognosis is of interest. We use multimodal deep learning to jointly examine pathology whole-slide images and molecular profile data from 14 cancer types. Our weakly supervised, multimodal deep-learning algorithm is able to fuse these heterogeneous modalities to predict outcomes and discover prognostic features that correlate with poor and favorable outcomes. We present all analyses for morphological and molecular correlates of patient prognosis across the 14 cancer types at both a disease and a patient level in an interactive open-access database to allow for further exploration, biomarker discovery, and feature assessment.


Assuntos
Aprendizado Profundo , Neoplasias , Algoritmos , Genômica/métodos , Humanos , Neoplasias/genética , Neoplasias/patologia , Prognóstico
16.
Nat Med ; 28(6): 1167-1177, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35662283

RESUMO

Chemotherapy combined with immunotherapy has improved the treatment of certain solid tumors, but effective regimens remain elusive for pancreatic ductal adenocarcinoma (PDAC). We conducted a randomized phase 2 trial evaluating the efficacy of nivolumab (nivo; anti-PD-1) and/or sotigalimab (sotiga; CD40 agonistic antibody) with gemcitabine/nab-paclitaxel (chemotherapy) in patients with first-line metastatic PDAC ( NCT03214250 ). In 105 patients analyzed for efficacy, the primary endpoint of 1-year overall survival (OS) was met for nivo/chemo (57.7%, P = 0.006 compared to historical 1-year OS of 35%, n = 34) but was not met for sotiga/chemo (48.1%, P = 0.062, n = 36) or sotiga/nivo/chemo (41.3%, P = 0.223, n = 35). Secondary endpoints were progression-free survival, objective response rate, disease control rate, duration of response and safety. Treatment-related adverse event rates were similar across arms. Multi-omic circulating and tumor biomarker analyses identified distinct immune signatures associated with survival for nivo/chemo and sotiga/chemo. Survival after nivo/chemo correlated with a less suppressive tumor microenvironment and higher numbers of activated, antigen-experienced circulating T cells at baseline. Survival after sotiga/chemo correlated with greater intratumoral CD4 T cell infiltration and circulating differentiated CD4 T cells and antigen-presenting cells. A patient subset benefitting from sotiga/nivo/chemo was not identified. Collectively, these analyses suggest potential treatment-specific correlates of efficacy and may enable biomarker-selected patient populations in subsequent PDAC chemoimmunotherapy trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Albuminas , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Humanos , Nivolumabe/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
17.
Nat Commun ; 13(1): 1925, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414054

RESUMO

Human leukocyte antigen loss of heterozygosity (HLA LOH) allows cancer cells to escape immune recognition by deleting HLA alleles, causing the suppressed presentation of tumor neoantigens. Despite its importance in immunotherapy response, few methods exist to detect HLA LOH, and their accuracy is not well understood. Here, we develop DASH (Deletion of Allele-Specific HLAs), a machine learning-based algorithm to detect HLA LOH from paired tumor-normal sequencing data. With cell line mixtures, we demonstrate increased sensitivity compared to previously published tools. Moreover, our patient-specific digital PCR validation approach provides a sensitive, robust orthogonal approach that could be used for clinical validation. Using DASH on 610 patients across 15 tumor types, we find that 18% of patients have HLA LOH. Moreover, we show inflated HLA LOH rates compared to genome-wide LOH and correlations between CD274 (encodes PD-L1) expression and microsatellite instability status, suggesting the HLA LOH is a key immune resistance strategy.


Assuntos
Perda de Heterozigosidade , Neoplasias , Algoritmos , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II , Humanos , Perda de Heterozigosidade/genética , Aprendizado de Máquina , Repetições de Microssatélites/genética , Neoplasias/genética
18.
Nat Med ; 28(3): 575-582, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35314822

RESUMO

Endomyocardial biopsy (EMB) screening represents the standard of care for detecting allograft rejections after heart transplant. Manual interpretation of EMBs is affected by substantial interobserver and intraobserver variability, which often leads to inappropriate treatment with immunosuppressive drugs, unnecessary follow-up biopsies and poor transplant outcomes. Here we present a deep learning-based artificial intelligence (AI) system for automated assessment of gigapixel whole-slide images obtained from EMBs, which simultaneously addresses detection, subtyping and grading of allograft rejection. To assess model performance, we curated a large dataset from the United States, as well as independent test cohorts from Turkey and Switzerland, which includes large-scale variability across populations, sample preparations and slide scanning instrumentation. The model detects allograft rejection with an area under the receiver operating characteristic curve (AUC) of 0.962; assesses the cellular and antibody-mediated rejection type with AUCs of 0.958 and 0.874, respectively; detects Quilty B lesions, benign mimics of rejection, with an AUC of 0.939; and differentiates between low-grade and high-grade rejections with an AUC of 0.833. In a human reader study, the AI system showed non-inferior performance to conventional assessment and reduced interobserver variability and assessment time. This robust evaluation of cardiac allograft rejection paves the way for clinical trials to establish the efficacy of AI-assisted EMB assessment and its potential for improving heart transplant outcomes.


Assuntos
Aprendizado Profundo , Rejeição de Enxerto , Aloenxertos , Inteligência Artificial , Biópsia , Rejeição de Enxerto/diagnóstico , Humanos , Miocárdio/patologia
19.
Cell Death Differ ; 29(2): 293-305, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974533

RESUMO

Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene. We show that the poly-glutamine (polyQ) tract encoded by CAGs in the huntingtin protein (HTT) is under purifying selection and subjected to stronger selective pressures than CAG-encoded polyQ tracts in other proteins. For natural selection to operate, the polyQ must perform a function. By combining genome-edited mouse embryonic stem cells and cell assays, we show that small variations in HTT polyQ lengths significantly correlate with cells' neurogenic potential and with changes in the gene transcription network governing neuronal function. We conclude that during evolution natural selection promotes the conservation and purity of the CAG-encoded polyQ tract and that small increases in its physiological length influence neural functions of HTT. We propose that these changes in HTT polyQ length contribute to evolutionary fitness including potentially to the development of a more complex nervous system.


Assuntos
Doença de Huntington , Peptídeos , Animais , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Camundongos , Neurônios/metabolismo , Peptídeos/genética , Peptídeos/metabolismo
20.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074903

RESUMO

BACKGROUND: There are no validated biomarkers that can aid clinicians in selecting who would best benefit from anticytotoxic T lymphocyte-associated antigen 4 monotherapy versus combination checkpoint blockade in patients with advanced melanoma who have progressive disease after programmed death 1 (PD-1) blockade. METHODS: We conducted a randomized multicenter phase II trial in patients with advanced melanoma. Patients were randomly assigned to receive either 1 mg/kg of nivolumab plus 3 mg/kg of ipilimumab or 3 mg/kg of ipilimumab every 3 weeks for up to four doses. Patients were stratified by histological subtype and prior response to PD-1 therapy. The primary clinical objective was overall response rate by week 18. Translational biomarker analyses were conducted in patients with blood and tissue samples. RESULTS: Objective responses were seen in 5 of 9 patients in the ipilimumab arm and 2 of 10 patients in the ipilimumab+nivolumab arm; disease control rates (DCRs) (66.7% vs 60.0%) and rates of grade 3-4 adverse events (56% vs 50%) were comparable between arms. In a pooled analysis, patients with clinical benefit (CB), defined as Response Evaluation Criteria in Solid Tumors response or progression-free for 6 months, showed increased circulating CD4+ T cells with higher polyfunctionality and interferon gamma production following treatment. Tumor profiling revealed enrichment of NRAS mutations and activation of transcriptional programs associated with innate and adaptive immunity in patients with CB. CONCLUSIONS: In patients with advanced melanoma that previously progressed on PD-1 blockade, objective responses were seen in both arms, with comparable DCRs. Findings from biomarker analyses provided hypothesis-generating signals for validation in future studies of larger patient cohorts. TRIAL REGISTRATION NUMBER: NCT02731729.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Ipilimumab/uso terapêutico , Melanoma/tratamento farmacológico , Nivolumabe/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Apresentação de Antígeno , Biomarcadores Tumorais , Feminino , Humanos , Interferon gama/biossíntese , Ipilimumab/administração & dosagem , Ipilimumab/efeitos adversos , Masculino , Melanoma/imunologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Nivolumabe/efeitos adversos , Estudos Prospectivos , Análise de Sequência de RNA , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA