Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.069
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 1267, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720267

RESUMO

OBJECTIVE: Bayesian network (BN) models were developed to explore the specific relationships between influencing factors and type 2 diabetes mellitus (T2DM), coronary heart disease (CAD), and their comorbidities. The aim was to predict disease occurrence and diagnose etiology using these models, thereby informing the development of effective prevention and control strategies for T2DM, CAD, and their comorbidities. METHOD: Employing a case-control design, the study compared individuals with T2DM, CAD, and their comorbidities (case group) with healthy counterparts (control group). Univariate and multivariate Logistic regression analyses were conducted to identify disease-influencing factors. The BN structure was learned using the Tabu search algorithm, with parameter estimation achieved through maximum likelihood estimation. The predictive performance of the BN model was assessed using the confusion matrix, and Netica software was utilized for visual prediction and diagnosis. RESULT: The study involved 3,824 participants, including 1,175 controls, 1,163 T2DM cases, 982 CAD cases, and 504 comorbidity cases. The BN model unveiled factors directly and indirectly impacting T2DM, such as age, region, education level, and family history (FH). Variables like exercise, LDL-C, TC, fruit, and sweet food intake exhibited direct effects, while smoking, alcohol consumption, occupation, heart rate, HDL-C, meat, and staple food intake had indirect effects. Similarly, for CAD, factors with direct and indirect effects included age, smoking, SBP, exercise, meat, and fruit intake, while sleeping time and heart rate showed direct effects. Regarding T2DM and CAD comorbidities, age, FBG, SBP, fruit, and sweet intake demonstrated both direct and indirect effects, whereas exercise and HDL-C exhibited direct effects, and region, education level, DBP, and TC showed indirect effects. CONCLUSION: The BN model constructed using the Tabu search algorithm showcased robust predictive performance, reliability, and applicability in forecasting disease probabilities for T2DM, CAD, and their comorbidities. These findings offer valuable insights for enhancing prevention and control strategies and exploring the application of BN in predicting and diagnosing chronic diseases.


Assuntos
Teorema de Bayes , Comorbidade , Doença das Coronárias , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Pessoa de Meia-Idade , Feminino , Masculino , Doença das Coronárias/epidemiologia , Estudos de Casos e Controles , Idoso , Adulto , Fatores de Risco
2.
Plant Commun ; : 100944, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733080

RESUMO

The Caesalpinioideae subfamily contains many well-known trees that are important for the sustainability of the economy and human health, but the lack of genomic resources hindered the breeding and utilization of these plants. Here, we present chromosome-level reference genomes for two food and industrial trees Gleditsia sinensis (921 Mb) and Biancaea sappan (872 Mb), three shade and ornamental trees Albizia julibrissin (705 Mb), Delonix regia (580 Mb) and Acacia confusa (566 Mb), as well as two pioneer and hedgerow trees Leucaena leucocephala (1,338 Mb) and Mimosa bimucronata (641 Mb). Phylogeny inference showed that the mimosoid clade has a much higher evolution rate than the other clades of Caesalpinioideae. Macrosynteny comparison showed that the fusion and broken of an unstable chromosome was responsible for the difference in the basic chromosome number 13 and 14 for Caesalpinioideae. After the ancient whole genome duplication shared by all Caesalpinioideae species (CWGD, ∼72.0 MYA), we found two recent successive WGD events LWGD-1 (16.2-19.5 MYA) and LWGD-2 (7.1-9.5 MYA) in L. leucocephala. Then, ∼40% gene loss and genome size contraction occurred during the diploidization process in L. leucocephala. For the secondary metabolites, we identified all the gene copies involved in mimosine metabolism for these species and revealed that the abundance of mimosine biosynthesis genes in L. leucocephala largely explains its high mimosine production. Moreover, we identified all the potential genes involved in triterpenoid saponin biosynthesis in G. sinensis, which is more complete than the previous transcriptome-derived unigenes. Our analyzing results and the genomic resources will facilitate the biological studies of Caesalpinioideae and promote the utilization of valuable secondary metabolites.

3.
Free Radic Biol Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763207

RESUMO

Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.

4.
BMC Med ; 22(1): 207, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769543

RESUMO

BACKGROUND: Tumor-infiltrating lymphocyte (TIL) therapy has been restricted by intensive lymphodepletion and high-dose intravenous interleukin-2 (IL-2) administration. To address these limitations, we conducted preclinical and clinical studies to evaluate the safety, antitumor activity, and pharmacokinetics of an innovative modified regimen in patients with advanced gynecologic cancer. METHODS: Patient-derived xenografts (PDX) were established from a local recurrent cervical cancer patient. TILs were expanded ex vivo from minced tumors without feeder cells in the modified TIL therapy regimen. Patients underwent low-dose cyclophosphamide lymphodepletion followed by TIL infusion without intravenous IL-2. The primary endpoint was safety; the secondary endpoints included objective response rate, duration of response, and T cell persistence. RESULTS: In matched patient-derived xenografts (PDX) models, homologous TILs efficiently reduced tumor size (p < 0.0001) and underwent IL-2 absence in vivo. In the clinical section, all enrolled patients received TIL infusion using a modified TIL therapy regimen successfully with a manageable safety profile. Five (36%, 95% CI 16.3-61.2) out of 14 evaluable patients experienced objective responses, and three complete responses were ongoing at 19.5, 15.4, and 5.2 months, respectively. Responders had longer overall survival (OS) than non-responders (p = 0.036). Infused TILs showed continuous proliferation and long-term persistence in all patients and showed greater proliferation in responders which was indicated by the Morisita overlap index (MOI) of TCR clonotypes between infused TILs and peripheral T cells on day 14 (p = 0.004) and day 30 (p = 0.004). Higher alteration of the CD8+/CD4+ ratio on day 14 indicated a longer OS (p = 0.010). CONCLUSIONS: Our modified TIL therapy regimen demonstrated manageable safety, and TILs could survive and proliferate without IL-2 intravenous administration, showing potent efficacy in patients with advanced gynecologic cancer. TRIAL REGISTRATION: NCT04766320, Jan 04, 2021.


Assuntos
Interleucina-2 , Linfócitos do Interstício Tumoral , Humanos , Feminino , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Pessoa de Meia-Idade , Interleucina-2/administração & dosagem , Interleucina-2/uso terapêutico , Animais , Idoso , Adulto , Camundongos , Neoplasias dos Genitais Femininos/terapia , Neoplasias dos Genitais Femininos/tratamento farmacológico , Resultado do Tratamento , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/uso terapêutico
5.
Bioresour Technol ; 402: 130772, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703959

RESUMO

To explore the enzyme-enhanced strategy of a continuous anaerobic dynamic membrane reactor (AnDMBR), the anaerobic codigestion system of food waste and corn straw was first operated stably, and then the best combination of compound enzymes (laccase, endo-ß-1,4-glucanase, xylanase) was determined via a series of batch trials. The results showed that the methane yield (186.8 ± 19.9 mL/g VS) with enzyme addition was 12.2 % higher than that without enzyme addition. Furthermore, the removal rates of cellulose, hemicellulose and lignin increased by 31 %, 36 % and 78 %, respectively. In addition, dynamic membranes can form faster and more stably with enzyme addition. The addition of enzymes changed the structure of microbial communities while maintaining sufficient hydrolysis bacteria (Bacteroidetes), promoting the proliferation of Proteobacteria as a dominant strain and bringing stronger acetylation ability. In summary, the compound enzyme strengthening strategy successfully improved the methane production, dynamic membrane effect, and degradation rate of lignocellulose in AnDMBR.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38698748

RESUMO

AIMS: This study investigates the impact of IbACP (Ipomoea batatas anti-cancer peptide) on defense-related gene expression in tomato leaves, focusing on its role in plant defense mechanisms. BACKGROUND: Previously, IbACP was isolated from sweet potato leaves, and it was identified as a peptide capable of inducing an alkalinization response in tomato suspension culture media. Additionally, IbACP was found to regulate the proliferation of human pancreatic adenocarcinoma cells. OBJECTIVE: Elucidate IbACP's molecular influence on defense-related gene expression in tomato leaves using next-generation sequencing analysis. METHOD: To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP for durations ranging from 0 h (control) to 24 h. RESULTS: IbACP induced jasmonic acid-related genes (LoxD and AOS) at 2 h, with a significant up-regulation of salicylic acid-dependent gene NPR1 at 24 h. This suggested a temporal antagonistic effect between jasmonic acid and salicylic acid during the early hours of IbACP treatment. Downstream ethylene-responsive regulator genes (ACO1, ETR4, and ERF1) were consistently down-regulated by IbACP at all times. Additionally, IbACP significantly up-regulated the gene expressions of suberization-associated anionic peroxidases (TMP1 and TAP2) at all time points, indicating enhanced suberization of the plant cell wall to prevent pathogen invasion. CONCLUSION: IbACP enhances the synthesis of defense hormones and up-regulates downstream defense genes, improving the plant's resistance to biotic stresses.

7.
Asian J Surg ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704267

RESUMO

The adverse effects of traditional pharmaceutical immunosuppressive regimens have been a major obstacle to successful allograft survival in vascularized composite tissue allotransplantation (VCA) cases. Consequently, there is a pressing need to explore alternative approaches to reduce reliance on conventional immunotherapy. Cell therapy, encompassing immune-cell-based and stem-cell-based regimens, has emerged as a promising avenue of research. Immune cells can be categorized into two main systems: innate immunity and adaptive immunity. Innate immunity comprises tolerogenic dendritic cells, regulatory macrophages, and invariant natural killer T cells, while adaptive immunity includes T regulatory cells and B regulatory cells. Investigations are currently underway to assess the potential of these immune cell populations in inducing immune tolerance. Furthermore, mixed chimerism therapy, involving the transplantation of hematopoietic stem and progenitor cells and mesenchymal stem cells (MSC), shows promise in promoting allograft tolerance. Additionally, extracellular vesicles (EVs) derived from MSCs offer a novel avenue for extending allograft survival. This review provides a comprehensive summary of cutting-edge research on immune cell therapies, mixed chimerism therapies, and MSCs-derived EVs in the context of VCAs. Findings from preclinical and clinical studies demonstrate the tremendous potential of these alternative therapies in optimizing allograft survival in VCAs.

8.
Free Radic Biol Med ; 220: 111-124, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697493

RESUMO

Hepatocellular carcinoma (HCC) is a global public health problem with increased morbidity and mortality. Agrimol B, a natural polyphenol, has been proved to be a potential anticancer drug. Our recent report showed a favorable anticancer effect of agrimol B in HCC, however, the mechanism of action remains unclear. Here, we found agrimol B inhibits the growth and proliferation of HCC cells in vitro as well as in an HCC patient-derived xenograft (PDX) model. Notably, agrimol B drives autophagy initiation and blocks autophagosome-lysosome fusion, resulting in autophagosome accumulation and autophagy arrest in HCC cells. Mechanistically, agrimol B downregulates the protein level of NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1) through caspase 3-mediated degradation, leading to mitochondrial reactive oxygen species (mROS) accumulation and autophagy arrest. NDUFS1 overexpression partially restores mROS overproduction, autophagosome accumulation, and growth inhibition induced by agrimol B, suggesting a cytotoxic role of agrimol B-induced autophagy arrest in HCC cells. Notably, agrimol B significantly enhances the sensitivity of HCC cells to sorafenib in vitro and in vivo. In conclusion, our study uncovers the anticancer mechanism of agrimol B in HCC involving the regulation of oxidative stress and autophagy, and suggests agrimol B as a potential therapeutic drug for HCC treatment.

9.
Cell Death Dis ; 15(5): 340, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755129

RESUMO

Pancreatic cancer (PC) is among the deadliest malignancies, with an extremely poor diagnosis and prognosis. Gemcitabine (GEM) remains the first-line drug for treating PC; however, only a small percentage of patients benefit from current immunotherapies or targeted therapies. Resistance to GEM is prevalent and affects long-term survival. We found that ubiquitin-protein ligase E3 module N-recognition 5 (UBR5) is a therapeutic target against GEM resistance. UBR5 was markedly upregulated in clinical GEM-resistant PC samples and GEM-resistant PC cells. UBR5 knockdown markedly increased GEM sensitivity in GEM-resistant PC cell lines. UBR5-mediated GEM resistance was accompanied by activation of epithelial-mesenchymal transition (EMT) and could be mitigated by inhibiting EMT. Further analysis revealed that UBR5 promoted GEM resistance in PC cells by enhancing O-GlcNAcylation-mediated EMT. In addition, UBR5 knockdown resulted in increased O-GlcNAase (OGA) levels, an essential negatively regulated enzyme in the O-GlcNAcylation process. We identified a negative association between OGA and UBR5 levels, which further supported the hypothesis that O-GlcNAcylation-mediated GEM resistance induced by UBR5 is OGA-dependent in PC cells. Mechanistic studies revealed that UBR5 acts as an E3 ubiquitin ligase of OGA and regulates O-GlcNAcylation by binding and modulating OGA, facilitating its degradation and ubiquitination. Additionally, high-throughput compound library screening using three-dimensional protein structure analysis and drug screening identified a Food and Drug Administration drug, Y-39983 dihydrochloride, as a potent GEM sensitiser and UBR5 inhibitor. The combination of Y-39983 dihydrochloride and GEM attenuated tumour growth in a mouse xenograft tumour model. Collectively, these data demonstrated that UBR5 plays a pivotal role in the sensitisation of PC to GEM and provides a potential therapeutic strategy to overcome GEM resistance.


Assuntos
Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Gencitabina , Neoplasias Pancreáticas , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Ubiquitinação
10.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720301

RESUMO

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Assuntos
Antibacterianos , Bandagens , Biofilmes , Óxido Nítrico , Terapia Fototérmica , Ratos Sprague-Dawley , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Terapia Fototérmica/métodos , Masculino , Quitosana/química , Quitosana/farmacologia , Nanofibras/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Staphylococcus aureus/efeitos dos fármacos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , S-Nitrosoglutationa/farmacologia , S-Nitrosoglutationa/química
11.
Cell Commun Signal ; 22(1): 252, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698453

RESUMO

BACKGROUND: Ischemic postconditioning (IPostC) has been reported as a promising method for protecting against myocardial ischemia-reperfusion (MI/R) injury. Our previous study found that the infarct-limiting effect of IPostC is abolished in the heart of diabetes whose cardiac expression of DJ-1 (also called PARK7, Parkinsonism associated deglycase) is reduced. However, the role and in particular the underlying mechanism of DJ-1 in the loss of sensitivity to IPostC-induced cardioprotection in diabetic hearts remains unclear. METHODS: Streptozotocin-induced type 1 diabetic rats were subjected to MI/R injury by occluding the left anterior descending artery (LAD) and followed by reperfusion. IPostC was induced by three cycles of 10s of reperfusion and ischemia at the onset of reperfusion. AAV9-CMV-DJ-1, AAV9-CMV-C106S-DJ-1 or AAV9-DJ-1 siRNA were injected via tail vein to either over-express or knock-down DJ-1 three weeks before inducing MI/R. RESULTS: Diabetic rats subjected to MI/R exhibited larger infarct area, more severe oxidative injury concomitant with significantly reduced cardiac DJ-1 expression and increased PTEN expression as compared to non-diabetic rats. AAV9-mediated cardiac DJ-1 overexpression, but not the cardiac overexpression of DJ-1 mutant C106S, restored IPostC-induced cardioprotection and this effect was accompanied by increased cytoplasmic DJ-1 translocation toward nuclear and mitochondrial, reduced PTEN expression, and increased Nrf-2/HO-1 transcription. Our further study showed that AAV9-mediated targeted DJ-1 gene knockdown aggravated MI/R injury in diabetic hearts, and this exacerbation of MI/R injury was partially reversed by IPostC in the presence of PTEN inhibition or Nrf-2 activation. CONCLUSIONS: These findings suggest that DJ-1 preserves the cardioprotective effect of IPostC against MI/R injury in diabetic rats through nuclear and mitochondrial DJ-1 translocation and that inhibition of cardiac PTEN and activation of Nrf-2/HO-1 may represent the major downstream mechanisms whereby DJ-1 preserves the cardioprotective effect of IPostC in diabetes.


Assuntos
Diabetes Mellitus Experimental , Pós-Condicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica , PTEN Fosfo-Hidrolase , Proteína Desglicase DJ-1 , Ratos Sprague-Dawley , Animais , Proteína Desglicase DJ-1/metabolismo , Proteína Desglicase DJ-1/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Transporte Proteico , Estreptozocina , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia
12.
Chem Biol Drug Des ; 103(4): e14513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570322

RESUMO

Taxol (paclitaxel) is the first approved microtubule-stabilizing agent (MSA) by binding stoichiometrically to tubulin, which is considered to be one of the most significant advances in first-line chemotherapy against diverse tumors. However, a large number of residue missence mutations harboring in the tubulin have been observed to cause acquired drug resistance, largely limiting the clinical application of Taxol and its analogs in chemotherapy. A systematic investigation of the intermolecular interactions between the Taxol and various tubulin mutants would help to establish a comprehensive picture of drug response to tubulin mutations in clinical treatment of cancer, and to design new MSA agents with high potency and selectivity to overcome drug resistance. In this study, we described an integration of in silico analysis and in vitro assay (iSiV) to profile Taxol against a panel of 149 clinically observed, cancer-associated missence mutations in ß-tubulin at molecular and cellular levels, aiming to a systematic understanding of molecular mechanism and biological implication underlying drug resistance and sensitivity conferring from tubulin mutations. It is revealed that the Taxol-resistant mutations can be classified into three types: (I) nonbonded interaction broken due to mutation, (II) steric hindrance caused by mutation, and (III) conformational change upon mutation. In addition, we identified three new Taxol-resistant mutations (C239Y, T274I, and R320P) that can largely reduce the binding affinity of Taxol to tubulin at molecular level, in which the T274I and R320P were observed to considerably impair the antitumor activity of Taxol at cellular level. Moreover, a novel drug-susceptible mutation (M363T) was also identified, which improves Taxol affinity by 2.6-fold and decreases Taxol antitumor EC50 values from 29.4 to 18.7 µM.


Assuntos
Paclitaxel , Tubulina (Proteína) , Paclitaxel/farmacologia , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Mutação , Resistência a Medicamentos
13.
J Appl Genet ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639843

RESUMO

Aberrant mRNA expression is implicated in uterine corpus endometrial carcinoma (UCEC) oncogenesis and progression. However, effective prognostic biomarkers for UCEC remain limited. We aimed to construct a reliable multi-gene risk model using gene expression profiles. Utilizing TCGA data (543 UCEC samples, 35 controls), we identified 1517 differentially acting genes. Weighted gene co-expression complex analysis (WGCCA), hub gene screening, and risk regression analysis (RRA) were employed to determine prognosis-related genes and construct the risk model. Nomograms visualized risk scores and receiver operator characteristic (ROC) curves assessed model performance. Seven novel prognosis-related hub genes (ANGPT1, ASB2, GAL, GDF7, ONECUT2, SV2B, TRPC6) were identified. The model's concordance index (C index) by multivariate Cox regression analysis was 0.79. ROC curves yielded AUCs of 0.811 (3-year) and 0.79 (5-year), demonstrating the model's efficacy in predicting UCEC survival. Our study proposes a promising seven-biomarker risk model for predicting UCEC prognosis, offering potential clinical utility.

14.
World J Gastroenterol ; 30(13): 1859-1870, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659484

RESUMO

BACKGROUND: Portal hypertension (PHT), primarily induced by cirrhosis, manifests severe symptoms impacting patient survival. Although transjugular intrahepatic portosystemic shunt (TIPS) is a critical intervention for managing PHT, it carries risks like hepatic encephalopathy, thus affecting patient survival prognosis. To our knowledge, existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes. Consequently, the development of an innovative modeling approach is essential to address this limitation. AIM: To develop and validate a Bayesian network (BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS. METHODS: The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed. Variables were selected using Cox and least absolute shrinkage and selection operator regression methods, and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT. RESULTS: Variable selection revealed the following as key factors impacting survival: age, ascites, hypertension, indications for TIPS, postoperative portal vein pressure (post-PVP), aspartate aminotransferase, alkaline phosphatase, total bilirubin, prealbumin, the Child-Pugh grade, and the model for end-stage liver disease (MELD) score. Based on the above-mentioned variables, a BN-based 2-year survival prognostic prediction model was constructed, which identified the following factors to be directly linked to the survival time: age, ascites, indications for TIPS, concurrent hypertension, post-PVP, the Child-Pugh grade, and the MELD score. The Bayesian information criterion was 3589.04, and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16. The model's accuracy, precision, recall, and F1 score were 0.90, 0.92, 0.97, and 0.95 respectively, with the area under the receiver operating characteristic curve being 0.72. CONCLUSION: This study successfully developed a BN-based survival prediction model with good predictive capabilities. It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT.


Assuntos
Teorema de Bayes , Hipertensão Portal , Cirrose Hepática , Derivação Portossistêmica Transjugular Intra-Hepática , Humanos , Hipertensão Portal/cirurgia , Hipertensão Portal/mortalidade , Hipertensão Portal/etiologia , Hipertensão Portal/diagnóstico , Derivação Portossistêmica Transjugular Intra-Hepática/efeitos adversos , Derivação Portossistêmica Transjugular Intra-Hepática/mortalidade , Pessoa de Meia-Idade , Feminino , Masculino , Estudos Retrospectivos , Prognóstico , Cirrose Hepática/cirurgia , Cirrose Hepática/complicações , Cirrose Hepática/mortalidade , Resultado do Tratamento , Idoso , Adulto , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/cirurgia , Encefalopatia Hepática/mortalidade , Fatores de Risco , Pressão na Veia Porta
15.
World J Gastroenterol ; 30(9): 1237-1249, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577174

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease with limited effective treatment especially after first-line chemotherapy. The human epidermal growth factor receptor 2 (HER-2) immunohistochemistry (IHC) positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC. CASE SUMMARY: We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn't have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment. A novel combination therapy PRaG 3.0 of RC48 (HER2-antibody-drug conjugate), radiotherapy, PD-1 inhibitor, granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month. She had not developed any grade 2 or above treatment-related adverse events at any point. Percentage of peripheral CD8+Temra and CD4+Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy. CONCLUSION: PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptor ErbB-2 , Humanos , Feminino , Gencitabina , Desoxicitidina/uso terapêutico , Estudos Prospectivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Albuminas/uso terapêutico
16.
PLoS One ; 19(4): e0299949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635758

RESUMO

BACKGROUND: Although there is evidence that ribonucleotide reductase subunit M2 (RRM2) is associated with numerous cancers, pan-cancer analysis has seldom been conducted. This study aimed to explore the potential carcinogenesis of RRM2 in pan-cancer using datasets from The Cancer Genome Atlas (TCGA). METHODS: Data from the UCSC Xena database were analyzed to investigate the differential expression of RRM2 across multiple cancer types. Clinical data such as age, race, sex, tumor stage, and status were acquired to analyze the influence of RRM2 on the clinical characteristics of the patients. The role of RRM2 in the onset and progression of multiple cancers has been examined in terms of genetic changes at the molecular level, including tumor mutational burden (TMB), microsatellite instability (MSI), biological pathway changes, and the immune microenvironment. RESULTS: RRM2 was highly expressed in most cancers, and there was an obvious correlation between RRM2 expression and patient prognosis. RRM2 expression is associated with the infiltration of diverse immune and endothelial cells, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI). Moreover, the cell cycle is involved in the functional mechanisms of RRM2. CONCLUSIONS: Our pan-cancer study provides a comprehensive understanding of the carcinogenesis of RRM2 in various tumors.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Carcinogênese/genética , Instabilidade de Microssatélites , Neoplasias/genética , Prognóstico , Microambiente Tumoral
17.
PLoS One ; 19(3): e0298014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547200

RESUMO

PURPOSE: This study aimed to assess the difference in prognosis of patients with early-stage liver cancer after surgery or external radiation. METHODS: Between 2010 and 2015, 2155 patients with AJCC 7th stage I liver cancer were enrolled in the SEER database. Among these, 1972 patients had undergone surgery and 183 had undergone external beam radiation. The main research endpoints were overall survival (OS) and disease-specific survival (DSS). The competitive risk model was used to calculate the risk ratio of liver cancer-specific deaths when there was a competitive risk. Propensity Score Matching (PSM) method using a 1:1 ratio was used to match confounders such as sex, age, and treatment method. Conditional survival was dynamically assessed for patient survival after surgery or external radiation. RESULTS: Multivariate analysis of the competitive risk model showed that age, disease diagnosis time, grade, and treatment [surgery and external beam radiation therapy (EBRT)] were independent prognostic factors for patients with hepatocellular carcinoma. Surgery had a higher survival improvement rate than that of EBRT. As the survival of patients with liver cancer increased, the survival curve of surgery declined more slowly than that of radiotherapy patients and stabilized around 3 years after surgery. The survival curve of radiotherapy patients significantly dropped within 4 years and then stabilized. CONCLUSION: Surgery was better than EBRT for patients with stage I liver cancer. Close follow-up was required for 3 years after surgery or 4 years after external radiation. This study can help clinicians make better informed clinical decisions.


Assuntos
Braquiterapia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Braquiterapia/métodos , Taxa de Sobrevida , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirurgia , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/cirurgia
18.
Biochem Genet ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472566

RESUMO

H1.4 is one of the 11 variants of linker histone H1, and is associated with tumorigenesis and development of various cancers. However, it is unclear for the role of histone H1.4 in non-small cell lung cancer (NSCLC). In this study, we found that overexpression of H1.4 significantly inhibited the cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) processes, whereas silencing H1.4 by shRNA knockdown promoted these processes in NSCLC cell lines A549 and H1299. We further showed that H1.4 overexpression reduced ERK1/2 expression or its phosphorylation levels, while H1.4 knockdown increased ERK1/2 expression or phosphorylation levels in NSCLC. Furthermore, we demonstrated that H1.4 bound to the promoter of ERK1/2, and acted as a transcriptional suppressor to inhibit ERK1/2 expression in A549 or H1299 cells. Importantly, we found that ERK ecto-expression can largely recovered the inhibitory effects of H1.4 on cell viability, migration, invasion and EMT processes. In summary, our study reveals that the H1.4-ERK pathway is crucial for cell viability, migration, invasion and EMT of NSCLC and could be a therapeutic target for NSCLC.

19.
Dalton Trans ; 53(14): 6300-6310, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38482906

RESUMO

The effective integration of nanomaterials with underlying current collectors is a key factor affecting the performance of nonenzymatic glucose sensors, where an inappropriate integration structure often leads to poor electron transport and instability. In this work, a seamless integrated electrode was constructed by the in situ immobilizing of a nickel-based metal-organic framework (Ni-MOF) on a three-dimensional (3D) conductive nickel foam (NF) for highly sensitive and durable glucose sensing. Facilitated by a rapid microwave-assisted reaction, a robust interfacial interaction between the Ni-MOF and the substrate was established through in situ conversion from nickel oxide (NiO). The fabricated Ni-MOF/NF electrode exhibits an excellent limit of detection (LOD) of 2.65 µM and an impressive sensitivity (14.31 mA cm-2 mM-1) within the linear range (4-576 µM), which is significantly boosted compared with that of an electrode prepared by a typical drop-casting method (3.56 mA cm-2 mM-1 in 4-1836 µM). Characterization and electrochemical tests reveal that this integrated structure on the one hand contributes to fast electron transport and thus has enhanced sensitivity and on the other hand leads to exceptional durability with its structural integrity maintained under bending, shaking, and ultrasonication. Moreover, this seamless integration method was also employed to immobilize the Ni-MOF converted from the pre-chemically deposited NiO layer on another type of substrate, 3D carbon paper (CP), demonstrating the versatility of this facile strategy in creating diverse electrochemical electrodes for applications beyond glucose sensing.

20.
PLoS Pathog ; 20(2): e1012061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416782

RESUMO

Alternative polyadenylation (APA) is a widespread mechanism of gene regulation that generates mRNA isoforms with alternative 3' untranslated regions (3' UTRs). Our previous study has revealed the global 3' UTR shortening of host mRNAs through APA upon viral infection. However, how the dynamic changes in the APA landscape occur upon viral infection remains largely unknown. Here we further found that, the reduced protein abundance of CPSF6, one of the core 3' processing factors, promotes the usage of proximal poly(A) sites (pPASs) of many immune related genes in macrophages and fibroblasts upon viral infection. Shortening of the 3' UTR of these transcripts may improve their mRNA stability and translation efficiency, leading to the promotion of type I IFN (IFN-I) signalling-based antiviral immune responses. In addition, dysregulated expression of CPSF6 is also observed in many immune related physiological and pathological conditions, especially in various infections and cancers. Thus, the global APA dynamics of immune genes regulated by CPSF6, can fine-tune the antiviral response as well as the responses to other cellular stresses to maintain the tissue homeostasis, which may represent a novel regulatory mechanism for antiviral immunity.


Assuntos
Poliadenilação , Viroses , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , Regiões 3' não Traduzidas/genética , Regulação para Baixo , Imunidade/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Viroses/genética , Camundongos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA