Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38810653

RESUMO

Differentiation of murine epidermal stem/progenitor cells involves the permanent withdrawal from the cell cycle, the synthesis of various protein and lipid components for the cornified envelope, and the controlled dissolution of cellular organelles and nuclei. Deregulated epidermal differentiation contributes to the development of various skin diseases, including skin cancers. With a genome-wide shRNA screen, we identified vesicle-associated membrane protein 2 (VAMP2) as a critical factor involved in skin differentiation. Deletion of VAMP2 leads to aberrant skin stratification and enucleation in vivo. With quantitative proteomics, we further identified an autophagy protein, focal adhesion kinase family interacting protein of 200 kDa (FIP200), as a binding partner of VAMP2. Additionally, we showed that both VAMP2 and FIP200 are critical for murine keratinocyte enucleation and epidermal differentiation. Loss of VAMP2 or FIP200 enhances cutaneous carcinogenesis in vivo. Together, our findings identify important molecular mechanisms underlying epidermal differentiation and skin tumorigenesis.

2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542477

RESUMO

Based on Sima and Lu's system of the family Magnoliaceae, the genus Lirianthe Spach s. l. includes approximately 25 species, each with exceptional landscaping and horticultural or medical worth. Many of these plants are considered rare and are protected due to their endangered status. The limited knowledge of species within this genus and the absence of research on its chloroplast genome have greatly impeded studies on the relationship between its evolution and systematics. In this study, the chloroplast genomes of eight species from the genus Lirianthe were sequenced and analyzed, and their phylogenetic relationships with other genera of the family Magnoliaceae were also elucidated. The results showed that the chloroplast genome sizes of the eight Lirianthe species ranged from 159,548 to 159,833 bp. The genomes consisted of a large single-copy region, a small single-copy region, and a pair of inverted repeat sequences. The GC content was very similar across species. Gene annotation revealed that the chloroplast genomes contained 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes, totaling 130 genes. Codon usage analysis indicated that codon usage was highly conserved among the eight Lirianthe species. Repeat sequence analysis identified 42-49 microsatellite sequences, 16-18 tandem repeats, and 50 dispersed repeats, with microsatellite sequences being predominantly single-nucleotide repeats. DNA polymorphism analysis revealed 10 highly variable regions located in the large single-copy and small single-copy regions, among which rpl32-trnL, petA-psbJ, and trnH-psbA were the recommended candidate DNA barcodes for the genus Lirianthe species. The inverted repeat boundary regions show little variation between species and are generally conserved. The result of phylogenetic analysis confirmed that the genus Lirianthe s. l. is a monophyletic taxon and the most affinal to the genera, Talauma and Dugandiodendron, in Sima and Lu's system and revealed that the genus Lirianthe s. s. is paraphyletic and the genus Talauma s. l. polyphyletic in Xia's system, while Magnolia subsection Gwillimia is paraphyletic and subsection Blumiana polyphyletic in Figlar and Nooteboom's system. Morphological studies found noticeable differences between Lirianthe species in aspects including leaf indumentum, stipule scars, floral orientation, tepal number, tepal texture, and fruit dehiscence. In summary, this study elucidated the chloroplast genome evolution within Lirianthe and laid a foundation for further systematic and taxonomic research on this genus.


Assuntos
Genoma de Cloroplastos , Magnolia , Filogenia , Anotação de Sequência Molecular , Plantas/genética
3.
J Med Ultrasound ; 31(2): 92-100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576422

RESUMO

Contrast-enhanced ultrasound (CEUS) uses an intravascular contrast agent to enhance blood flow signals and assess microcirculation in different parts of the human body. Over the past decade, CEUS has become more widely applied in musculoskeletal (MSK) medicine, and the current review aims to systematically summarize current research on the application of CEUS in the MSK field, focusing on 67 articles published between January 2001 and June 2021 in online databases including PubMed, Scopus, and Embase. CEUS has been widely used for the clinical assessment of muscle microcirculation, tendinopathy, fracture nonunions, sports-related injuries, arthritis, peripheral nerves, and tumors, and can serve as an objective and quantitative evaluation tool for prognosis and outcome prediction. Optimal CEUS parameters and diagnostic cut off values for each disease category remain to be confirmed.

4.
Front Oncol ; 12: 1007296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387173

RESUMO

ALK rearrangements have rarely been reported in S100- and CD34-co-expressing soft tissue neoplasms with lipofibromatosis-like neural tumor (LPFNT) pattern or stromal and perivascular hyalinization, mimicking NTRK-rearranged spindle cell tumors. Here, we reported ALK fusions involving related partner genes in two adult soft tissue tumors with S100 and CD34 co-expression, and conducted a literature review of mesenchymal tumors harboring ALK or other kinase fusions. Case 1 was a 25-year-old female who underwent excision of a soft tissue mass in the anterior thigh region. Morphologically, the tumor was composed of spindle cells adjacent to epithelioid cells embedded in myxedematous and hyalinized stroma, with infiltrative boundary. Spindle cells mixed with inflammatory infiltration resembling inflammatory myofibroblastic tumor (IMT) were seen sporadically. However, brisk mitosis and focal necrosis was also observed, indicating an intermediate-grade sarcoma. In case 2, the left side of the neck of a 34-year-old man was affected. The tumor was composed of monomorphic spindle cells arranged in fascicular growth or patternless pattern, with stromal and perivascular hyalinization. Sparse inflammatory cell infiltration was also observed. Both tumors showed CD34, S100, and ALK-D5F3 immunoreactivity. Next generation sequencing (NGS) test identified a PLEKHH2::ALK fusion in case 1, which was confirmed by RT-PCR and Sanger sequencing, whereas the RT-PCR (ARMS method) test detected an EML4::ALK fusion in case 2. In conclusion, this study expands the morphological and genetic landscape of tumors with S100 and CD34 co-expression harboring kinase fusions, and suggests that kinase fusion-positive mesenchymal neoplasms are becoming an enlarging entity with a variety of morphological patterns.

5.
Mol Ther ; 29(8): 2424-2440, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33984520

RESUMO

Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.


Assuntos
COVID-19/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Plantas/metabolismo , Pneumonia/metabolismo , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , SARS-CoV-2/patogenicidade , Fator de Necrose Tumoral alfa/metabolismo , Células U937 , Células Vero
6.
Exp Neurol ; 300: 60-66, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29069573

RESUMO

Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables. SFN's cytoprotective properties have been demonstrated in several models associated with a variety of disorders. Our recent studies have shown that SFN protects against ethanol-induced oxidative stress and apoptosis in neural crest cells (NCCs), an ethanol-sensitive cell population implicated in Fetal Alcohol Spectrum Disorders (FASD). This study is designed to test the hypothesis that SFN can prevent ethanol-induced apoptosis in NCCs by inhibiting HDAC and increasing histone acetylation at the Bcl-2 promoter. We found that exposure to 50mM ethanol resulted in a significant increase in HDAC activities in NCCs. Treatment with SFN decreased the activities of HDAC in ethanol-exposed NCCs. We also found that SFN treatment significantly increased the expression of acetyl-histone H3 in NCCs treated with ethanol. ChIP-qPCR assay revealed that ethanol exposure significantly decreased acetyl-histone H3 binding to the Bcl-2 promoter while supplementing with SFN reversed the ethanol-induced reduction in acetyl-histone H3 binding to the Bcl-2 promoter. In addition, SFN treatment restored the expression of Bcl-2 in ethanol-exposed NCCs and diminished ethanol-induced apoptosis in NCCs. Treatment with SFN also significantly diminished apoptosis in mouse embryos exposed to ethanol in vivo. These results demonstrate that SFN can epigenetically restore the expression of Bcl-2 and attenuate ethanol-induced apoptosis by increasing histone acetylation at the Bcl-2 promoter and suggest that SFN may prevent FASD through epigenetic regulation of the expression of anti-apoptotic genes.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Etanol/toxicidade , Histonas/metabolismo , Isotiocianatos/farmacologia , Crista Neural/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Desenvolvimento Embrionário/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Gravidez , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Sulfóxidos
7.
Alcohol Res ; 38(2): 289-302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28988580

RESUMO

Alcohol and nutrition have the potential to interact at multiple levels. For example, heavy alcohol consumption can interfere with normal nutrition, resulting in overall malnutrition or in deficiencies of important micronutrients, such as zinc, by reducing their absorption or increasing their loss. Interactions between alcohol consumption and nutrition also can affect epigenetic regulation of gene expression by influencing multiple regulatory mechanisms, including methylation and acetylation of histone proteins and DNA. These effects may contribute to alcohol-related organ or tissue injury. The impact of alcohol-nutrition interactions has been assessed for several organs and tissues, including the intestine, where heavy alcohol use can increase intestinal permeability, and the liver, where the degree of malnutrition can be associated with the severity of liver injury and liver disease. Alcohol-nutrition interactions also play a role in alcohol-related lung injury, brain injury, and immune dysfunction. Therefore, treatment involving nutrient supplementation (e.g., with zinc or S-adenosylmethionine) may help prevent or attenuate some types of alcohol-induced organ damage.


Assuntos
Consumo de Bebidas Alcoólicas , Transtornos Relacionados ao Uso de Álcool , Deficiências Nutricionais , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/imunologia , Consumo de Bebidas Alcoólicas/metabolismo , Transtornos Relacionados ao Uso de Álcool/complicações , Transtornos Relacionados ao Uso de Álcool/metabolismo , Transtornos Relacionados ao Uso de Álcool/prevenção & controle , Animais , Deficiências Nutricionais/induzido quimicamente , Deficiências Nutricionais/complicações , Deficiências Nutricionais/metabolismo , Humanos
8.
EMBO J ; 36(13): 1963-1980, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28507225

RESUMO

Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post-translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin-1) by RIPK4 (receptor-interacting serine-threonine kinase 4) during epidermal differentiation. With genome-editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo Phosphorylation of PKP1's N-terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK-PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.


Assuntos
Diferenciação Celular , Queratinócitos/fisiologia , Placofilinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Pele/citologia , Células-Tronco/fisiologia , Animais , Carcinogênese , Células Cultivadas , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Fosforilação , Proteoma/análise , Neoplasias Cutâneas , Transplante de Tecidos
9.
Arch Toxicol ; 91(2): 775-784, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27270636

RESUMO

Seven in absentia homolog 1 (Siah1) is one of the E3 ubiquitin ligases and plays a key role in regulating target protein degradation. This study was designed to test the hypothesis that Siah1 mediates ethanol-induced apoptosis in NCCs through p38 MAPK-mediated activation of the p53 signaling pathway. We found that exposure of NCCs to ethanol resulted in the increases in the total protein levels of p53 and the phosphorylation of p53 at serine 15. Ethanol exposure also resulted in a significant increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 dramatically reduced the ethanol-induced increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 by siRNA or down-regulation of p38 MAPK by either siRNA or inhibitor significantly diminished ethanol-induced accumulations of p53 and the phosphorylation of p53. In addition, ethanol exposure resulted in a significant increase in the expression of p53 downstream targets and apoptosis in NCCs, which can be significantly diminished by down-regulation of Siah1 with siRNA. Knock-down of p38 MAPK by siRNA also dramatically reduced the ethanol-induced apoptosis. These results demonstrate that Siah1 plays a crucial role in ethanol-induced apoptosis in NCCs, and that the up-regulation of Siah1 by ethanol can trigger apoptosis through p38 MAPK-mediated activation of the p53 signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Etanol/toxicidade , Crista Neural/citologia , Proteínas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Ativação Enzimática/efeitos dos fármacos , Camundongos , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Fosforilação/efeitos dos fármacos , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases , Regulação para Cima/efeitos dos fármacos , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
10.
Sci Rep ; 6: 31026, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27498701

RESUMO

Fibroblast growth factor 21 (FGF21) is a hepatokine that regulates glucose and lipid metabolism in the liver. We sought to determine the role of FGF21 in hepatic steatosis in mice exposed to chronic alcohol treatment and to discern underlying mechanisms. Male FGF21 knockout (FGF21 KO) and control (WT) mice were divided into groups that were fed either the Lieber DeCarli diet containing 5% alcohol or an isocaloric (control) diet for 4 weeks. One group of WT mice exposed to alcohol received recombinant human FGF21 (rhFGF21) in the last 5 days. Liver steatosis and inflammation were assessed. Primary mouse hepatocytes and AML-12 cells were incubated with metformin or rhFGF21. Hepatic genes and the products involved in in situ lipogenesis and fatty acid ß-oxidation were analyzed. Alcohol exposure increased circulating levels and hepatic expression of FGF21. FGF21 depletion exacerbated alcohol-induced hepatic steatosis and liver injury, which was associated with increased activation of genes involved in lipogenesis mediated by SREBP1c and decreased expression of genes involved in fatty acid ß-oxidation mediated by PGC1α. rhFGF21 administration reduced alcohol-induced hepatic steatosis and inflammation in WT mice. These results reveal that alcohol-induced FGF21 expression is a hepatic adaptive response to lipid dysregulation. Targeting FGF21 signaling could be a novel treatment approach for alcoholic steatohepatitis.


Assuntos
Fígado Gorduroso Alcoólico/genética , Fatores de Crescimento de Fibroblastos/genética , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/sangue , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fígado Gorduroso Alcoólico/sangue , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/uso terapêutico , Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipogênese , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Proteínas Recombinantes/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Exp Neurol ; 271: 104-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26024858

RESUMO

MicroRNAs are a class of small noncoding RNAs that have been implicated in regulation of a broad range of cellular and physiologic processes, including apoptosis. The objective of this study is to elucidate the roles of miR-125b in modulating ethanol-induced apoptosis in neural crest cells (NCCs) and mouse embryos. We found that treatment with ethanol resulted in a significant decrease in miR-125b expression in NCCs and in mouse embryos. We also validated that Bcl-2 antagonist killer 1 (Bak1) and p53-upregulated modulator of apoptosis (PUMA) are the direct targets of miR-125b in NCCs. In addition, over-expression of miR-125b significantly reduced ethanol-induced increase in Bak1 and PUMA protein expression, caspase-3 activation, and apoptosis in NCCs, indicating that miR-125b can modulate ethanol-induced apoptosis by the regulation of Bcl-2 and p53 pathways. Furthermore, microinjection of miR-125b mimic resulted in a significant increase in miR-125b expression and a decrease in the protein expression of Bak1 and PUMA in ethanol-exposed mouse embryos. Up-regulation of miR-125b also significantly reduced ethanol-induced caspase-3 activation and diminished ethanol-induced growth retardation in mouse embryos. This is the first demonstration that miR-125b can prevent ethanol-induced apoptosis and that microinjection of miRNA mimic can prevent ethanol-induced embryotoxicity.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Etanol/farmacologia , MicroRNAs/metabolismo , Crista Neural/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Caspase 3/metabolismo , Sobrevivência Celular , Células Cultivadas , Depressores do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Técnicas de Cultura de Órgãos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Regulação para Cima/efeitos dos fármacos
13.
Cell Transplant ; 24(3): 561-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25654620

RESUMO

Cardiovascular diseases are related to many risk factors, such as diabetes, high blood pressure, smoking, and obesity. Myocardial infarction (MI), a cardiovascular disease, is the most common cause of cardiomyocyte death. In MI, hypoxia induces cardiomyocyte apoptosis; in particular, diabetes combined with MI has a synergistic effect that exacerbates cardiomyocyte death. The hypoxia-inducible factor-1α (HIF1α) transcriptional factor and a BH-3 only protein, Bcl-2 adenovirus E1B 19-kDa interacting protein 3 (BNIP3), are known to play fundamental roles in both adaptive and cell death processes in response to hypoxia. In addition, most cardioprotective studies used H9c2 cells that were not beating, so H9c2 cells may not be the best model for testing cardioprotective effects. Embryonic stem cells (ESCs) are pluripotent stem cells that are able to differentiate into several types of cells, including cardiomyocytes. In this study, we reveal a simple method to differentiate ESCs into cardiomyocytes by using poly-d-lysine-coated plates combined with ITS and N2-containing medium and characterized the ESC-derived cardiomyocytes by cardiomyocyte marker staining. The ESC-derived cardiomyocytes were used to investigate the protective effect of salvianolic acid B (Sal-B) in high glucose combined with hypoxic conditions to mimic diabetes patients with ischemia. The results of MTT and TUNEL assays indicate that Sal-B suppresses the apoptotic effect of treatment with high glucose combined with hypoxia in ESC-derived cardiomyocytes. In particular, Sal-B inhibited HIF1α, BNIP3, and cleavage caspase 3 expression levels, thereby suppressing apoptosis. This is the first study to mention the correlation between BNIP3 and Sal-B for cardioprotective effects. In conclusion, we suggest that Sal-B may be suitable for use as a future cardioprotective medicine.


Assuntos
Benzofuranos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/citologia , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Hipóxia Celular , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Glucose/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Miócitos Cardíacos/metabolismo , Polilisina/química , Ratos , Transdução de Sinais/efeitos dos fármacos
14.
Cancer Lett ; 313(2): 201-10, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-21978530

RESUMO

Neuroblastoma is the most common extra-cranial solid tumor in children. Despite advances in the treatment of childhood cancer, outcomes for children with advanced-stage neuroblastoma remain poor. Here we reported that 2-methoxyestradiol (2-ME) inhibited the proliferation and induced apoptosis in human neuroblastoma SK-N-SH and SH-SY5Y cells. 2-ME treatment also resulted in the generation of ROS and the loss of mitochondrial membrane potential in SK-N-SH and SH-SY5Y, indicating that 2-ME-induced apoptosis is mediated by ROS. This is supported by the results that have shown that co-treatment with antioxidants, VC, L-GSH and MitoQ(10), decreased 2-ME-induced generation of ROS and the loss of the mitochondrial membrane potential, increased the Bcl-2/Bax ratio, decreased 2-ME-induced activation of caspase-9 and caspase-3 and the up-regulation of apoptosis-inducing factor (AIF), and prevented 2-ME-induced apoptosis in SK-N-SH and SH-SY5Y cells. These results suggested that oxidative stress plays an important role in 2-ME-induced apoptotic death of human neuroblastoma cells.


Assuntos
Estradiol/análogos & derivados , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , 2-Metoxiestradiol , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Estradiol/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neuroblastoma/patologia , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Proteína X Associada a bcl-2/metabolismo
15.
PLoS One ; 6(2): e16845, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21304811

RESUMO

Previous studies have demonstrated that maternal ethanol exposure induces a moderate increase in Nrf2 protein expression in mouse embryos. Pretreatment with the Nrf2 inducer, 3H-1, 2-dithiole-3-thione (D3T), significantly increases the Nrf2 protein levels and prevents apoptosis in ethanol-exposed embryos. The present study, using PC12 cells, was designed to determine whether increased Nrf2 stability is a mechanism by which D3T enhances Nrf2 activation and subsequent antioxidant protection. Ethanol and D3T treatment resulted in a significant accumulation of Nrf2 protein in PC 12 cells. CHX chase analysis has shown that ethanol treatment delayed the degradation of Nrf2 protein in PC12 cells. A significantly greater decrease in Nrf2 protein degradation was observed in the cells treated with D3T alone or with both ethanol and D3T. In addition, D3T treatment significantly reduced ethanol-induced apoptosis. These results demonstrate that the stabilization of Nrf2 protein by D3T confers protection against ethanol-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Etanol/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Tionas/farmacologia , Tiofenos/farmacologia , Animais , Antioxidantes/farmacologia , Avaliação Pré-Clínica de Medicamentos , Camundongos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/fisiologia , Células PC12 , Estabilidade Proteica/efeitos dos fármacos , Ratos
16.
Alcohol ; 44(7-8): 699-705, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21112471

RESUMO

N-acetylcysteine (NAC) is a derivative of the amino acid l-cysteine, which, previously, has been shown to protect against ethanol-induced apoptosis during early development. Ongoing research demonstrates that NAC is also proving clinically beneficial in reducing oxidative stress-mediated lung, liver, and kidney damage, with protection likely resulting from a NAC-mediated increase in glutathione levels. In the present study, the hypothesis that coadministration of NAC and ethanol by means of liquid diet on days 7 and 8 of pregnancy in mice would reduce ethanol's teratogenicity was tested. For this work, adult nonpregnant female mice were acclimated to a liquid diet containing ethanol for 16 days, withdrawn from the ethanol, bred, and then returned to the liquid diet containing 4.8% ethanol and/or either 0.5 or 1-mg NAC/mL diet on their seventh and eighth days of pregnancy. At the concentrations used, the mice received NAC dosages of approximately 300 or 600 mg/kg/day and achieved peak blood ethanol concentrations (BEC) that averaged approximately 200mg/dL. There was no difference in BEC between the ethanol-alone and ethanol plus 600 mg/kg NAC group. After maternal euthanasia, gestational day (GD) 14 fetuses were removed, fixed, weighed, and examined for the presence and severity of ocular abnormalities, a readily assessed endpoint that results from GD 7 and 8 ethanol exposures. Although the lower dosage of NAC (300 mg/kg) resulted in a decrease in the incidence of ocular defects in both the left and right eyes, this reduction was not statistically significant. However, doubling the NAC concentration did yield a significant change; as compared with the group treated with ethanol alone, the incidence of ocular abnormalities was diminished by 22%. These results show the potential of an orally administered compound with proven clinical efficacy to reduce ethanol's teratogenic effects and support the premise that oxidative damage plays an important mechanistic role in fetal alcohol spectrum disorders.


Assuntos
Acetilcisteína/administração & dosagem , Etanol/toxicidade , Anormalidades do Olho/induzido quimicamente , Anormalidades do Olho/prevenção & controle , Animais , Dieta , Modelos Animais de Doenças , Etanol/sangue , Feminino , Transtornos do Espectro Alcoólico Fetal , Idade Gestacional , Masculino , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
17.
Dev Neurosci ; 27(1): 13-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15886480

RESUMO

Ethanol inhibition of L1-mediated cell adhesion may contribute to the spectrum of neurological, behavioral and morphological abnormalities associated with prenatal ethanol exposure. We showed previously that the neuroprotective peptides NAPVSIPQ (NAP) and SALLRSIPA (SAL) antagonize ethanol inhibition of L1 adhesion and prevent ethanol-induced growth retardation in mouse whole embryo culture. Here we ask whether NAP and SAL also prevent ethanol-induced major malformations of the nervous system. Gestational day 8.0 (3-5 somites) C57BL/6J mouse embryos were grown for 6 h in control medium, 100 mM ethanol and 10(-10) M peptides and then maintained for an additional 20 h in control medium. At the end of the culture period, only embryos having 18-19 somite pairs were examined and compared for the degree of neural tube closure. Ethanol exposure resulted in neural tube defects (NTDs) consistent with total dysraphia and anencephaly. Co-incubation with ethanol and L-NAP (all L-amino acids), D-NAP (all D-amino acids) or SAL significantly increased the percentage of embryos that had begun to close their neural folds at the level of the forebrain/midbrain junction or that had progressed beyond this stage of closure. P7A-NAP (NAPVSIAQ), which lacks neuroprotective activity, but retains activity as an antagonist of ethanol inhibition of L1 adhesion, was effective in preventing ethanol-induced NTDs. In contrast, I6A-NAP (NAPVSAPQ), which shows reduced efficacy as an ethanol antagonist but retains its neuroprotective efficacy, did not significantly diminish the induction of NTDs by ethanol. These findings demonstrate the ability of NAP and SAL to prevent ethanol-induced NTDs and support the hypothesis that ethanol teratogenesis is caused in part by ethanol inhibition of L1-mediated cell adhesion.


Assuntos
Etanol/toxicidade , Defeitos do Tubo Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Animais , Encéfalo/anormalidades , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Modelos Animais de Doenças , Técnicas de Cultura Embrionária , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Molécula L1 de Adesão de Célula Nervosa/antagonistas & inibidores , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/patologia , Oligopeptídeos/farmacologia , Peptídeos/química , Gravidez
18.
J Pharmacol Exp Ther ; 309(3): 1183-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14762101

RESUMO

Increasing evidence suggests that ethanol damages the developing nervous system partly by disrupting the L1 cell adhesion molecule. Ethanol inhibits L1-mediated cell adhesion, and compounds that antagonize this action also prevent ethanol-induced embryotoxicity. Two such compounds are the small peptides NAPVSIPQ (NAP) and SALLRSIPA (SAL). We showed previously that NAP and SAL antagonize ethanol inhibition of L1 adhesion at femtomolar to picomolar concentrations. Here we demonstrate that, despite this extraordinary potency, both NAP and SAL lack stereospecificity. d-NAP, a peptide composed entirely of d-amino acids, was an effective ethanol antagonist in NIH/3T3 cells transfected with human L1 and in the NG108-15 neural cell line. Interestingly, Ala-substituted derivatives of d-NAP demonstrate the same structure-activity relation as the corresponding derivatives of l-NAP. The Ser-Ile-Pro motif was important for the ethanol antagonist activity of d-NAP, l-NAP, and l-SAL, with Ile being the most critical element in all three. Like l-NAP, d-NAP effectively reduced ethanol-induced growth retardation in mouse whole embryo culture. The potential resistance of d-peptides to proteases makes d-NAP a potentially attractive agent for the prevention of fetal alcohol syndrome.


Assuntos
Etanol/antagonistas & inibidores , Oligopeptídeos/farmacologia , Células 3T3 , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Embrião de Mamíferos/efeitos dos fármacos , Etanol/toxicidade , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/química , Peptídeos/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA