RESUMO
BACKGROUND: Colon cancer, a frequently encountered malignancy, exhibits a comparatively poor survival prognosis. Perineural invasion (PNI), highly correlated with tumor progression and metastasis, is a substantial effective predictor of stage II-III colon cancer. Nonetheless, the lack of effective and facile predictive methodologies for detecting PNI prior operation in colon cancer remains a persistent challenge. METHOD: Pre-operative computer tomography (CT) images and clinical data of patients diagnosed with stage II-III colon cancer between January 2015 and December 2023 were obtained from two sub-districts of Sun Yat-sen Memorial Hospital (SYSUMH). The LASSO/RF/PCA filters were used to screen radiomics features and LR/SVM models were utilized to construct radiomics model. A comprehensive model, shown as nomogram finally, combining with radiomics score and significant clinical features were developed and validated by area under the curve (AUC) and decision curve analysis (DCA). RESULT: The total cohort, comprising 426 individuals, was randomly divided into a development cohort and a validation cohort as a 7:3 ratio. Radiomics scores were extracted from LASSO-SVM models with AUC of 0.898/0.726 in the development and validation cohorts, respectively. Significant clinical features (CA199, CA125, T-stage, and N-stage) were used to establish combining model with radiomics scores. The combined model exhibited superior reliability compared to single radiomics model in AUC value (0.792 vs. 0.726, p = 0.003) in validation cohorts. The radiomics-clinical model demonstrated an AUC of 0.918/0.792, a sensitivity of 0.907/0.813 and a specificity of 0.804/0.716 in the development and validation cohorts, respectively. CONCLUSION: The study developed and validated a predictive nomogram model combining radiomics scores and clinical features, and showed good performance in predicting PNI pre-operation in stage II-III colon cancer patients.
Assuntos
Neoplasias do Colo , Invasividade Neoplásica , Estadiamento de Neoplasias , Nomogramas , Tomografia Computadorizada por Raios X , Humanos , Neoplasias do Colo/patologia , Neoplasias do Colo/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Idoso , Adulto , Prognóstico , Estudos Retrospectivos , Nervos Periféricos/patologia , Nervos Periféricos/diagnóstico por imagem , RadiômicaRESUMO
BACKGROUND: Postmenopausal women with atrial fibrillation (AF) exhibit a higher level of atrial fibrosis and a higher recurrence rate after ablation compared with men. However, the underlying mechanism remains unclear. OBJECTIVE: The purpost of this study was to investigate the mechanism through which menopause promotes atrial fibrosis. METHODS: In a prospective cohort of women with AF, regression analyses were conducted to assess the relationship between low-voltage area (LVA) and sex hormone levels. CREM-IbΔC-X mice, a spontaneous AF model, underwent bilateral ovariectomy (OVX). Electrocardiograms, echocardiograms, and Masson staining were performed. Follicle-stimulating hormone (FSH) stimulation was applied in male mice for 3 months. OVX was also applied in an angiotensin II (Ang II)-induced pressure overload mouse model, after programmed electrical stimulation and structural analyses. Bulk RNA sequencing (RNA-seq) was performed to elucidate potential mechanisms. RESULTS: Women demonstrated a significantly higher LVA burden than men (P < .001). A positive correlation was observed between LVA burden and FSH level (P = .002). Mice in the OVX group exhibited a significantly higher incidence of AF (P = .040) and atrial fibrosis (P = .021) compared with the Sham group, which could be attenuated by adeno-associated virus encoding small interfering RNA against Fshr. In male CREM-IbΔC-X mice, FSH stimulation promoted the occurrence of AF (P = .035) and atrial fibrosis (P = .002). In Ang II-induced female mice, OVX prompted atrial fibrosis, increased AF inducibility, and shortened atrial effective refractory period, which could be attenuated with knockdown of Fshr. RNA-seq indicated mitochondrial dysfunction. CONCLUSION: Postmenopausal women exhibited a higher LVA burden than men, which was positively correlated with FSH level. FSH promoted atrial fibrosis through oxidative stress.
RESUMO
Melanoma is a skin cancer originating from melanocytes. The global incidence rate of melanoma is rapidly increasing, posing significant public health challenges. Identifying effective therapeutic agents is crucial in addressing this growing problem. Natural products have demonstrated promising anti-tumor activity. In this study, a plant flavonoid, taxifolin, was screened using Weighted Correlation Network Analysis (WGCNA) in combination with the Connectivity Map (CMAP) platform. Taxifolin was confirmed to inhibit the proliferation, migration, and invasion ability of melanoma A375 and MV-3 cells by promoting apoptosis. Additionally, it suppressed the Epithelial-Mesenchymal Transition (EMT) process of melanoma cells. Cyber pharmacological analysis revealed that taxifolin exerts its inhibitory effect on melanoma through the PI3K/AKT signaling pathway, specifically by downregulating the protein expression of p-PI3K and p-AKT. Notably, the addition of SC-79, an activator of the PI3K/AKT signaling pathway, reversed the effects of taxifolin on cell migration and apoptosis. Furthermore, in vivo experiments demonstrated that taxifolin treatment slowed tumor growth in mice without significant toxic effects. Based on these findings, taxifolin holds promise as a potential drug for melanoma treatment.
Assuntos
Apoptose , Movimento Celular , Melanoma , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quercetina , Transdução de Sinais , Quercetina/análogos & derivados , Quercetina/farmacologia , Quercetina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Animais , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos NusRESUMO
BACKGROUND: Management of atrial fibrillation (AF) in very severe obese patients is challenging. Cryoballoon ablation (CBA) represents an effective rhythm control strategy. However, data in this patient group were limited. METHODS: Highly symptomatic AF patients with body mass index (BMI) ≥ 40 kg/m2 who had failed antiarrhythmic drug therapy and electrocardioversion and failure to achieve targeted body-weight-reduction underwent CBA. RESULTS: Data of 72 very severe obese AF patients (Group A) and 129 AF patients with normal BMI (Group B, BMI < 25 kg/m2) were consecutively collected. Group A had significantly younger age (60.6 ± 10.4 vs. 69.2 ± 11.2 years), higher BMI (44.3 ± 4.3 vs. 22.5 ± 1.6 kg/m2). Procedural pulmonary vein isolation (PVI) was successful in all patients (2 touch-up ablation in Group A). Compared to Group B, Group A had similar procedural (61.3 ± 22.6 vs. 57.5 ± 19 min), similar fluoroscopy time (10.1 ± 5.5 vs. 9.2 ± 4.8 min) but significantly higher radiation dose (2852 ± 2095 vs. 884 ± 732 µGym2). We observed similar rates of real-time-isolation (78.6% vs. 78.5%), single-shot-isolation (86.5% vs. 88.8%), but significantly longer time-to-sustained-isolation (53.5 ± 33 vs. 43.2 ± 25 s). There was significantly higher rate of puncture-site-complication (6.9% vs. 1.6%) in Group A. One-year clinical success in paroxysmal AF was (Group A: 69.4% vs. Group B: 80.2%; p < .001), in persistent AF was (Group A: 58.1% vs. Group B: 62.8%; p = .889). In Re-Do procedures Group A had a numerically lower PVI durability (75.0% vs. 83.6%, p = .089). CONCLUSION: For very severe obese AF patients, CBA appears feasible, leads to relatively good clinical outcome.
Assuntos
Fibrilação Atrial , Índice de Massa Corporal , Criocirurgia , Estudos de Viabilidade , Obesidade , Veias Pulmonares , Humanos , Fibrilação Atrial/cirurgia , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico , Criocirurgia/efeitos adversos , Masculino , Feminino , Resultado do Tratamento , Pessoa de Meia-Idade , Idoso , Fatores de Risco , Fatores de Tempo , Obesidade/diagnóstico , Obesidade/complicações , Obesidade/fisiopatologia , Veias Pulmonares/cirurgia , Veias Pulmonares/fisiopatologia , Frequência Cardíaca , Índice de Gravidade de Doença , Potenciais de Ação , Estudos Retrospectivos , RecidivaRESUMO
BACKGROUND: Psoriasis, a chronic inflammatory condition of the skin, is characterized by an atypical proliferation of epidermal keratinocytes and immune cell infiltration. Orientin is a flavonoid monomer with potent anti-inflammatory activities. However, the therapeutic effects of orientin on psoriasis and the underlying mechanisms have not been elucidated. OBJECTIVE: To investigate the therapeutic effect of orientin on psoriasis and the underlying mechanisms using network pharmacology and experimental studies. METHODS: A psoriasis-like mouse model was established using imiquimod (IMQ). Lipopolysaccharide (LPS) was used to stimulate the RAW264.7 and HaCaT cells in vitro. The therapeutic effects of orientin and the underlying mechanism were analyzed using histopathological, immunohistochemical, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, flow cytometry, and western blotting analyses. RESULTS: Orientin ameliorated skin lesions and suppressed keratinocyte proliferation and immune cell infiltration in the IMQ-induced psoriasis-like mouse model. Additionally, orientin inhibited the secretion of the pro-inflammatory factors interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, IL-8, IL-17, and IL-23 in the psoriasis-like mouse model and LPS-induced RAW264.7 and HaCaT cells. Furthermore, orientin mitigated the LPS-induced upregulation of reactive oxygen species and downregulation of IL-10 and glutathione levels. Orientin alleviated inflammation by downregulating the MAPK signaling pathway. CONCLUSION: Orientin alleviated psoriasis-like dermatitis by suppressing the MAPK signaling pathway, suggesting that orientin is a potential therapeutic for psoriasis.
Assuntos
Anti-Inflamatórios , Citocinas , Modelos Animais de Doenças , Flavonoides , Glucosídeos , Células HaCaT , Imiquimode , Queratinócitos , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Psoríase , Animais , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/induzido quimicamente , Psoríase/patologia , Camundongos , Humanos , Células RAW 264.7 , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Citocinas/metabolismo , Queratinócitos/efeitos dos fármacos , Glucosídeos/uso terapêutico , Glucosídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pele/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Proliferação de Células/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Dermatite/tratamento farmacológico , Dermatite/patologia , Dermatite/imunologia , Linhagem CelularRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies, highlighting the urgent need to elucidate the underlying oncogenic mechanisms. VIRMA is a classic isoform of methyltransferases that participates in epigenetic transcriptomic modification in eukaryotic mRNAs. However, the exact roles of VIRMA in PDAC remain unclear. Here, we identified that VIRMA is highly expressed in PDAC, and histone modifications of the promoter may partly account for this dysregulation. Moreover, VIRMA is closely related to glycolysis and poor prognosis in PDAC. We further determined that STRA6 is a direct downstream target of VIRMA in PDAC by RNA sequencing (RNA-seq) and m6A sequencing (m6A-seq). VIRMA is involved in gene expression regulation via 3' UTR targeting of STRA6 mRNA. Furthermore, the m6A reader IGF2BP2 was shown to critically contribute to the stability of STRA6 mRNA. We describe the role of VIRMA in promoting signaling via the STRA6/STAT3 axis, which results in increased levels of HIF-1α, a key activator of glycolysis. In vivo and in vitro experiments reveal that the VIRMA-STRA6-STAT3-HIF-1α axis plays an instrumental role in glycolysis and tumor progression in PDAC. In conclusion, we demonstrate that VIRMA can increase glycolysis in PDAC by upregulating STRA6, a cell surface membrane protein that stimulates the STAT3 pathway, thereby activating HIF-1α and leading to pancreatic cancer malignancy. Overall, our data strongly suggest that the VIRMA-STRA6-STAT3-HIF-1α axis is a viable therapeutic target in PDAC.
Assuntos
Carcinoma Ductal Pancreático , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias Pancreáticas , Regulação para Cima , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Glicólise/genética , Linhagem Celular Tumoral , Animais , Progressão da Doença , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , Camundongos Nus , Transdução de SinaisRESUMO
Glycolytic metabolism is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and tumor-associated stromal cells play important roles in tumor metabolism. We previously reported that tumor-associated macrophages (TAMs) facilitate PDAC progression. However, little is known about whether TAMs are involved in regulating glycolysis in PDAC. Here, we found a positive correlation between CD68+ TAM infiltration and FDG maximal standardized uptake (FDG SUVmax) on PET-CT images of PDAC. We discovered that the glycolytic gene set was prominently enriched in the high TAM infiltration group through Gene Set Enrichment Analysis using The Cancer Genome Atlas database. Mechanistically, TAMs secreted IL-8 to promote GLUT3 expression in PDAC cells, enhancing tumor glycolysis both in vitro and in vivo, whereas this effect could be blocked by the IL-8 receptor inhibitor reparixin. Furthermore, IL-8 promoted the translocation of phosphorylated STAT3 into the nucleus to activate the GLUT3 promoter. Overall, we demonstrated that TAMs boosted PDAC cell glycolysis through the IL-8/STAT3/GLUT3 signaling pathway. Our cumulative findings suggest that the abrogation of TAM-induced tumor glycolysis by reparixin might exhibit an antitumor impact and offer a potential therapeutic target for PDAC.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sulfonamidas , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Macrófagos Associados a Tumor/metabolismo , Fluordesoxiglucose F18/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Macrófagos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Transdução de Sinais , Glicólise , Linhagem Celular Tumoral , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
PURPOSE: Pancreatic cancer (PC) is a highly malignant tumor that poses a severe threat to human health. Brain glycogen phosphorylase (PYGB) breaks down glycogen and provides an energy source for tumor cells. Although PYGB has been reported in several tumors, its role in PC remains unclear. METHODS: We constructed a risk diagnostic model of PC-related genes by WGCNA and LASSO regression and found PYGB, an essential gene in PC. Then, we explored the pro-carcinogenic role of PYGB in PC by in vivo and in vitro experiments. RESULTS: We found that PYGB, SCL2A1, and SLC16A3 had a significant effect on the diagnosis and prognosis of PC, but PYGB had the most significant effect on the prognosis. Pan-cancer analysis showed that PYGB was highly expressed in most of the tumors but had the highest correlation with PC. In TCGA and GEO databases, we found that PYGB was highly expressed in PC tissues and correlated with PC's prognostic and pathological features. Through in vivo and in vitro experiments, we found that high expression of PYGB promoted the proliferation, invasion, and metastasis of PC cells. Through enrichment analysis, we found that PYGB is associated with several key cell biological processes and signaling pathways. In experiments, we validated that the MAPK/ERK pathway is involved in the pro-tumorigenic mechanism of PYGB in PC. CONCLUSION: Our results suggest that PYGB promotes PC cell proliferation, invasion, and metastasis, leading to poor patient prognosis. PYGB gene may be a novel diagnostic biomarker and gene therapy target for PC.
Assuntos
Neoplasias Pancreáticas , Humanos , Biomarcadores , Glicogênio Fosforilase Encefálica/genética , Glicogênio Fosforilase Encefálica/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Prognóstico , Transdução de Sinais/genéticaRESUMO
Pancreatic adenocarcinoma (PAAD) is a frequent malignant tumor in the pancreas. The incomplete understanding of cancer etiology and pathogenesis, as well as the limitations in early detection and diagnostic methods, have created an urgent need for the discovery of new therapeutic targets and drugs to control this disease. As a result, the current therapeutic options are limited. In this study, the weighted gene co-expression network analysis (WGCNA) method was employed to identify key genes associated with the progression and prognosis of pancreatic adenocarcinoma (PAAD) patients in the Gene Expression Profiling Interactive Analysis (GEPIA) database. To identify small molecule drugs with potential in the treatment of pancreatic adenocarcinoma (PAAD), we compared key genes to the reference dataset in the CMAP database. First, we analyzed the antitumor properties of small molecule drugs using cell counting kit-8 (CCK-8), AO/EB and Transwell assays. Subsequently, we integrated network pharmacology with molecular docking to explore the potential mechanisms of the identified molecules' anti-tumor effects. Our findings indicated that the progression and prognosis of PAAD patients in pancreatic cancer were associated with 11 genes, namely, DKK1, S100A2, CDA, KRT6A, ITGA3, GPR87, IL20RB, ZBED2, PMEPA1, CST6, and MUC16. These genes were filtered based on their therapeutic potential through comparing them with the reference dataset in the CMAP database. Taxifolin, a natural small molecule drug with the potential for treating PAAD, was screened by comparing it with the reference dataset in the CMAP database. Cell-based experiments have validated the potential of Taxifolin to facilitate apoptosis in pancreatic cancer cells while restraining their invasion and metastasis. This outcome is believed to be achieved via the HIF-1 signaling pathway. In conclusion, this study provided a theoretical basis for screening genes related to the progression of pancreatic cancer and discovered potentially active small molecule drugs. The experimental results confirm that Taxifolin has the ability to promote apoptosis in pancreatic cancer cells.
Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Quercetina/análogos & derivados , Humanos , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Simulação de Acoplamento Molecular , Pâncreas , Perfilação da Expressão Gênica , Apoptose/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana , Receptores de Ácidos LisofosfatídicosRESUMO
BACKGROUND: CLDN5 protein is essential for the formation of tight junctions in epithelial cells, and has been associated with epithelial-mesenchymal transition. Research has indicated that CLDN5 is associated with tumor metastasis, the tumor microenvironment, and immunotherapy in multiple types of cancer. Also, no comprehensive evaluation of the expression of CLDN5 and immunotherapy signatures through a pan-cancer analysis or immunoassay has been performed. METHODS: We explored CLDN5's differential expression, survival analysis and clinicopathological staging through the TCGA database, and then corroborated the expression of CLDN5 by utilizing the GEO (Gene expression omnibus) database. To analyze CLDN5 KEGG, GO, and Hallmark mutations, as well as TIMER for immune infiltration, GSEA was utilized with ROC curve, mutation, and other factors such as survival, pathological stage, TME, MSI, TMB, immune cell infiltration, and DNA methylation. Immunohistochemistry was used to assess CLDN5 staining in gastric cancer tissues and paracancerous tissues. Visualization was done with R version 4.2.0 (http://www.rproject.org/). RESULTS: According to TCGA database, CLDN5 expression levels differed significantly between cancer and normal tissues, and the GEO database (GSE49051 and GSE 64951) and tissue microarrays confirmed this result. Infiltrating cluster of differentiation 8+ (CD8+) T cells, CD4+ cells, neutrophils, dendritic cells, and macrophages revealed a correlation with CLDN5 expression. DNA methylation, TMB, and MSI are related to CLDN5 expression. Based on the ROC curve analysis, CLDN5 demonstrates outstanding diagnostic effectiveness for gastric cancer and is comparable to CA-199. CONCLUSIONS: The findings suggest that CLDN5 is implicated in the oncogenesis of diverse cancer types, underscoring its potential significance in cancer biology. Notably, CLDN5 could have implications in immune filtration and immune checkpoint inhibitor therapies, however, further research is needed to confirm this.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Biomarcadores , Carcinogênese , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Microambiente Tumoral/genética , Claudina-5RESUMO
BACKGROUND: Nearly one fourth of patients with pancreatic ductal adenocarcinoma (PDAC) occur to liver metastasis after surgery, and liver metastasis is a risk factor for prognosis for those patients with surgery therapy. However, there is no effective way to predict liver metastasis post-operation. METHOD: Clinical data and preoperative magnetic resonance imaging (MRI) of PDAC patients diagnosed between July 2010 and July 2020 were retrospectively collected from three hospital centers in China. The significant MRI radiomics features or clinicopathological characteristics were used to establish a model to predict liver metastasis in the development and validation cohort. RESULTS: A total of 204 PDAC patients from three hospital centers were divided randomly (7:3) into development and validation cohort. Due to poor predictive value of clinical features, MRI radiomics model had similar receiver operating characteristics curve (ROC) value to clinical-radiomics combing model in development cohort (0.878 vs. 0.880, p = 0.897) but better ROC in validation dataset (0.815 vs. 0.732, p = 0.022). Radiomics model got a sensitivity of 0.872/0.750 and a specificity of 0.760/0.822 to predict liver metastasis in development and validation cohort, respectively. Among 54 patients randomly selected with post-operation specimens, fibrosis markers (α-smooth muscle actin) staining was shown to promote radiomics model with ROC value from 0.772 to 0.923 (p = 0.049) to predict liver metastasis. CONCLUSION: This study developed and validated an MRI-based radiomics model and showed a good performance in predicting liver metastasis in resectable PDAC patients.
Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Espectroscopia de Ressonância Magnética , Neoplasias PancreáticasRESUMO
BACKGROUND: The cryoballoon (CB) represents the gold standard single-shot device for pulmonary vein isolation (PVI) in patients with atrial fibrillation (AF). Single-shot pulsed field PVI ablation (nonthermal, cardiac tissue selective) has recently entered the arena. We sought to compare procedural data and long-term outcome of both techniques. METHODS: Consecutive AF patients who underwent pulsed field ablation (PFA) and CB-based PVI were enrolled. CB PVI was performed using the second-generation 28-mm CB; PFA was performed using a 31/35-mm pentaspline catheter. Success was defined as freedom from atrial tachyarrhythmia after a 3-month blanking period. RESULTS: Four hundred patients were included (56.5% men; 60.8% paroxysmal AF; age 70 [interquartile range, 59-77] years), 200 in each group (CB and PFA), and baseline characteristics did not differ. Acute PVI was achieved in 100% of PFA and in 98% (196/200) of CB patients (P=0.123; 4 touch-up ablations). Median procedure time was significantly shorter in PFA (34.5 [29-40] minutes) versus CB (50 [45-60] minutes; P<0.001), fluoroscopy time was similar. Overall procedural complications were 6.5% in CB and 3.0% in PFA (P=0.1), driven by a higher rate of phrenic nerve palsies using CB. The 1-year success rates in paroxysmal AF (CB, 83.1%; PFA, 80.3%; P=0.724) and persistent AF (CB, 71%; PFA, 66.8%; P=0.629) were similar for both techniques. CONCLUSIONS: PFA compared with CB PVI shows a similar procedural efficacy but is associated with shorter procedure time and no phrenic nerve palsies. Importantly, 12-month clinical success rates are favorable but not different between both groups.
Assuntos
Fibrilação Atrial , Ablação por Cateter , Criocirurgia , Veias Pulmonares , Masculino , Humanos , Idoso , Feminino , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Seguimentos , Resultado do Tratamento , Veias Pulmonares/cirurgia , Paralisia/cirurgia , Ablação por Cateter/métodos , RecidivaRESUMO
BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a malignant disease characterized by onset occult, rapid progression, high relapse rate, and high mortality. However, data on how the tumor microenvironment (TME) regulates ICC metastasis at the transcriptomic level remains unclear. This study aimed to explore the mechanisms and interactions between hepatocytes and ICC cells. METHODS: We analyzed the interplay between ICC and liver microenvironment through cytokine antibody array analysis. Then we investigated the role of N6-methyladenosine (m6A) modification and the downstream target in vitro, in vivo experiments, and in clinical specimens. RESULTS: Our study demonstrated that cytokine CCL3, which is secreted by hepatocytes, promotes tumor metastasis by regulating m6A modification via vir-like m6A methyltransferase associated (VIRMA) in ICC cells. Moreover, immunohistochemical analyses showed that VIRMA correlated with poor outcomes in ICC patients. Finally, we confirmed both in vitro and in vivo that CCL3 could activate VIRMA and its critical downstream target SIRT1, which fuels tumor metastasis in ICC. CONCLUSIONS: In conclusion, our results enhanced our understanding of the interaction between hepatocytes and ICC cells, and revealed the molecular mechanism of the CCL3/VIRMA/SIRT1 pathway via m6A-mediated regulation in ICC metastasis. These studies highlight potential targets for the diagnosis, treatment, and prognosis of ICC.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Sirtuína 1 , Recidiva Local de Neoplasia , Colangiocarcinoma/metabolismo , Prognóstico , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Hepatócitos/patologia , Citocinas , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
BACKGROUND: Perineural invasion (PNI) has a high incidence and poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Our study aimed to identify the underlying molecular mechanism of PNI and propose effective intervention strategies. METHODS: To observe PNI in vitro and in vivo, a Matrigel/ dorsal root ganglia (DRG) model and a murine sciatic nerve invasion model were respectively used. Magnetic resonance (MR) imaging and positron emission tomography/computed tomography (PET-CT) imaging were also used to evaluate tumor growth. Publicly available datasets and PDAC tissues were used to verify how the nerve cells regulate PDAC cells' PNI. RESULTS: Our results showed that glutamate from nerve cells could cause calcium influx in PDAC cells via the N-methyl-d-aspartate receptor (NMDAR), subsequently activating the downstream Ca2+ dependent protein kinase CaMKII/ERK-MAPK pathway and promoting the mRNA transcription of gene METTL3. Next, METTL3 upregulates the expression of hexokinase 2 (HK2) through N6-methyladenosine (m6A) modification in mRNA, enhances the PDAC cells' glycolysis, and promotes PNI. Furthermore, the IONPs-PEG-scFvCD44v6-scAbNMDAR2B nanoparticles dual targeting CD44 variant isoform 6 (CD44v6) and t NMDAR subunit 2B (NMDAR2B) on PDAC cells were synthesized and verified showing a satisfactory blocking effect on PNI. CONCLUSIONS: Here, we firstly provided evidence that glutamate from the nerve cells could upregulate the expression of HK2 through mRNA m6A modification via NMDAR2B and downstream Ca2+ dependent CaMKII/ERK-MAPK pathway, enhance the glycolysis in PDAC cells, and ultimately promote PNI. In addition, the dual targeting nanoparticles we synthesized were verified to block PNI effectively in PDAC.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Ácido Glutâmico , Hexoquinase , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Invasividade Neoplásica , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neurônios/metabolismo , Linhagem Celular Tumoral , Neoplasias PancreáticasRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is one of the highest mortalities malignant tumors, which is characterized by difficult diagnosis, rapid progression and high recurrence rate. Nevertheless, PDAC responds poorly to conventional therapies, which highlights the urgency to identify novel prognostic and therapeutic targets. LEMT2 was a newly discovered protein-encoding gene with little cancer research and an unclear mechanism. Thus, this study aimed to illustrate LETM2 as the crucial oncogene for tumor progression in PDAC. In this study, we analyzed the expression level and prognostic value of LETM2 in multiple cancers using pan-cancer analysis. The analyses based on the TCGA-GTEx dataset indicated that the LETM2 expression was obviously elevated in several cancers, and it was the most significantly related to the dismal prognosis of PDAC. Subsequently, we demonstrated the functional role and mechanism of LETM2 by clinical sample evaluation, and in in vitro and in vivo experiments. Immunohistochemical analyses showed that high expression of LETM2 was correlated with poor outcomes of PDAC. Moreover, we demonstrated that LETM2 knockdown significantly inhibited tumor proliferation and metastasis, and promoted cell apoptosis, while LETM2 overexpression exerted the opposite effects. Finally, the impairment caused by LETM2-knockdown could be recovered via excitation of the PI3k-Akt pathway in vitro and in vivo animal models, which suggested that LETM2 could activate the downstream PI3K-Akt pathway to participate in PDAC progression. In conclusion, the study enhanced our understanding of LETM2 as an oncogene hallmark of PDAC. LETM2 may facilitate tumor progression by activating the PI3K-Akt signaling pathway, which provides potential targets for the diagnosis, treatment, and prognosis of pancreatic cancer.
RESUMO
The usage of carbon fiber-reinforced polymer (CFRP) to strengthen cracked steel structures can effectively improve its bear capacity, so it has been extensively used in recent years. The degradation of interfacial bonding is one of the most important factors affecting the durability of CFRP-steel structures under a freeze-thaw(F-T)/wet-dry (W-D) environment. In this study, epoxy resin adhesive (ERA) dog-bone specimens and CFRP-steel double-lap joints (bonded joints) were prepared. F-T/W-D cycles experiment and tensile tests of the ERA specimens and the bonded joints were also performed. Under F-T/W-D cycles, the main properties of the ERA specimens and the bonded joints were examined. Results indicated that fracture failure occurred in all ERA specimens. The hybrid failure modes of fiber peeling on the surface of CFRP plate and the bonded interface peeling between the CFRP plate and ERA layer primarily occurred in the bonded joints. The failure of both of them can be considered to be brittle, which was unaffected by the F-T/W-D cycles. With increased F-T/W-D cycles, the ultimate load and tensile strength of the ERA specimens initially increased and then decreased, whereas the elastic modulus initially increased and then remained unchanged. The ultimate load of the bonded joints decreased gradually. Based on the relationship between the interfacial bond-slip parameters and the number of F-T/W-D cycles, the bond-slip model of the bonded joints was established. The proposed relationship was validated by comparing with the experimental bond-slip relationships and the predicted relationships under the F-T/W-D cycles.
RESUMO
Pancreatic stellate cells (PSCs) constitute the fibrotic tumor microenvironment composed of the stroma matrix, which blocks the penetration of gemcitabine (GEM) in pancreatic adenocarcinoma (PDAC) and results in chemoresistance. We analyzed the expression of α-SMA, collagen type I, and fibronectin by immunohistochemistry of pancreatic cancer tissues and demonstrated that the abundant interstitial stroma is associated with dismal survival. Two desmoplastic pancreatic tumor models are treated with arsenic trioxide (ATO) and GEM to confirm the sensitizing effect of ATO on GEM. RNA-seq was performed to analyze the potential fibrotic genes regulated by ATO. Western blotting, CCK-8 methods, colony formation, and wound healing and transwell assays were utilized to verify that ATO attenuates the tumor-promoting ability of PSCs by inhibiting its activation and decreasing matrix secretion via the PI3K/AKT/AP4/galectin-1 pathway. Furthermore, we developed targeted ATO-loaded nanoparticles self-assembled by poly (D,L-lactide) and poly(ethylene glycol) (PEG-PDLLA) and modified by the single-chain antibody of FAP-α (scAbFAP-α) (scAb-ATO-NPs) to promote the delivery efficiency of ATO to PSCs and enhance anti-tumor effects with gemcitabine. Herein, we elucidate the mechanism of how ATO inhibits the activation of PSCs and enhances the therapeutic effect of GEM. We propose a novel cocktail therapy including scAb-ATO-NPs and GEM, indicating a new perspective in the treatment of PDAC.
Assuntos
Adenocarcinoma , Nanopartículas , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Trióxido de Arsênio/uso terapêutico , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Desoxicitidina/análogos & derivados , Fibronectinas/metabolismo , Galectina 1/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Polietilenoglicóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sincalida/metabolismo , Sincalida/farmacologia , Sincalida/uso terapêutico , Gencitabina , Neoplasias PancreáticasRESUMO
Pancreatic adenocarcinoma (PAAD) is a digestive tumor with extremely high malignancy. Previous studies have reported that Glucose transporter 1 (GLUT1) contributes to the aggressive tumor progression in various cancer types and indicates an unfavorable prognosis. However, the function of GLUT1 in PAAD remains largely unclear. Through pan-cancer analysis of GLUT1 expression, GLUT1 expression was significantly higher in several cancer types including PAAD. Survival analysis based on the GLUT1 expression showed that GLUT1 could serve as a predictor of poor prognosis. We further predicted and screened the candidate non-coding RNAs (ncRNAs) upstream of the GLUT1 mRNA through correlation analysis, and found that the CASC19/miR-140-5p axis contributing to the regulation of GLUT1 expression. Our study suggested a link exists between GLUT1 expression and selected immunity-related indicators. Subsequent analysis revealed overexpression of GLUT1 in pancreatic cancer specimens and patients with highly expressed GLUT1 expression had worse prognosis. Based on the significantly different expression of GLUT1, the possibility that GLUT1 participated in tumor progression was identified. Using online public databases, genes co-expressed with GLUT1 were screened and enriched to metastasis-related pathways by enrichment analysis. Additionally, functional assays verified that GLUT1 could function in the metastatic process of PAAD cancer cells. Therefore, we proposed that GLUT1 might serve as a role in tumor immunity and tumor metastasis, and was expected to be a prognostic factor in PAAD.
RESUMO
OBJECTIVES: This study evaluated the role of adjunctive left atrium posterior wall isolation (PWI) in preventing atrial fibrillation (AF) recurrence. BACKGROUND: The left atrium posterior wall is an arrhythmogenic substrate that contributes to the development of AF. METHODS: This was an updated pooled analysis that included clinical data regarding PWI plus pulmonary vein isolation (PVI) in treating AF. The primary outcome was recurrence of atrial tachyarrhythmias. RESULTS: A total of 26 studies with 3,287 patients with AF (age 61.7 ± 10.8 years) were included. Mean follow-up was 15.2 ± 8.4 months. Procedural success to achieve PWI was 92.8%. In paroxysmal AF, adjunctive PWI did not reduce the recurrence of all atrial arrhythmias (P = 0.21) or AF (P = 0.37); however, in persistent AF, adjunctive PWI was associated with substantially lower recurrence of all atrial arrhythmias (risk ratio: 0.74; P < 0.001) and AF (risk ratio: 0.67; P = 0.01), particularly when randomized data were included. Subgroup analyses based on meta-regression demonstrated that patients with older age, a larger left atrial diameter, and persistent AF benefited more significantly from the adjunctive PWI. Adjunctive PWI using either radiofrequency or a cryoballoon reduced AF recurrence, whereas using radiofrequency seemed to be associated with higher recurrence rate of atrial tachycardias and/or atrial flutter. Non-BOX adjunctive PWI rather than BOX PWI was associated with significantly lower recurrence of AF. The incidence of procedural adverse events between the PVI+PWI (3.2%) and PVI (2.8%) groups was low and similar. PVI+PWI needed longer ablation and/or procedural time but had similar fluoroscopy time. CONCLUSIONS: Adjunctive PWI can be achieved in most patients without compromising safety. Patients with persistent AF appear to benefit from this approach. The ablation technology and/or approach may affect the clinical outcome of PWI.
Assuntos
Fibrilação Atrial , Ablação por Cateter , Idoso , Ablação por Cateter/efeitos adversos , Átrios do Coração/cirurgia , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/etiologia , Recidiva Local de Neoplasia/cirurgia , Resultado do TratamentoRESUMO
PRKAG2 cardiomyopathy is a rare progressive disease characterized by increased ventricular wall thickness and preexcitation. Dysfunction of the protein 5'-AMP-activated protein kinase (AMPK) plays a decisive role in the progression of ventricular lesions. Although patients with the PRKAG2-R302Q mutation have a high incidence of atrial fibrillation (AF), the molecular mechanism contributing to the disease remains unclear. We carried out whole-genome sequencing with linkage analysis in three affected members of a family. Atrial samples were obtained from the proband via surgical intervention. Control atrium biopsies were obtained from patients with persistent AF. Pathological changes were analyzed using the hematoxylin and eosin (H&E), Masson, and periodic acid-Schiff (PAS) staining. The AMPK signaling pathway was investigated by western blot. A murine atrial cardiomyocyte cell line (HL-1) and human induced pluripotent stem derived atrial cardiomyocytes (hiPSC-ACMs) were transfected with an adenovirus carrying the same mutation. We used enzyme linked immunosorbent assay (ELISA) to determine the AMPK activity in HL-1 cells and hiPSC-ACMs overexpressing PRKAG2-R302Q. Pathological results showed a large quantity of glycogen accumulation and vacuolization in cardiomyocytes from the proband atrial tissue. Western blot analysis revealed that the AMPK activity was significantly downregulated compared with that of the controls. Furthermore, remarkable glycogen deposition and impairment of AMPK activity were reproduced in HL-1 cells overexpressing PRKAG2-R302Q. Taken together, PRKAG2-R302Q mutation directly impair atrial cardiomyocytes. PRKAG2-R302Q mutation lead to glycogen deposition and promote the growth of atrial lesions by disrupting the AMPK pathway.