Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Eur Heart J ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088352

RESUMO

BACKGROUND AND AIMS: Vascular smooth muscle cell (VSMC) senescence is crucial for the development of atherosclerosis, characterized by metabolic abnormalities. Tumour necrosis factor receptor-associated protein 1 (TRAP1), a metabolic regulator associated with ageing, might be implicated in atherosclerosis. As the role of TRAP1 in atherosclerosis remains elusive, this study aimed to examine the function of TRAP1 in VSMC senescence and atherosclerosis. METHODS: TRAP1 expression was measured in the aortic tissues of patients and mice with atherosclerosis using western blot and RT-qPCR. Senescent VSMC models were established by oncogenic Ras, and cellular senescence was evaluated by measuring senescence-associated ß-galactosidase expression and other senescence markers. Chromatin immunoprecipitation (ChIP) analysis was performed to explore the potential role of TRAP1 in atherosclerosis. RESULTS: VSMC-specific TRAP1 deficiency mitigated VSMC senescence and atherosclerosis via metabolic reprogramming. Mechanistically, TRAP1 significantly increased aerobic glycolysis, leading to elevated lactate production. Accumulated lactate promoted histone H4 lysine 12 lactylation (H4K12la) by down-regulating the unique histone lysine delactylase HDAC3. H4K12la was enriched in the senescence-associated secretory phenotype (SASP) promoter, activating SASP transcription and exacerbating VSMC senescence. In VSMC-specific Trap1 knockout ApoeKO mice (ApoeKOTrap1SMCKO), the plaque area, senescence markers, H4K12la, and SASP were reduced. Additionally, pharmacological inhibition and proteolysis-targeting chimera (PROTAC)-mediated TRAP1 degradation effectively attenuated atherosclerosis in vivo. CONCLUSIONS: This study reveals a novel mechanism by which mitonuclear communication orchestrates gene expression in VSMC senescence and atherosclerosis. TRAP1-mediated metabolic reprogramming increases lactate-dependent H4K12la via HDAC3, promoting SASP expression and offering a new therapeutic direction for VSMC senescence and atherosclerosis.

2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000320

RESUMO

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Populus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica
3.
EClinicalMedicine ; 72: 102626, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38756107

RESUMO

Background: Previous trials of renal denervation (RDN) have been designed to investigate reduction of blood pressure (BP) as the primary efficacy endpoint using non-selective RDN without intraoperatively verified RDN success. It is an unmet clinical need to map renal nerves, selectively denervate renal sympathetic nerves, provide readouts for the interventionalists and avoid futile RDN. We aimed to examine the safety and efficacy of renal nerve mapping/selective renal denervation (msRDN) in patients with uncontrolled hypertension (HTN) and determine whether antihypertensive drug burden is reduced while office systolic BP (OSBP) is controlled to target level (<140 mmHg). Methods: We conducted a randomized, prospective, multicenter, single-blinded, sham-controlled trial. The study combined two efficacy endpoints at 6 months as primary outcomes: The control rate of patients with OSBP <140 mmHg (non-inferior outcome) and change in the composite index of antihypertensive drugs (Drug Index) in the treatment versus Sham group (superior outcome). This design avoids confounding from excess drug-taking in the Sham group. Antihypertensive drug burden was assessed by a composite index constructed as: Class N (number of classes of antihypertensive drugs) × (sum of doses). 15 hospitals in China participated in the study and 220 patients were enrolled in a 1:1 ratio (msRDN vs Sham). The key inclusion criteria included: age (18-65 years old), history of essential HTN (at least 6 months), heart rate (≥70 bpm), OSBP (≥150 mmHg and ≤180 mmHg), ambulatory BP monitoring (ABPM, 24-h SBP ≥130 mmHg or daytime SBP ≥135 mmHg or nighttime SBP ≥120 mmHg), renal artery stenosis (<50%) and renal function (eGFR >45 mL/min/1.73 m2). The catheter with both stimulation and ablation functions was inserted in the distal renal main artery. The RDN site (hot spot) was selected if SBP increased (≥5 mmHg) by intra-renal artery (RA) electrical stimulation; an adequate RDN was confirmed by repeated electronic stimulation if no increase in BP otherwise, a 2nd ablation was performed at the same site. At sites where there was decreased SBP (≥5 mmHg, cold spot) or no BP response (neutral spot) to stimulation, no ablation was performed. The mapping, ablation and confirmation procedure was repeated until the entire renal main artery had been tested then either treated or avoided. After msRDN, patients had to follow a predefined, vigorous drug titration regimen in order to achieve target OSBP (<140 mmHg). Drug adherence was monitored by liquid chromatography-tandem mass spectrometry analysis using urine. This study is registered with ClinicalTrials.gov (NCT02761811) and 5-year follow-up is ongoing. Findings: Between July 8, 2016 and February 23, 2022, 611 patients were consented, 220 patients were enrolled in the study who received standardized antihypertensive drug treatments (at least two drugs) for at least 28 days, presented OSBP ≥150 mmHg and ≤180 mmHg and met all inclusion and exclusion criteria. In left RA and right RA, mapped sites were 8.2 (3.0) and 8.0 (2.7), hot/ablated sites were 3.7 (1.4) and 4.0 (1.6), cold spots were 2.4 (2.6) and 2.0 (2.2), neutral spots were 2.0 (2.1) and 2.0 (2.1), respectively. Hot, cold and neutral spots was 48.0%, 27.5% and 24.4% of total mapped sites, respectively. At 6 M, the Control Rate of OSBP was comparable between msRDN and Sham group (95.4% vs 92.8%, p = 0.429), achieved non-inferiority margin -10% (2.69%; 95% CI -4.11%, 9.83%, p < 0.001 for non-inferiority); the change in Drug Index was significantly lower in msRDN group compared to Sham group (4.37 (6.65) vs 7.61 (10.31), p = 0.010) and superior to Sham group (-3.25; 95% CI -5.56, -0.94, p = 0.003), indicating msRDN patients need significantly fewer drugs to control OSBP <140 mmHg. 24-hour ambulatory SBP decreased from 146.8 (13.9) mmHg by 10.8 (14.1) mmHg, and from 149.8 (12.8) mmHg by 10.0 (14.0) mmHg in msRDN and Sham groups, respectively (p < 0.001 from Baseline; p > 0.05 between groups). Safety profiles were comparable between msRDN and Sham groups, demonstrating the safety and efficacy of renal mapping/selective RDN to treat uncontrolled HTN. Interpretation: The msRDN therapy achieved the goals of reducing the drug burden of HTN patients and controlling OSBP <140 mmHg, with only approximately four targeted ablations per renal main artery, much lower than in previous trials. Funding: SyMap Medical (Suzhou), LTD, Suzhou, China.

4.
JAMA Cardiol ; 9(6): 523-531, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630489

RESUMO

Importance: Purinergic receptor P2Y12 (P2Y12) inhibitor monotherapy after a certain period of dual antiplatelet therapy (DAPT) may be an attractive option of maintenance antiplatelet treatment for patients undergoing percutaneous coronary intervention (PCI) who are at both high bleeding and ischemic risk (birisk). Objective: To determine if extended P2Y12 inhibitor monotherapy with clopidogrel is superior to ongoing DAPT with aspirin and clopidogrel after 9 to 12 months of DAPT after PCI in birisk patients with acute coronary syndromes (ACS). Design, Setting, and Participants: This was a multicenter, double-blind, placebo-controlled, randomized clinical trial including birisk patients with ACS who had completed 9 to 12 months of DAPT after drug-eluting stent implantation and were free from adverse events for at least 6 months at 101 China centers between February 2018 and December 2020. Study data were analyzed from April 2023 to May 2023. Interventions: Patients were randomized either to clopidogrel plus placebo or clopidogrel plus aspirin for an additional 9 months. Main Outcomes and Measures: The primary end point was Bleeding Academic Research Consortium (BARC) types 2, 3, or 5 bleeding 9 months after randomization. The key secondary end point was major adverse cardiac and cerebral events (MACCE; the composite of all-cause death, myocardial infarction, stroke or clinically driven revascularization). The primary end point was tested for superiority, and the MACCE end point was tested for sequential noninferiority and superiority. Results: A total of 7758 patients (mean [SD] age, 64.8 [9.0] years; 4575 male [59.0%]) were included in this study. The primary end point of BARC types 2, 3, or 5 bleeding occurred in 95 of 3873 patients (2.5%) assigned to clopidogrel plus placebo and 127 of 3885 patients (3.3%) assigned to clopidogrel plus aspirin (hazard ratio [HR], 0.75; 95% CI, 0.57-0.97; difference, -0.8%; 95% CI, -1.6% to -0.1%; P = .03). The incidence of MACCE was 2.6% (101 of 3873 patients) in the clopidogrel plus placebo group and 3.5% (136 of 3885 patients) in the clopidogrel plus aspirin group (HR, 0.74; 95% CI, 0.57-0.96; difference, -0.9%; 95% CI, -1.7% to -0.1%; P < .001 for noninferiority; P = .02 for superiority). Conclusions and Relevance: Among birisk patients with ACS who completed 9 to 12 months of DAPT after drug-eluting stent implantation and were free from adverse events for at least 6 months before randomization, an extended 9-month clopidogrel monotherapy regimen was superior to continuing DAPT with clopidogrel in reducing clinically relevant bleeding without increasing ischemic events. Trial Registration: ClinicalTrials.gov Identifier: NCT03431142.


Assuntos
Síndrome Coronariana Aguda , Aspirina , Clopidogrel , Terapia Antiplaquetária Dupla , Hemorragia , Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária , Humanos , Síndrome Coronariana Aguda/tratamento farmacológico , Clopidogrel/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Método Duplo-Cego , Hemorragia/induzido quimicamente , Hemorragia/epidemiologia , Inibidores da Agregação Plaquetária/uso terapêutico , Idoso , Aspirina/uso terapêutico , Aspirina/administração & dosagem , Intervenção Coronária Percutânea/métodos , Terapia Antiplaquetária Dupla/métodos , Stents Farmacológicos , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem
5.
Lancet ; 403(10439): 1866-1878, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38599220

RESUMO

BACKGROUND: Following percutaneous coronary intervention with stent placement to treat acute coronary syndromes, international clinical guidelines generally recommend dual antiplatelet therapy with aspirin plus a P2Y12 receptor inhibitor for 12 months to prevent myocardial infarction and stent thrombosis. However, data on single antiplatelet therapy with a potent P2Y12 inhibitor earlier than 12 months after percutaneous coronary intervention for patients with an acute coronary syndrome are scarce. The aim of this trial was to assess whether the use of ticagrelor alone, compared with ticagrelor plus aspirin, could reduce the incidence of clinically relevant bleeding events without an accompanying increase in major adverse cardiovascular or cerebrovascular events (MACCE). METHODS: In this randomised, placebo-controlled, double-blind clinical trial, patients aged 18 years or older with an acute coronary syndrome who completed the IVUS-ACS study and who had no major ischaemic or bleeding events after 1-month treatment with dual antiplatelet therapy were randomly assigned to receive oral ticagrelor (90 mg twice daily) plus oral aspirin (100 mg once daily) or oral ticagrelor (90 mg twice daily) plus a matching oral placebo, beginning 1 month and ending at 12 months after percutaneous coronary intervention (11 months in total). Recruitment took place at 58 centres in China, Italy, Pakistan, and the UK. Patients were required to remain event-free for 1 month on dual antiplatelet therapy following percutaneous coronary intervention with contemporary drug-eluting stents. Randomisation was done using a web-based system, stratified by acute coronary syndrome type, diabetes, IVUS-ACS randomisation, and site, using dynamic minimisation. The primary superiority endpoint was clinically relevant bleeding (Bleeding Academic Research Consortium [known as BARC] types 2, 3, or 5). The primary non-inferiority endpoint was MACCE (defined as the composite of cardiac death, myocardial infarction, ischaemic stroke, definite stent thrombosis, or clinically driven target vessel revascularisation), with an expected event rate of 6·2% in the ticagrelor plus aspirin group and an absolute non-inferiority margin of 2·5 percentage points between 1 month and 12 months after percutaneous coronary intervention. The two co-primary endpoints were tested sequentially; the primary superiority endpoint had to be met for hypothesis testing of the MACCE outcome to proceed. All principal analyses were assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03971500, and is completed. FINDINGS: Between Sept 21, 2019, and Oct 27, 2022, 3400 (97·0%) of the 3505 participants in the IVUS-ACS study were randomly assigned (1700 patients to ticagrelor plus aspirin and 1700 patients to ticagrelor plus placebo). 12-month follow-up was completed by 3399 (>99·9%) patients. Between month 1 and month 12 after percutaneous coronary intervention, clinically relevant bleeding occurred in 35 patients (2·1%) in the ticagrelor plus placebo group and in 78 patients (4·6%) in the ticagrelor plus aspirin group (hazard ratio [HR] 0·45 [95% CI 0·30 to 0·66]; p<0·0001). MACCE occurred in 61 patients (3·6%) in the ticagrelor plus placebo group and in 63 patients (3·7%) in the ticagrelor plus aspirin group (absolute difference -0·1% [95% CI -1·4% to 1·2%]; HR 0·98 [95% CI 0·69 to 1·39]; pnon-inferiority<0·0001, psuperiority=0·89). INTERPRETATION: In patients with an acute coronary syndrome who had percutaneous coronary intervention with contemporary drug-eluting stents and remained event-free for 1 month on dual antiplatelet therapy, treatment with ticagrelor alone between month 1 and month 12 after the intervention resulted in a lower rate of clinically relevant bleeding and a similar rate of MACCE compared with ticagrelor plus aspirin. Along with the results from previous studies, these findings show that most patients in this population can benefit from superior clinical outcomes with aspirin discontinuation and maintenance on ticagrelor monotherapy after 1 month of dual antiplatelet therapy. FUNDING: The Chinese Society of Cardiology, the National Natural Scientific Foundation of China, and the Jiangsu Provincial & Nanjing Municipal Clinical Trial Project. TRANSLATION: For the Mandarin translation of the abstract see Supplementary Materials section.


Assuntos
Síndrome Coronariana Aguda , Aspirina , Quimioterapia Combinada , Hemorragia , Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária , Ticagrelor , Humanos , Ticagrelor/uso terapêutico , Aspirina/uso terapêutico , Aspirina/administração & dosagem , Intervenção Coronária Percutânea/métodos , Síndrome Coronariana Aguda/terapia , Método Duplo-Cego , Masculino , Feminino , Pessoa de Meia-Idade , Inibidores da Agregação Plaquetária/uso terapêutico , Idoso , Hemorragia/induzido quimicamente , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Terapia Antiplaquetária Dupla/métodos , Resultado do Tratamento
6.
Plant Sci ; 344: 112082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583807

RESUMO

The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 µM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.


Assuntos
Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Populus , Regiões Promotoras Genéticas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo , Cádmio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
7.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396725

RESUMO

The transcription of glycine-rich RNA-binding protein 2 (PeGRP2) transiently increased in the roots and shoots of Populus euphratica (a salt-resistant poplar) upon initial salt exposure and tended to decrease after long-term NaCl stress (100 mM, 12 days). PeGRP2 overexpression in the hybrid Populus tremula × P. alba '717-1B4' (P. × canescens) increased its salt sensitivity, which was reflected in the plant's growth and photosynthesis. PeGRP2 contains a conserved RNA recognition motif domain at the N-terminus, and RNA affinity purification (RAP) sequencing was developed to enrich the target mRNAs that physically interacted with PeGRP2 in P. × canescens. RAP sequencing combined with RT-qPCR revealed that NaCl decreased the transcripts of PeGRP2-interacting mRNAs encoding photosynthetic proteins, antioxidative enzymes, ATPases, and Na+/H+ antiporters in this transgenic poplar. Specifically, PeGRP2 negatively affected the stability of the target mRNAs encoding the photosynthetic proteins PETC and RBCMT; antioxidant enzymes SOD[Mn], CDSP32, and CYB1-2; ATPases AHA11, ACA8, and ACA9; and the Na+/H+ antiporter NHA1. This resulted in (i) a greater reduction in Fv/Fm, YII, ETR, and Pn; (ii) less pronounced activation of antioxidative enzymes; and (iii) a reduced ability to maintain Na+ homeostasis in the transgenic poplars during long-term salt stress, leading to their lowered ability to tolerate salinity stress.


Assuntos
Populus , Tolerância ao Sal , Tolerância ao Sal/genética , Populus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/metabolismo , Íons/metabolismo , Sódio/metabolismo , Homeostase , Adenosina Trifosfatases/metabolismo , Antiporters/metabolismo , Fotossíntese/genética , Regulação da Expressão Gênica de Plantas
8.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38366380

RESUMO

Nitrogen (N) plays an important role in mitigating salt stress in tree species. We investigate the genotypic differences in the uptake of ammonium (NH4+) and nitrate (NO3-) and the importance for salt tolerance in two contrasting poplars, salt-tolerant Populus euphratica Oliv. and salt-sensitive P. simonii × (P. pyramidalis ×Salix matsudana) (P. popularis cv. 35-44, P. popularis). Total N content, growth and photosynthesis were significantly reduced in P. popularis after 7 days of exposure to NaCl (100 mM) supplied with 1 mM NH4+ and 1 mM NO3-, while the salt effects were not pronounced in P. euphratica. The 15NH4+ trace and root flux profiles showed that salt-stressed poplars retained ammonium uptake, which was related to the upregulation of ammonium transporters (AMTs) in roots, as two of the four AMTs tested significantly increased in salt-stressed P. euphratica (i.e., AMT1.2, 2.1) and P. popularis (i.e., AMT1.1, 1.6). It should be noted that P. euphratica differs from salt-sensitive poplar in the maintenance of NO3- under salinity. 15NO3- tracing and root flux profiles showed that P. euphratica maintained nitrate uptake and transport, while the capacity to uptake NO3- was limited in salt-sensitive P. popularis. Salt increased the transcription of nitrate transporters (NRTs), NRT1.1, 1.2, 2.4, 3.1, in P. euphratica, while P. popularis showed a decrease in the transcripts of NRT1.1, 2.4, 3.1 after 7 days of salt stress. Furthermore, salt-stimulated transcription of plasmalemma H+-ATPases (HAs), HA2, HA4 and HA11 contributed to H+-pump activation and NO3- uptake in P. euphratica. However, salt stimulation of HAs was less pronounced in P. popularis, where a decrease in HA2 transcripts was observed in the stressed roots. We conclude that the salinity-decreased transcripts of NRTs and HAs reduced the ability to uptake NO3- in P. popularis, resulting in limited nitrogen supply. In comparison, P. euphratica maintains NH4+ and NO3- supply, mitigating the negative effects of salt stress.


Assuntos
Compostos de Amônio , Populus , Nitratos/metabolismo , Cloreto de Sódio/farmacologia , Populus/metabolismo , Raízes de Plantas/fisiologia , Compostos de Amônio/metabolismo , Proteínas de Membrana Transportadoras , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/farmacologia , Nitrogênio/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166979, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065272

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) is now the most common form of HF and has been reported to be closely related to diabetes. Accumulating evidence suggests that HFpEF patients exhibit cardiac fibrosis. This study investigates whether direct targeted inhibition of the activation of cardiac fibroblasts (CFs), the main effector cells in cardiac fibrosis, improves diabetes-induced HFpEF and elucidates the underlying mechanisms. Twenty-week-old db/db mice exhibited HFpEF, as confirmed by echocardiography and hemodynamic measurements. Proteomics was performed on CFs isolated from the hearts of 20-week-old C57BL/6 and db/db mice. Bioinformatic prediction was used to identify target proteins. Experimental validation was performed in both high glucose (HG)-treated neonatal mouse CFs (NMCFs) and diabetic hearts. TAX1 binding protein 1 (TAX1BP1) was identified as the most significantly differentially expressed protein between 20-week-old C57BL/6 and db/db mice. TAX1BP1 mRNA and protein were markedly downregulated in CFs from diabetic hearts and HG-cultured NMCFs. Overexpression of TAX1BP1 profoundly inhibited HG/diabetes-induced NF-κB nuclear translocation and collagen synthesis in CFs, improved cardiac fibrosis, hypertrophy, inflammation and HFpEF in diabetic mice. Mechanistically, signal transducer and activator of transcription 3 (STAT3), which is phosphorylated and translocated from the cytoplasm into the nucleus under hyperglycemic conditions, bound to TAX1BP1 promoter and blocked TAX1BP1 transcriptional activity, consequently promoting NF-κB nuclear translocation and collagen synthesis in CFs, aggravating cardiac fibrosis, hypertrophy and inflammation, leading to HFpEF in db/db mice. Taken together, our findings demonstrate that targeting regulation of STAT3-TAX1BP1-NF-κB signaling in CFs may be a promising therapeutic approach for diabetes-induced HFpEF.


Assuntos
Cardiomiopatias , Diabetes Mellitus Experimental , Insuficiência Cardíaca , Animais , Humanos , Camundongos , Cardiomiopatias/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Fibroblastos/metabolismo , Fibrose , Insuficiência Cardíaca/metabolismo , Hipertrofia/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Volume Sistólico
10.
Circ Res ; 133(3): 220-236, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37377022

RESUMO

BACKGROUND: The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF). METHODS: GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining. Overexpression of GSNOR in mitochondria was achieved by mitochondria-targeting sequence-directed adeno-associated virus 9. Cardiac-specific knockout of GSNOR mice was used to examine the role of GSNOR in HF. S-nitrosylation sites of ANT1 (adenine nucleotide translocase 1) were identified using biotin-switch and liquid chromatography-tandem mass spectrometry. RESULTS: GSNOR expression was suppressed in cardiac tissues of patients with HF. Consistently, cardiac-specific knockout mice showed aggravated pathological remodeling induced by transverse aortic constriction. We found that GSNOR is also localized in mitochondria. In the angiotensin II-induced hypertrophic cardiomyocytes, mitochondrial GSNOR levels significantly decreased along with mitochondrial functional impairment. Restoration of mitochondrial GSNOR levels in cardiac-specific knockout mice significantly improved mitochondrial function and cardiac performance in transverse aortic constriction-induced HF mice. Mechanistically, we identified ANT1 as a direct target of GSNOR. A decrease in mitochondrial GSNOR under HF leads to an elevation of S-nitrosylation ANT1 at cysteine 160 (C160). In accordance with these findings, overexpression of either mitochondrial GSNOR or ANT1 C160A, non-nitrosylated mutant, significantly improved mitochondrial function, maintained the mitochondrial membrane potential, and upregulated mitophagy. CONCLUSIONS: We identified a novel species of GSNOR localized in mitochondria and found mitochondrial GSNOR plays an essential role in maintaining mitochondrial homeostasis through ANT1 denitrosylation, which provides a potential novel therapeutic target for HF.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Animais , Humanos , Camundongos , Coração , Insuficiência Cardíaca/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo
11.
Cell Res ; 33(7): 546-561, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156877

RESUMO

Genetic information is generally transferred from RNA to protein according to the classic "Central Dogma". Here, we made a striking discovery that post-translational modification of a protein specifically regulates the editing of its own mRNA. We show that S-nitrosylation of cathepsin B (CTSB) exclusively alters the adenosine-to-inosine (A-to-I) editing of its own mRNA. Mechanistically, CTSB S-nitrosylation promotes the dephosphorylation and nuclear translocation of ADD1, leading to the recruitment of MATR3 and ADAR1 to CTSB mRNA. ADAR1-mediated A-to-I RNA editing enables the binding of HuR to CTSB mRNA, resulting in increased CTSB mRNA stability and subsequently higher steady-state levels of CTSB protein. Together, we uncovered a unique feedforward mechanism of protein expression regulation mediated by the ADD1/MATR3/ADAR1 regulatory axis. Our study demonstrates a novel reverse flow of information from the post-translational modification of a protein back to the post-transcriptional regulation of its own mRNA precursor. We coined this process as "Protein-directed EDiting of its Own mRNA by ADAR1 (PEDORA)" and suggest that this constitutes an additional layer of protein expression control. "PEDORA" could represent a currently hidden mechanism in eukaryotic gene expression regulation.


Assuntos
Catepsina B , Edição de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Regulação da Expressão Gênica , Precursores de RNA/metabolismo , RNA/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
12.
Exp Mol Med ; 55(4): 860-869, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37009805

RESUMO

The loss of cardiomyocytes (CMs) after myocardial infarction (MI) is widely acknowledged to initiate the development of heart failure (HF). Herein, we found that circCDYL2 (583 nt) derived from chromodomain Y-like 2 (Cdyl2) is significantly upregulated in vitro (oxygen-glucose deprivation (OGD)-treated CMs) and in vivo (failing heart post-MI) and can be translated into a polypeptide termed Cdyl2-60aa (~7 kDa) in the presence of internal ribosomal entry sites (IRES). Downregulation of circCDYL2 significantly decreased the loss of OGD-treated CMs or the infarcted area of the heart post-MI. Additionally, elevated circCDYL2 significantly accelerated CM apoptosis via Cdyl2-60aa. We then discovered that Cdyl2-60aa could stabilize protein apoptotic protease activating factor-1 (APAF1) and promote CM apoptosis; heat shock protein 70 (HSP70) mediated APAF1 degradation in CMs by ubiquitinating APAF1, which Cdyl2-60aa could competitively block. In conclusion, our work substantiated the claim that circCDYL2 could promote CM apoptosis via Cdyl2-60aa, which enhanced APAF1 stability by blocking its ubiquitination by HSP70, suggesting that it is a therapeutic target for HF post-MI in rats.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Proteínas/genética , Apoptose , Peptídeos/metabolismo , Ubiquitinação , Infarto do Miocárdio/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo
13.
Biochem Biophys Res Commun ; 636(Pt 2): 62-70, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36356543

RESUMO

Epicardial adipose tissue (EAT) is a metabolically active organ which generates inflammatory cytokines. Thickness of EAT is associated with onset and development of heart failure with preserved ejection fraction (HFpEF). However, it is still unclear the specific mechanisms and pharmacological targets on EAT induced inflammation in HFpEF. A two-hit protocol with western diet and Nω-nitrol-arginine methyl ester (L-NAME) was used to establish HFpEF mouse model. In HFpEF mice, inflammatory biomarkers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and von willebrand factor (vWF) elevated in myocardium compared to control. Inflammatory cell infiltration in myocardium was increased. In HFpEF mice, inflammasome-mediated pyroptosis pathway was activated in the EAT. Suppression of pyroptosis-related protein gasdermin D (GSDMD) in cultured EAT could lower cardiomyocyte inflammation and autophagy. Furthermore, spironolactone and rosuvastatin, the two-hit anti-inflammatory agents, reduced NLR family pyrin domain containing 3 (NLRP3)/GSDMD pyroptosis in EAT and autophagy in myocardium of HFpEF mouse. The combination treatment also enhanced exercise tolerance and appeased inflammatory injuries in HFpEF mice. CONCLUSION: Pyroptosis signaling is involved in EAT-myocardium axis in mouse model of HFpEF. Targeting adipocyte-derived inflammation in EAT bears potential to treatment HFpEF.


Assuntos
Insuficiência Cardíaca , Piroptose , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Volume Sistólico , Inflamassomos/metabolismo , Miocárdio/metabolismo , Tecido Adiposo/metabolismo , Inflamação/patologia , Modelos Animais de Doenças , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
14.
Front Cardiovasc Med ; 9: 1050654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407444

RESUMO

Aims: Traditional anthropometric measures, including body mass index (BMI), are insufficient for evaluating the risk of hypertension. We aimed to investigate the association between novel anthropometric indices and hypertension risk in a large population in the United States. Methods: Forty-five thousand eight hundred fifty-three participants from the National Health and Nutrition Examination Survey (NHANES) (1999-2018) were enrolled. Social demographic information, lifestyle factors, blood biochemical measurements and anthropometric indices, including body weight, body mass index (BMI), waist circumference, waist-to-height ratio (WtHR), conicity index (CI), a body shape index (ABSI), body roundness index (BRI) and lipid accumulation product (LAP) were collected. Multivariable logistic regression and restricted cubic spline were adopted to investigate the associations between hypertension risk and anthropometric indices. We also performed receiver operating characteristic (ROC) curve analyses to further evaluate the discriminatory powers of anthropometric measurements for screening hypertension risk. Moreover, participants were randomly assigned to the training group and the validation group in a ratio of 3 to 1. A nomogram model based on anthropometric measures was established and validated in the training group and validation group, respectively. Results: All of the anthropometric measurements investigated were positively and independently associated with the hypertension risk. Among all anthropometric indices, per-SD increment in ABSI had the highest OR (OR: 3.4; 95% CI: 2.73-4.24) after adjusting for age, sex, race/ethnicity, education, smoking, drinking, diabetes, and eGFR. Moreover, results from restricted cubic splines revealed the non-linear association between anthropometric measurements and hypertension risk. In ROC analyses, CI had superior discriminatory power for hypertension (area under the curve: 0.71; 95% CI: 0.706-0.715; optimal cutoff value: 1.3) compared with other indices. Nomogram model based on age, sex, diabetes, CI and LAP showed favorable predicting ability of hypertension risk with an AUC (95% CI) in training group of 80.2% (79.7-80.6%), and the AUC (95% CI) in validation group was 79.5% (78.3-80.1%). Meanwhile, calibration plot showed good consistency. Conclusions: Anthropometric measurements including BMI, WtHR, CI, ABSI, BRI and LAP are closely associated with hypertension risk in the present study. For better prevention and treatment of hypertension, more attention should be paid to anthropometric indices, especially novel anthropometric indices.

15.
Nutrients ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364813

RESUMO

Inflammation plays a pivotal in the occurrence and development of coronary heart disease (CHD). We aim to investigate the association between the Dietary Inflammatory Index (DII) and CHD in the present study. In this cross-sectional study, adult participants from the National Health and Nutrition Examination Survey (NHANES) (1999-2018) were enrolled. The social demographic information, lifestyle factors, blood biochemical measurements, dietary information, and CHD status of all the participants were systematically collected. Multivariable logistic regression was adopted to investigate the association between the risk of CHD and the DII. Besides, restricted cubic spline (RCS) analysis was used to explore whether there was a nonlinear association of the DII and CHD. Subgroup analysis stratified by sex, age, race/ethnicity, and BMI was conducted to evaluate the association of the DII and CHD among different populations. A total of 45,306 adults from NHANES (1999-2018) were included. Compared with individuals without CHD, the DIIs of the participants with CHD were significantly elevated. A positive association was observed between the DII and CHD in multivariable logistic analysis after adjusting for age, sex, race/ethnicity, education levels, smoking, drinking, diabetes, hypertension, and body mass index (BMI). Results of RCS analysis suggested a nonlinear relationship between the DII and CHD. In addition, the increment of the DII had a greater impact on female individuals compared with male individuals. The DII is closely associated with the risk of CHD. For better prevention and treatment of CHD, more attention should be paid to controlling dietary inflammation.


Assuntos
Doença das Coronárias , Dieta , Adulto , Masculino , Humanos , Feminino , Inquéritos Nutricionais , Estudos Transversais , Prevalência , Dieta/efeitos adversos , Inflamação , Doença das Coronárias/epidemiologia , Doença das Coronárias/etiologia , Fatores de Risco
16.
Oxid Med Cell Longev ; 2022: 1200602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246398

RESUMO

P300/CBP-Associated Factor (PCAF), one of the histone acetyltransferases (HATs), is known to be involved in cell growth and/or differentiation. PCAF is reported to be involved in atherosclerotic plaques and neointimal formation. However, its role in cellular senescence remains undefined. We investigated the potential mechanism for PCAF-mediated cellular senescence. Immunohistochemical (IHC) analysis showed PCAF was distinctly increased in the endothelia of aorta in aged mice. Palmitate acid (PA) or X radiation significantly induced the expression of senescence-associated markers and PCAF in human umbilical vein endothelial cells (HUVECs). PCAF silence in PA-treated HUVECs significantly rescued senescence-associated phenotypes, while PCAF overexpression accelerated it. Additionally, our results showed that Yes1 Associated Transcriptional Regulator (YAP) that acts as end effector of the Hippo signaling pathway is crucial in PCAF-mediated endothelial senescence. YAP activity declining was observed in aged vascular endothelia. Overexpression of YAP partially ameliorated PCAF-induced endothelial senescence. In vivo, endothelial-(EC-) specific PCAF downregulation in aged mice using adeno-associated virus revealed less vascular senescence-associated phenotypes. These results suggested that PCAF mediated endothelial senescence through the Hippo signaling pathway, implying that PCAF may become a potential target for the prevention and treatment of vascular aging.


Assuntos
Células Endoteliais , Via de Sinalização Hippo , Idoso , Animais , Humanos , Camundongos , Senescência Celular , Histona Acetiltransferases , Palmitatos
17.
Tissue Cell ; 79: 101946, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174269

RESUMO

BACKGROUND: Low shear stress (LSS) is closely related to vascular endothelial inflammation and the development of atherosclerosis. Berberine (BBR), a natural compound isolated from Coptis chinensis, has been reported to exert anti-inflammatory and antiatherosclerotic effects. However, the role of berberine in low shear stress-induced endothelial inflammation remains unclear. METHODS: The role of berberine in low shear stress-induced vascular endothelial inflammation was investigated in human umbilical vein endothelial cells (HUVECs) using a plate flow chamber in vitro and in mice with an established LSS model by partial ligation of the carotid artery in vivo. RESULTS: First, in vitro experiments demonstrated that BBR significantly decreased the expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) and the phosphorylation of Akt in HUVECs induced by low shear stress. Moreover, BBR significantly inhibited the low shear stress-mediated phosphorylation of IRF3 and its translocation to the nucleus. Notably, Akt overexpression markedly reversed the inhibitory effects of BBR on LSS-induced IRF3 activation and ICAM-1 expression. Moreover, in vivo experiments showed that BBR markedly decreased intimal ICAM-1 and IRF3 in the LSS areas of partially ligated carotid arteries in mice; however, EC-specific Akt overexpression mediated by adeno-associated viruses abolished the anti-inflammatory effect of BBR. CONCLUSION: Taken together, our findings suggest that BBR treatment attenuates LSS-induced vascular endothelial inflammation by decreasing the activation of the Akt/IRF3 signalling pathway.


Assuntos
Berberina , Humanos , Camundongos , Animais , Berberina/farmacologia , Fosforilação , Molécula 1 de Adesão Intercelular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/farmacologia
18.
Cell Signal ; 98: 110419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905868

RESUMO

Intraplaque hemorrhage (IPH) accelerates atherosclerosis progression. To scavenge excessive red blood cells (RBCs), vascular smooth muscle cells (VSMCs) with great plasticity may function as phagocytes. Here, we investigated the erythrophagocytosis function of VSMCs and possible regulations involved. Based on transcriptional microarray analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that genes up-regulated in human carotid atheroma with IPH were enriched in functions of phagocytic activities, while those down-regulated were enriched in VSMCs contraction function. Transcriptional expression of Milk fat globule-epidermal growth factor 8 (MFG-E8) was also down-regulated in atheroma with IPH. In high-fat diet-fed apolipoprotein E-deficient mice, erythrocytes were present in cells expressing VSMC markers αSMA in the brachiocephalic artery, suggesting VSMCs play a role in erythrophagocytosis. Using immunofluorescence and flow cytometry, we also found that eryptotic RBCs were bound to and internalized by VSMCs in a phosphatidylserine/MFG-E8/integrin αVß3 dependent manner in vitro. Inhibiting S1PR2 signaling with specific inhibitor JTE-013 or siRNA decreased Mfge8 expression and impaired the erythrophagocytosis of VSMCs in vitro. Partial ligation was performed in the left common carotid artery (LCA) followed by intra-intimal injection of isolated erythrocytes to observe their clearance in vivo. Interfering S1PR2 expression in VSMCs with Adeno-associated virus 9 inhibited MFG-E8 expression inside LCA plaques receiving RBCs injection and attenuated erythrocytes clearance. Erythrophagocytosis by VSMCs increased vascular endothelial growth factor-a secretion and promoted angiogenesis. The present study revealed that VSMCs act as phagocytes for RBC clearance through S1PR2 activation induced MFG-E8 release.


Assuntos
Músculo Liso Vascular , Placa Aterosclerótica , Animais , Eritrócitos , Fator VIII/metabolismo , Glicolipídeos , Glicoproteínas , Hemorragia/metabolismo , Humanos , Gotículas Lipídicas , Camundongos , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de Esfingosina-1-Fosfato , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563299

RESUMO

Phospholipase Dα (PLDα), which produces signaling molecules phosphatidic acid (PA), has been shown to play a critical role in plants adapting to salt environments. However, it is unclear whether phospholipase Dδ (PLDδ) can mediate the salt response in higher plants. PePLDδ was isolated from salt-resistant Populus euphratica and transferred to Arabidopsis thaliana to testify the salt tolerance of transgenic plants. The NaCl treatment (130 mM) reduced the root growth and whole-plant fresh weight of wild-type (WT) A. thaliana, vector controls (VC) and PePLDδ-overexpressed lines, although a less pronounced effect was observed in transgenic plants. Under salt treatment, PePLDδ-transgenic Arabidopsis exhibited lower electrolyte leakage, malondialdehyde content and H2O2 levels than WT and VC, resulting from the activated antioxidant enzymes and upregulated transcripts of genes encoding superoxide dismutase, ascorbic acid peroxidase and peroxidase. In addition, PePLDδ-overexpressed plants increased the transcription of genes encoding the plasma membrane Na+/H+ antiporter (AtSOS1) and H+-ATPase (AtAHA2), which enabled transgenic plants to proceed with Na+ extrusion and reduce K+ loss under salinity. The capacity to regulate reactive oxygen species (ROS) and K+/Na+ homeostasis was associated with the abundance of specific PA species in plants overexpressing PePLDδ. PePLDδ-transgenic plants retained a typically higher abundance of PA species, 34:2 (16:0-18:2), 34:3 (16:0-18:3), 36:4 (18:2-18:2), 36:5 (18:2-18:3) and 36:6 (18:3-18:3), under control and saline conditions. It is noteworthy that PA species 34:2 (16:0-18:2), 34:3 (16:0-18:3), 36:4 (18:2-18:2) and 36:5 (18:2-18:3) markedly increased in response to NaCl in transgenic plants. In conclusion, we suppose that PePLDδ-derived PA enhanced the salinity tolerance by regulating ROS and K+/Na+ homeostasis in Arabidopsis.


Assuntos
Arabidopsis , Populus , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Peróxido de Hidrogênio/metabolismo , Peroxidases/metabolismo , Fosfolipases/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Populus/genética , Populus/metabolismo , ATPases Translocadoras de Prótons/genética , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Cloreto de Sódio/metabolismo
20.
Redox Biol ; 52: 102290, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35334246

RESUMO

Endothelial dysfunction is the initial process of atherosclerosis. Heat shock protein 90 (Hsp90), as a molecular chaperone, plays a crucial role in various cardiovascular diseases. Hsp90 function is regulated by S-nitrosylation (SNO). However, the precise role of SNO-Hsp90 in endothelial dysfunction during atherosclerosis remains unclear. We here identified Hsp90 as a highly S-nitrosylated target in endothelial cells (ECs) by biotin switch assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The elevation of SNO-Hsp90 was observed in atherosclerotic human and rodent aortas as well as in oxidized LDL (oxLDL)-treated ECs. Inhibition of inducible nitric oxide synthase (iNOS) or transfection with Hsp90 cysteine 521 (Cys521) mutation plasmid decreased the level of SNO-Hsp90 in oxLDL-cultured ECs. Coimmunoprecipitation and proximity ligation assay demonstrated that SNO-Hsp90 at Cys521 suppressed the interaction between Hsp90 and activator of Hsp90 ATPase activity 1 (AHA1), but promoted the association of Hsp90 and cell division cycle 37 (CDC37). Hsp90 Cys521 mutation increased endothelial nitric oxide synthase (eNOS) activity and inhibited nuclear factor kappa-B (NF-κB) signaling, thereby increasing nitric oxide (NO) bioavailability and alleviating endothelial adhesion, inflammation and oxidative stress in oxLDL-treated ECs. Also, administration of endothelial-specific adeno-associated viruses of Cys521-mutated Hsp90 significantly mitigated vascular oxidative stress, macrophage infiltration and atherosclerosis lesion areas in high fat diet-fed ApoE-/- mice. In conclusion, SNO-Hsp90 at Cys521, that serves as a conformational switch, disrupts Hsp90/AHA1 interaction but promotes recruitment of CDC37 to exacerbate atherosclerosis.


Assuntos
Aterosclerose , Cisteína , Adenosina Trifosfatases , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Cromatografia Líquida , Cisteína/metabolismo , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA