Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129468

RESUMO

Stem-like properties contribute to tumor growth, metastasis, and chemoresistance. High-grade serous ovarian cancer (HGSOC) exhibits a very aggressive phenotype characterized by extensive metastasis, rapid progression, and therapy resistance. Frizzled 6 (FZD6) is overexpressed in HGSOC, and higher levels of FZD6 have been associated with shorter survival times in patients with HGSOC. Functionally, FZD6 promotes HGSOC growth and peritoneal metastasis. It endues HGSOC cells with stem-like properties by modulating POU5F1, ALDH1, and EPCAM. It can also desensitize HGSOC cells to certain chemical drugs. As a putative ligand for FZD6, WNT7B is also implicated in cell proliferation, stem-like properties, invasion and migration, and chemoresistance. SMAD7 is a downstream component of FZD6 signaling that is thought to mediate FZD6-associated phenotypes, at least in part. Therefore, FZD6/WNT7B-SMAD7 can be considered a tumor-promoting signaling pathway in HGSOC that may be responsible for tumor growth, peritoneal metastasis, and chemoresistance.

2.
Heliyon ; 9(12): e22902, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144338

RESUMO

Background: Intrauterine adhesion (IUA) results from serious complications of intrauterine surgery or infection and mostly remains incurable. Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have emerged as a potential new approach for the treatment of IUA; however, their impact is not fully understood. Here, we performed a meta-analysis summarizing the effects of sEVs on IUA in preclinical rodent models. Methods: This meta-analysis included searches of PubMed, EMBASE, Cochrane, and the Web of Science databases from January 1, 1997, to April 1, 2022, to identify studies reporting the therapeutic effect of sEVs on rodent preclinical animal models of IUA. We compared improvements in endometrial thickness, endometrial gland number, fibrosis area, embryo number, vascular endothelial growth factor (VEGF), transforming growth factor ß1 (TGFß1), and leukemia inhibitory factor (LIF) levels after treatment. Results: Our search included 100 citations, of which 7 met the inclusion criteria, representing 231 animals. Compared with that in the control group, the fibrosis area in the sEV-treated group was significantly reduced (standardized mean difference (SMD) = -6.87,95 % confidence interval (CI) = -9.67 to -4.07). The number of glands increased after the intervention (95 % CI, 3.72-7.68; P = 0.000). Endometrial thickness was significantly improved in the sEV-treated group (SMD = 2.57, 95 % CI, 1.62-3.52). Conclusions: This meta-analysis is highlighting that sEV treatment can improve the area of endometrial fibrosis, as well as VEGF, and LIF level, in a mouse IUA model. This knowledge of these findings will provide new insights into future preclinical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA