Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(34): 45049-45062, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39141582

RESUMO

Heavy metals are crucial carcinogenic agents threatening the environment and living habituates. Among them, arsenic (As) is an important metalloid that is categorized as a group I toxic carcinogen. Roxarsone (RX) is an organoarsenic antibiotic compound primarily used as a veterinarian drug and growth promoter for poultry animals. The extensive usage of RX increased the accumulation of As in living beings and the ecosystem. Therefore, we have prepared an electrochemical sensor based on 3D bismuth oxybromide with 2D selenium-doped graphitic carbon nitride (BOB/SCN) electrocatalyst for the rapid detection of RX. The elemental and structural details were thoroughly investigated with several spectroscopic techniques. The electrochemical properties were measured by impedance and voltammetric measurements. The electrocatalytic behavior toward the RX was estimated with different voltammetric methods. Therefore, our BOB/SCN-based electrochemical sensor demonstrated a low detection limit (2.3 nM), low quantification value (7.7 nM), optimal sensitivity (0.675 µA µM-1 cm-2), and good linear ranges (0.01-77 and 77-857 µM). Additionally, this sensor showed good electrochemical performance and was applied to monitor the RX in various real samples with remarkable recoveries. Based on these results, our BOB/SCN sensor is a promising electrochemical platform for determining RX.


Assuntos
Bismuto , Técnicas Eletroquímicas , Grafite , Roxarsona , Selênio , Grafite/química , Técnicas Eletroquímicas/métodos , Catálise , Selênio/química , Bismuto/química , Roxarsona/análise , Roxarsona/química , Animais , Compostos de Nitrogênio/química , Limite de Detecção , Nitrilas/química
2.
Anal Methods ; 16(18): 2857-2868, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38639051

RESUMO

The pentavalent arsenic compound roxarsone (RSN) is used as a feed additive in poultry for rapid growth, eventually ending up in poultry litter. Poultry litter contains chicken manure, which plays a vital role as an affordable fertilizer by providing rich nutrients to agricultural land. Consequently, the extensive use of poultry droppings serves as a conduit for the spread of toxic forms of arsenic in the soil and surface water. RSN can be easily oxidized to release highly carcinogenic As(III) and As(IV) species. Thus, investigations were conducted for the sensitive detection of RSN electrochemically by developing a sensor material based on lanthanum manganese oxide (LMO) and functionalized carbon nanofibers (f-CNFs). The successfully synthesised LMO/f-CNF composite was confirmed by chemical, compositional, and morphological studies. The electrochemical activity of the prepared composite material was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results confirmed that LMO/f-CNF showed enhanced electrocatalytic activity and improved current response with a good linear range (0.01-0.78 µM and 2.08-497 µM, respectively), exhibiting a low limit of detection (LOD) of 0.004 µM with a high sensitivity of 13.24 µA µM-1 cm-2 towards the detection of RSN. The noteworthy features of LMO/f-CNF composite with its superior electrochemical performance enabled reliable reproducibility, exceptional stability and reliable practical application in the analysis of tap water and food sample, affording a recovery range of 86.1-98.87%.


Assuntos
Compostos de Cálcio , Técnicas Eletroquímicas , Lantânio , Nanofibras , Óxidos , Roxarsona , Titânio , Nanofibras/química , Lantânio/química , Óxidos/química , Técnicas Eletroquímicas/métodos , Roxarsona/química , Roxarsona/análise , Titânio/química , Compostos de Cálcio/química , Poluentes Químicos da Água/análise , Carbono/química , Limite de Detecção , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Animais , Compostos de Manganês/química
3.
J Colloid Interface Sci ; 643: 600-612, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37003869

RESUMO

Engineering the nanostructure of an electrocatalyst is crucial in developing a high-performance electrochemical sensor. This work exhibits the hydrothermal followed by annealing synthesis of niobium oxide/niobium carbide/reduced graphene oxide (NbO/NbC/rGO) ternary nanocomposite. The oval-shaped NbO/NbC nanoparticles cover the surface of rGO evenly, and the rGO nanosheets are interlinked to produce a micro-flower-like architecture. The NbO/NbC/rGO nanocomposite-modified electrode is presented here for the first time for the rapid and sensitive electrochemical detection of the anticancer drug methotrexate (MTX). Down-sized NbO/NbC nanoparticles and rGO's high surface area provide many active sites with a rapid electron transfer rate, making them ideal for MTX detection. In comparison to previously reported MTX sensors, the developed drug sensor exhibits a lower oxidation potential and a higher peak current responsiveness. The constructed sensors worked analytically well under optimal conditions, as shown by a low detection limit of 1.6 nM, a broad linear range of 0.1-850 µM, and significant recovery findings (∼98 %, (n = 3)) in real samples analysis. Thus, NbO/NbC/rGO nanocomposite material for high-performance electrochemical applications seems promising.


Assuntos
Antineoplásicos , Grafite , Nanocompostos , Óxidos/química , Nióbio/química , Metotrexato , Técnicas Eletroquímicas , Grafite/química , Nanocompostos/química
4.
ACS Appl Mater Interfaces ; 15(9): 11927-11939, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890694

RESUMO

The exploration of heterostructure materials with unique electronic properties is considered a desirable platform for fabricating electrode/surface interface relationships for constructing asymmetric supercapacitors (ASCs) with high energy density. In this work, a heterostructure based on amorphous nickel boride (NiXB) and crystalline square bar-like manganese molybdate (MnMoO4) was prepared by a simple synthesis strategy. The formation of the NiXB/MnMoO4 hybrid was confirmed by powder X-ray diffraction (p-XRD), field emission scanning electron microscopy (FE-SEM), field-emission transmission electron microscopy (FE-TEM), Brunauer-Emmett-Teller (BET), Raman, and X-ray photoelectron spectroscopy (XPS). In this hybrid system (NiXB/MnMoO4), the intact combination of NiXB and MnMoO4 leads to a large surface area with open porous channels and abundant crystalline/amorphous interfaces with a tunable electronic structure. This NiXB/MnMoO4 hybrid shows high specific capacitance (587.4 F g-1) at 1 A g-1, and it even retains a capacitance of 442.2 F g-1 at 10 A g-1, indicating superior electrochemical performance. The fabricated NiXB/MnMoO4 hybrid electrode also exhibited an excellent capacity retention of 124.4% (10000 cycles) and a Coulombic efficiency of 99.8% at a current density of 10 A g-1. In addition, the ASC device (NiXB/MnMoO4//activated carbon) achieved a specific capacitance of 104 F g-1 at 1 A g-1 and delivered a high energy density of 32.5 Wh.kg-1 with a power density of 750 W·kg-1. This exceptional electrochemical behavior is due to the ordered porous architecture and the strong synergistic effect of NiXB and MnMoO4, which enhances the accessibility and adsorption of OH- ions that improve electron transport. Moreover, the NiXB/MnMoO4//AC device exhibits excellent cyclic stability with a retention of 83.4% of the original capacitance after 10000 cycles, which is due to the heterojunction layer between NiXB and MnMoO4 that can improve the surface wettability without causing structural changes. Our results show that the metal boride/molybdate-based heterostructure is a new category of high-performance and promising material for the growth of advanced energy storage devices.

5.
Environ Res ; 222: 115343, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696945

RESUMO

Ronidazole (RDZ) is a veterinary antibiotic drug that has been used in animal husbandry as feed. However, improper disposal and illegal use of pharmaceuticals have severely polluted water resources. Doping/substitution of metal ions is an effective strategy to change the material's crystal phase, morphology, and electrocatalytic activity. In this work, nickel (Ni2+)-doped cobalt molybdate microrods (NCMO MRs) were prepared for the electrochemical detection of RDZ. The catalyst was prepared by reflux method followed by calcination at 500 °C. The prepared catalyst was confirmed by various spectroscopic and microscopic analyses. XRD and Raman spectroscopy demonstrated that the phase transition from ß-CoMoO4 to α-CoMoO4 was achieved by Ni2+ doping. The SEM analysis showed that cobalt molybdate (CMO) microrods were self-assembled during Ni2+ doping and formed an urchin-like structure, and the average diameter of the MRs was ±50 nm. The electrocatalytic activity of the catalysts was analyzed using the CV technique. The NCMO MRs/GCE exhibited the higher current response than the pristine CMO. The electron transfer coefficient (α = 0.56) and heterogeneous rate constant (ks = 0.32 s-1) of NCMO MRs/GCE were evaluated by kinetic studies. In addition, the diffusion coefficient of RDZ was determined to be 2.32 × 10-5 cm2/s. Moreover, NCMO MRs/GCE exhibits a low detection limit for RDZ (15 nM) as well as a higher sensitivity (1.57 µA µM-1 cm-2). The fabricated RDZ sensor was successfully applied to analysis of lake and tap water samples. Based on the results, we believe that the as-prepared NCMO MRs/GCE is a viable electrode material for RDZ sensors in environmental monitoring.


Assuntos
Níquel , Ronidazole , Animais , Cobalto , Cinética , Antibacterianos
6.
Inorg Chem ; 62(4): 1437-1446, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36652943

RESUMO

An electrocatalyst with a large active site is critical for the development of a high-performance electrochemical sensor. This work demonstrates the fabrication of an iron diselenide (FeSe2)-modified screen-printed carbon electrode (SPCE) for the electrochemical determination of furaltadone (FLD). It has been prepared by the facile method and systematically characterized with various microscopic/spectroscopic approaches. Due to advantageous physiochemical properties, the FeSe2/SPCE showed a low charge-transfer resistance value of 200 Ω in 5.0 mM [Fe(CN)6]3-/4- containing 0.1 M KCl. More importantly, the FeSe2/SPCE exhibited superior catalytic performance compared to the bare SPCE for FLD sensing based on the electrochemical response in terms of a peak potential of -0.44 V (vs Ag/AgCl (sat. KCl)) and cathodic response current of -22.8 µA. Operating at optimal conditions, the FeSe2-modified electrode showed wide linearity from 0.01 to 252.2 µM with a limit of detection of 0.002 µM and sensitivity of 1.15 µA µM-1 cm-2. The analytical performance of the FeSe2-based platform is significantly higher than many previously reported FLD electrochemical sensors. Furthermore, the FeSe2/SPCE also has a promising platform for FLD detection with high sensitivity, good selectivity, excellent stability, and robust reproducibility. Thus, the finding above shows that the FeSe2/SPCE is a highly suitable candidate for the electrochemical determination of glucose levels for real-time applications such as in human urine and river water samples.

7.
Chemosphere ; 311(Pt 2): 137168, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36368536

RESUMO

ortho-Nitroaniline (o-NA) compounds are deemed to be a strongly toxic pollutant in nature and potentially carcinogenic; however, they are frequently utilized to synthesize dyes, pesticides, medicines, fungicides, pigments, and other organic chemicals. Their detection in an aqueous medium is fundamentally required to avoid the potential hazardous being created by these compounds. In this study, a novel sensor based on an Iron oxide (Fe3O4) containing highly dispersed nitrogen-doped carbon quantum dots (N-CQDs@Fe3O4 NFs) was demonstrated for the electrochemical detection of o-NA using differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques. N-CQDs@Fe3O4 NFs were synthesized by hydrothermal method and studied by various analytical and spectroscopy techniques, which collectively reveal that the as-prepared composite has superior physical and chemical properties. The DPV study indicated that the o-NA sensor had a good limit of detection, linear range, and sensitivity in the range of 1.2 nm, 0.03-386.84 µM, and 36.5575 µA µM-1 cm-2, respectively, along with the sensor showed superior sensitivity when compared to the previously reported modified electrodes. Further, N-CQD/Fe3O4 NFs worked as heterogeneous catalysts for the photocatalytic reduction of o-NA to o-phenylenediamine (o-PD) in an aqueous medium. The reaction was examined under UV-Visible spectroscopy, and the complete photocatalytic reduction was observed for the N-CQD/Fe3O4 NFs in about 6 min with 96% as compared to other control samples; thus, authenticating the superiority of the synthesized composite in rendering the real-time applications.

8.
Chemosphere ; 313: 137553, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521748

RESUMO

Boosting catalytic performance as a vital role for an electrochemical sensor for monitoring various hazardous nitro drugs. Herein, an inexpensive, facile, and eco-friendly construction of praseodymium tungstate decorated on three dimensional porous biocarbon (PrW/3D-PBC) for electrochemical determination of carcinogenic residue furazolidone (FZ). The nanostructured PrW nanoparticles were prepared by solvent evaporation from peroxo-tungstic acid and 3D-PBC was prepared from biomass precursor under the carbonization method. Furthermore, the composite of PrW decorated on 3D-PBC was prepared by an ultrasonic-assisted wet chemical approach. Besides, the composite characterization of crystalline, functional group, degree of carbonization, chemical states, and morphology were utilized by theXRD, FTIR, RAMAN, XPS, and FESEM analysis. These 3D porous carbon decorated PrW nanoparticles facilitate the electrochemical anchoring sites, surface area, and ease of diffusion layers towards the detection of hazardous nitro pollutant FZ by using CV analysis. The low LOD and high sensitivity were achieved by FZ determination through using LSV and DPV techniques. The practical capability of the PrW/3D-PBC/GCE sensor was determined by using aquatic samples to achieve a good recovery result. These results instigate that the PrW/3D-PBC will be an efficient electrocatalytic material for FZ sensor in environmental aquatic samples.


Assuntos
Furazolidona , Praseodímio , Eletrodos , Técnicas Eletroquímicas/métodos , Porosidade
9.
Food Chem ; 397: 133791, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917784

RESUMO

Herein we report the ternary hybrid nanocomposite of iron oxide @ molybdenum carbide micro flowers decorated graphitic-carbon nitride (Fe3O4@MoC MFs/g-CN), as a catalyst for the detection of organophosphorus pesticide, parathion (PAT), for the first time. The growth of hierarchical nanostructure from the core level will facilitate easy diffusion of analyte and interact more effectively with the reactive catalytic sites. Thus, Fe3O4 NFs architecture was hydrothermally grown over MoC flakes from the core level, which further hybridized with g-CN to ensure electrical conductivity and mechanical stability. Experimental results demonstrate that Fe3O4@MoC MFs/g-CN/GCE has superior catalytic efficacy for PAT reduction. At optimum conditions, the proposed sensor exhibits a low detection limit (7.8 nM), high sensitivity, and wide linear range (0.5-600 µM) toward PAT detection. The satisfactory test results of the food samples indicate that the Fe3O4@MoC MFs/g-CN/GCE sensor can be used as an excellent candidate for real-time PAT detection.


Assuntos
Inseticidas , Nanocompostos , Praguicidas , Técnicas Eletroquímicas/métodos , Compostos Férricos/química , Flores/química , Grafite , Inseticidas/análise , Molibdênio , Nanocompostos/química , Compostos de Nitrogênio , Organofosfatos , Compostos Organofosforados
10.
Food Chem ; 393: 133316, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35688093

RESUMO

Bisphenol A (BPA) is a renowned plasticizer, and a key component of various plastics, resins, and food packaging materials. However, BPA have been identified as an endocrine disruption compound and cause severe consequences such as infertility, diabetic, obesity, carcinoma, and possess high risk of exposure in aquatic ecosystem. To this, we crafted an ultrasensitive electrochemical sensor based on the manganese sulfide nanoparticles (MnS NPs) catalyzed electrochemical oxidation of BPA, and its eventual application in rapid screening of BPA contamination. The physiochemical characteristics and electrocatalytic performance of the MnS nanocatalyst have been well studied and utilized in the fabrication of MnS/GCE based BPA sensor. The fabricated BPA sensor has shown a broad dynamic range (20 nM-2.15 mM), lower detection limits (6.52 nM) and promising towards rapid screening of BPA contaminations in food and environmental samples under mimicked real-world conditions with excellent accuracy and precision.


Assuntos
Compostos Benzidrílicos , Ecossistema , Compostos Benzidrílicos/análise , Compostos de Manganês , Fenóis/análise , Sulfetos
11.
Bioelectrochemistry ; 146: 108166, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35643022

RESUMO

Venous thromboembolism is one of the major disorders, which is significantly increased the mortality and morbidity rate. Warfarin sodium (WFS) is the most extensively prescribed drug for the prevention of thromboembolic diseases however, it has a narrow therapeutic index. Recently, many methods for detecting and monitoring the level of WFS have been proposed. However, the electrochemical method has gained more interest than the other traditional method due to its ease of operation. This article describes the hydrothermal synthesis of nickel-doped cerium oxide (CeO2@Ni) nanospheres for the selective electrochemical determination of WFS. Various spectroscopic techniques have been used to analyze the chemical composition, and surface morphology of CeO2@Ni nanospheres. Further, the prepared CeO2@Ni nanospheres modified electrode demonstrated excellent electrocatalytic behavior for WFS detection, with an ultralow detection limit of 6.3 × 10-9 M, a linear range of 1.0 × 10-8 M to 1.51 × 10-4 M and 1.51 × 10-4 M to 9.51 × 10-4 M, and a higher sensitivity of 2.9986 µA µM-1 cm2. Therefore, we believe that the CeO2@Ni nanosphere electrocatalyst can serve as a potential electrode catalyst for the sensing of WFS in real-time applications.


Assuntos
Cério , Nanosferas , Cério/química , Técnicas Eletroquímicas/métodos , Eletrodos , Níquel/química , Varfarina
12.
Chemosphere ; 303(Pt 3): 135203, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35667499

RESUMO

The serious situation mandates the use of anticancer drugs, which protect people all over the world from the growth of prostate cancer. In particular, excessive dosage and erroneous discharge of flutamide concentration cause make environmental pollution on the surface of the wastewater. In this study, the highly sensitive and selective electrochemical approach based on copper vanadium oxide decorated porous carbon (denoted as ß-Cu2V2O7/PC) composite modified glassy carbon electrode (GCE) has been developed and it was applied for sensitive detection of anticancer drug flutamide (FTM). Moreover, using the co-precipitation method, the flower-like ß-Cu2V2O7 hierarchical microstructure was synthesized, and through the wet chemical process, the ß-Cu2V2O7/PC composite was obtained. The resultant product was characterized by XRD, FTIR, RAMAN, XPS and structural morphology established by FESEM analysis. Besides that, the electrochemical characterization and properties were analyzed by cyclic voltammetry (CV) and amperometric (i-t) techniques. The ß-Cu2V2O7/PC/RDGCE had two linear ranges at 0.01-2.11 µM and 2.31-30.81 µM. The lower limits of detection and sensitivity were found at 0.62 nM (S/N = 3), and 24.33 µA µM-1 cm-2 respectively. The practicability test was applied for the determination of FTM in urine, blood serum and environmental aquatic fluid with satisfactory recovery obtained.


Assuntos
Carbono , Flutamida , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Porosidade
13.
J Pers Med ; 12(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35455635

RESUMO

Background: Alkaline phosphatase (ALP) is a marker of liver function and is associated with biliary tract disease. It was reported as a prognostic factor for hepatocellular carcinoma (HCC). The genetic expression in tumor-tissue microarrays and the perioperative serologic changes in ALP have never been studied for their correlation with HCC prognosis. Methods: The genetic expression of ALP isoforms (placental (ALPP), intestinal (ALPI) and bone/kidney/liver (ALPL)) was analyzed in tumor and non-cancerous areas in 38 patients with HCC after partial hepatectomy. The perioperative change in ALP was further analyzed in a cohort containing 525 patients with HCC to correlate it with oncologic outcomes. A total of 43 HCC patients were enrolled for a volumetry study after major and minor hepatectomy. Results: The genetic expression of the bone/kidney/liver isoform was specifically and significantly higher in non-cancerous areas than in tumors. Patients with HCC with a higher ALP (>81 U/dL) had significantly more major hepatectomies, vascular invasion, and recurrence. Cox regression analysis showed that gender, major hepatectomies, the presence of satellite lesions, higher grades (III or IV) and perioperative changes in liver function tests were independent prognostic factors for recurrence-free survival, and a postoperative increase in the ALP ratio at postoperative day (POD) 7 vs. POD 0 > 1.46 should be emphasized. A liver regeneration rate more than 1.8 and correlation analysis revealed that the ALP level at POD 7 and 30 was significantly higher and correlated with remnant liver growth. Conclusions: This study demonstrated that the perioperative ALP change was an independent prognostic factor for HCC after partial hepatectomies, and the elevation of ALP represented a functional biomarker for the liver but not an HCC biomarker. The higher regeneration capacity was possibly associated with the elevation of ALP after operation.

14.
Anal Chim Acta ; 1199: 339567, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35227379

RESUMO

Electrically conductive polymer nanomaterials signify a promising class of sensing platforms in the field of electrochemistry, but their applications as electrocatalysts are commonly limited by their poor colloidal stability in aqueous media and large particle sizes. Inspired by biomineralization approaches for integrating nanoscale materials, herein, a gadolinium (Gd)-integrated polypyrrole (PPy) electrocatalyst (namely, BSA@PPy-Gd) was successfully prepared by choosing bovine serum albumin (BSA) as a stabilizer for biomimetic mineralization and polymerization in a "one-step" manner. BSA@PPy-Gd possesses outstanding water dispersibility, nanoscale morphology, and improved electrical conductivity. The electrocatalytic competency of the electrochemical (EC) sensing platform fabricated for the sensitive detection of nicardipine (NCD) was assessed. The synergy of remarkable conductivity, superior active surface area, and electrostatic interactions stimulated by the combination of BSA with the NH group of PPy on BSA@PPy-Gd and Gd increases the fast electron transfer at the analyte-electrode junction. The fabricated EC sensor, BSA@PPy-Gd/glassy carbon electrode (GCE), exhibits a current intensity greater than that of PPy/GCE, BSA/GCE, and bare GCE in terms of peak height at a pH of 7.0 in phosphate buffer solution. The newly fabricated EC sensing platform shows excellent electrocatalytic activities for the electroreduction of NCD in terms of a low detection limit (2 nM), good sensitivity, linear dynamic detection ranges (0.01-575 µM), operational stability, and repeatability and was also tested on rat and human serum specimens.


Assuntos
Polímeros , Pirróis , Animais , Biomimética , Eletrodos , Gadolínio , Nicardipino , Ratos
15.
Food Chem ; 373(Pt B): 131569, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34799130

RESUMO

This study reports a facile sonohydrolysis synthesis route to prepare the iron antimony oxide (FeSbO4) nanoparticles for the trace level electrochemical sensing of fungicide carbendazim (CRBZ). As prepared FeSbO4 nanoparticles show a nano-cubes-like morphology with uniform distributions that crystallized in the tetragonal phase. The diffraction studies reveal that the FeSbO4 nanoparticles have high crystallinity and high purity. Furthermore, the other structural properties and morphology are characterized by XRD, Raman, XPS, HRTEM, and FESEM analysis. The electrochemical characterizations of FeSbO4 modified GCE towards the detection of CRBZ are performed by cyclic voltammetry and chronoamperometry techniques. The FeSbO4/GCE exhibits a linear range from 0.01 µmol L-1 to 64.3 µmol L-1, the sensitivity of 0.68 µA cm-2 µM-1, and the LOD of 5.4 nmol L-1. Moreover, the FeSbO4/GCE delivered high selectivity among the possibly interfering compounds. Also, our projected FeSbO4/GCE electrode material shows good recoveries in apple juice and paddy water real samples.


Assuntos
Malus , Nanopartículas , Antimônio , Benzimidazóis , Carbamatos , Técnicas Eletroquímicas , Ferro , Óxidos , Água
16.
Chemosphere ; 291(Pt 3): 132977, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34801570

RESUMO

Pharmaceutical wastes, acetaminophen (AP) widely used in medical fields, is often discharged into water, causing harm to human health. Hence, there is an urgent need to effectively remove AP from wastewater systems. In this paper, polypyrrole (PPy) composite with MoO3 has been synthesized via an in-situ polymerization method. The as-prepared materials were thoroughly characterized by XRD, FT-IR, UV-DRS, SEM, TEM and mapping techniques. The as-prepared MoO3@PPy composite was utilized to removal of AP via photocatalytic degradation and electrochemical determination. Under optimized composite, MoO3@PPy (2) showed an excellent photocatalytic degradation and electrochemical determination of AP compared to pure MoO3 and all other composites. The higher catalytic activity was ascribed to the effective interfacial charges transfer, reduce the recombination and enhance the active surface area of electrode via a synergistic effect. The photocatalytic degradation mechanism, rate and kinetic of the reaction were investigated and discussed. The major active degradation species and an effective charge transfer properties were confirmed by trapping experiments and photocurrent spectra. In addition, the MoO3@PPy (2) modified GCE exhibit the AP determination activity by DPV with a linear range of 0.05-546 µM. The limit of detection and sensitivity of electrode were 0.0007 µM and 0.242 µM-1 cm-2 respectively. Moreover, the proposed electrode showed good selectivity, stability and reproducibility. This method was useful for the determination of AP in real samples.


Assuntos
Polímeros , Pirróis , Acetaminofen , Eletrodos , Humanos , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Mikrochim Acta ; 188(9): 303, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34435234

RESUMO

Detection of anticancer drug (doxorubicin) using an electrochemical sensor is developed based on a transition metal vanadate's related carbon composite material. With an environmentally friendly process, we have synthesized a metal oxide composite of iron vanadate nanoparticle assembled with sulfur-doped carbon nanofiber (FeV/SCNF). The FeV/SCNF composite was characterized using XRD, TEM, FESEM with elemental mapping, XPS and EDS. In contrast to other electrodes reported in the literature, a much-improved electrochemical efficiency is shown by FeV/SCNF composite modified electrodes. Amperometric technique has been employed at 0.25 V (vs. Ag/AgCl) for the sensitive detection of DOX within a wide range of 20 nM-542.5 µM and it possesses enhanced selectivity in presence of common interferents. The modified electrochemical sensors show high sensitivity of 46.041 µA µM-1 cm-2. The newly developed sensor could be used for the determination of doxorubicin in both blood serum and drug formulations with acceptable results, suggesting its feasibility for real-time applications.


Assuntos
Antineoplásicos/análise , Doxorrubicina/análise , Nanocompostos/química , Nanofibras/química , Antineoplásicos/sangue , Antineoplásicos/química , Antineoplásicos/urina , Carbono/química , Solventes Eutéticos Profundos/química , Doxorrubicina/sangue , Doxorrubicina/química , Doxorrubicina/urina , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Ferro/química , Limite de Detecção , Oxirredução , Enxofre/química , Vanadatos/síntese química , Vanadatos/química
18.
Mikrochim Acta ; 188(6): 196, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34036435

RESUMO

The one-step synthesis of heteroatom-doped porous carbons is reported with the in situ formation of cobalt oxide nanoparticles for dual electrochemical applications (i.e., electrochemical sensor and supercapacitor). A single molecular template of zeolitic imidazole framework-67 (ZIF-67) was utilized for the solid-state synthesis of cobalt oxide nanoparticle-decorated nitrogen-doped porous carbon (Co3O4@NPC) nanocomposite through a facile calcination treatment. For the first time, Co3O4@NPC nanocomposite derived from ZIF-67 has been applied as an electrode material for the efficient electrochemical detection of anticancer drug flutamide (FLU). The cyclic voltammetry studies were performed in the operating potential from 0.15 to - 0.65 V (vs. Ag/AgCl). Interestingly, the fabricated drug sensor exhibited a very low reduction potential (- 0.42 V) compared to other  reported sensors. The fabricated sensor exhibited good analytical performance in terms of low detection limit (12 nM), wide linear range (0.5 to 400 µM), and appreciable recovery results (~ 98%, RSD 1.7% (n = 3)) in a human urine sample. Hereafter, we also examined the supercapacitor performance of the Co3O4@NPC-modified Ni foam in a 1M KOH electrolyte, and noticeable a specific capacitance of 525 F g-1 at 1.5 A g-1 was attained, with long-term cycling stability. The Co3O4@NPC nanocomposite supercapacitor experiments outperform the associated MOF-derived carbons and the Co3O4-based nanostructure-modified electrodes.


Assuntos
Antineoplásicos/urina , Capacitância Elétrica , Técnicas Eletroquímicas/métodos , Flutamida/urina , Nanopartículas Metálicas/química , Nanocompostos/química , Carbono/química , Catálise , Cobalto/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Humanos , Limite de Detecção , Estruturas Metalorgânicas/química , Óxidos/química , Porosidade , Reprodutibilidade dos Testes
19.
Mikrochim Acta ; 188(2): 35, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420619

RESUMO

Two-dimensional (2D) MoS2core-shell nanoparticles were synthesized using an eco-friendly surface functionalization-agent with L-glutathione and cystamine (L-GSH-MoS2-CYS) using ultrasonic frequency of 20-25 kHz. The novel modified electrode was evaluated for the electrochemical detection of doxorubicin (DOX), through cyclic and differential pulse voltammetric techniques. The electro-catalytic oxidation currents of DOX exhibited a linear relationship in the concentration ranges 0.1-78.3 and 98.3-1218 µM, with a detection limit of 31 nM. A sensitivity of 0.017µA µM-1 cm-2 was acquired at 0.48 V. The fabricated L-GSH-MoS2-CYS modified electrode showed excellent precision, selectivity, repeatability, and reproducibility during the determination of DOX levels in blood serum samples. Thus, the fabricated L-GSH-MoS2-CYS/GCE modified electrode has potential for clinical applications for optimization of chemotherapeutic drugs owing to its selectivity, ease of preparation, and long-term stability. Graphical abstract.


Assuntos
Cistamina/química , Dissulfetos/química , Doxorrubicina/sangue , Glutationa/química , Nanopartículas Metálicas/química , Molibdênio/química , Carbono/química , Doxorrubicina/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Oxirredução , Reprodutibilidade dos Testes
20.
J Hazard Mater ; 405: 124096, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33131940

RESUMO

Flutamide is a non-steroidal antiandrogen drug and widely used in the treatment of prostatic carcinoma. Nevertheless, the excessive intake and improper disposal could affect the living organisms. In this work, we have synthesized a new nanocomposite based on ZnMn2O4 nanoparticles and porous reduced graphene oxide nanosheets (ZnMn2O4-PGO) for the electrocatalytic detection of flutamide (FLU) drug. The crystallinity and morphological properties of ZnMn2O4-PGO composite examined by different characterization techniques such as X-ray diffraction, Raman spectroscopy and so on. The fabricated ZnMn2O4-PGO nanocomposite modified electrode exhibited superior electrocatalytic performance to FLU drug in an optimized pH electrolyte. Fascinatingly, the electrode received a wide linear range (0.05-3.5 µM) with limit of detection of 8 nM. Besides, the developed ZnMn2O4-PGO nanocomposite electrode showed good sensitivity 1.05 µAµM-1 cm-2 and excellent selectivity for FLU detection in presence of various interfering species. A developed disposable electrode was scrutinized to determine FLU level in human urine samples by spiking method and the results achieved good recoveries in real sample analysis.


Assuntos
Grafite , Nanocompostos , Nanopartículas , Preparações Farmacêuticas , Antagonistas de Androgênios , Técnicas Eletroquímicas , Eletrodos , Flutamida , Humanos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA