Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 323(1): C29-C45, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35584326

RESUMO

Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.


Assuntos
Neoplasias , Sindecana-1 , Carcinogênese , Transformação Celular Neoplásica , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Sindecana-1/metabolismo
3.
Nat Med ; 28(3): 557-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241842

RESUMO

Myelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited. Through integrative molecular profiling of HSCs and progenitor cells in large patient cohorts, we found that MDS HSCs in two distinct differentiation states are maintained throughout the clinical course of the disease, and expand at progression, depending on recurrent activation of the anti-apoptotic regulator BCL-2 or nuclear factor-kappa B-mediated survival pathways. Pharmacologically inhibiting these pathways depleted MDS HSCs and reduced tumor burden in experimental systems. Further, patients with MDS who progressed after failure to frontline HMA therapy and whose HSCs upregulated BCL-2 achieved improved clinical responses to venetoclax-based therapy in the clinical setting. Overall, our study uncovers that HSC architectures in MDS are potential predictive biomarkers to guide second-line treatments after HMA failure. These findings warrant further investigation of HSC-specific survival pathways to identify new therapeutic targets of clinical potential in MDS.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Síndromes Mielodisplásicas , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Células-Tronco Hematopoéticas/patologia , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas
4.
Nat Commun ; 12(1): 6850, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824242

RESUMO

The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.


Assuntos
Hematopoese/fisiologia , Encurtamento do Telômero/fisiologia , Animais , Transtornos da Insuficiência da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea/metabolismo , Transtornos da Insuficiência da Medula Óssea/patologia , Autorrenovação Celular , Reprogramação Celular , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferons/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Análise de Célula Única , Telômero/química , Telômero/fisiologia , Encurtamento do Telômero/genética
5.
Biochem Biophys Res Commun ; 513(4): 891-897, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31003768

RESUMO

BACKGROUND: Disulfiram (DSF), a drug widely used to control alcoholism, which has anticancer activity by inducing apoptosis in a copper (Cu)-dependent manner. Numerous evidences from mouse experiments indicated that some anti-cancer agents of chemotherapeutic drugs favor the induction of immunogenic cancer cell death (ICD) leading to tumor-specific immune responses. However, whether DSF could induce the colorectal tumor cells death and the mechanism involved in ICD regulatory remains elusive. The main objective of this study was to elucidate the effect of DSF/Cu on the apoptosis of colorectal cancer (CRC) cells and the expression of the two major ICD markers in CRC cells: calreticulin (CRT) and heat shock proteins (HSP) 70. METHODS: Firstly, the toxicity of DSF/Cu in HCT116, SW620 and HCT8 cells was assayed by MTT. Flow cytometry was utilized to detect the apoptosis effects. The effects of DSF/Cu on the expression of ICD-related molecules in tumor tissues were further verified in the CRC xenograft mouse model. RESULTS: The results showed that DSF/Cu increase apoptosis of these three cells in a dose dependent manner and significantly inhibited the proliferation at the concentration range from 0.05 to 1.6 µM. Furthermore, the expression of CRT and HSP70 on the cell surface also increased. The rate of transplanted tumors grew slowly, and the expression of CRT and HSP70 in colorectal cancer tissues was increased after treated with DSF/Cu. CONCLUSION: In conclusion, our results show that DSF/Cu exerts anti-colorectal cancer and its underlying mechanisms are associated with the enhancement of molecules expression of cell ICD. These results provide experimental evidence and theory basis of therapy for developing the DSF/Cu as the drug for CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Dissulfiram/farmacologia , Morte Celular Imunogênica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Calreticulina/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Cobre/farmacologia , Dissulfiram/uso terapêutico , Dissulfiram/toxicidade , Células HCT116 , Proteínas de Choque Térmico HSP70/metabolismo , Xenoenxertos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA