Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(9): 3570-3589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993556

RESUMO

Background: Cisplatin (DDP) based combination chemotherapy is a vital method for the treatment of bladder cancer (BLca). Chemoresistance easily occurs in the course of cisplatin chemotherapy, which is one of the important reasons for the unfavorable prognosis of BLca patients. Circular RNAs (circRNAs) are widely recognized for their role in the development and advancement of BLca. Nevertheless, the precise role of circRNAs in DDP resistance for BLca remains unclear. Methods: To study the properties of circATIC, sanger sequencing, agarose gel electrophoresis and treatment with RNase R/Actinomycin D were utilized. RT-qPCR assay was utilized to assess the expression levels of circRNA, miRNA and mRNA in BLca tissues and cells. Functional experiments were conducted to assess the function of circATIC in BLca progression and chemosensitivity in vitro. Various techniques such as FISH, Dual-luciferase reporter assay, TRAP, RNA digestion assay, RIP and ChIRP assay were used to investigate the relationships between PTBP1, circATIC, miR-1247-5p and RCC2. Orthotopic bladder cancer model, xenograft subcutaneous tumor model and xenograft lung metastasis tumor model were performed to indicate the function and mechanism of circATIC in BLca progression and chemosensitivity in vivo. Results: In our study, we observed that circATIC expression was significantly enhanced in BLca tissues and cells and DDP resistant cells. Patients with higher circATIC expression have larger tumor diameter, higher incidence of postoperative metastasis and lower overall survival rate. Further experiments showed that circATIC accelerated BLca cell growth and metastasis and induced DDP resistance. Mechanistically, alternative splicing enzyme PTBP1 mediated the synthesis of circATIC. circATIC could enhance RCC2 mRNA stability via sponging miR-1247-5p or constructing a circATIC/LIN28A/RCC2 RNA-protein ternary complex. Finally, circATIC promotes RCC2 expression to enhance Epithelial-Mesenchymal Transition (EMT) progression and activate JNK signal pathway, thus strengthening DDP resistance in BLca cells. Conclusion: Our study demonstrated that circATIC promoted BLca progression and DDP resistance, and could serve as a potential target for BLca treatment.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Circular , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Cisplatino/uso terapêutico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Feminino , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos
2.
Plant Physiol Biochem ; 208: 108468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507840

RESUMO

Cadmium (Cd) is a toxic heavy metal, increasingly accumulating in the environment and its presence in various environmental compartments represents a significant risk to human health via the food chain. Epigallocatechin-3-Gallate (EGCG) is a prominent secondary metabolite, which can safeguard plants from biotic and abiotic stress. However, the role of EGCG in flavonoid synthesis, nutrient acquisition and reactive oxygen species (ROS) metabolism under Cd stress remains unclear. Here, we examined the effects of EGCG and Cd treatment on leaf photochemical efficiency, cell ultrastructure, essential element acquisition, antioxidant system, and secondary metabolism in tomato (Solanum lycopersicum L.). The results showed that O2•-, H2O2, and malondialdehyde levels increased after Cd treatment, but Fv/Fm decreased significantly, suggesting that Cd induced oxidative stress and photoinhibition. However, EGCG mitigated the adverse effects of Cd-induced phytotoxicity in both the roots and leaves. A decrease in ROS accumulation under EGCG + Cd treatment was mainly attributed to the significant enhancement in antioxidant enzyme activity, flavonoid content, and PHENYLALANINE AMMONIA-LYASE expression in roots. Moreover, EGCG reduced Cd content but increased some essential nutrient contents in tomato plants. Transmission electron microscopy-based observations revealed that EGCG treatment safeguards leaf and root cell ultrastructure under Cd stress. This implies that tomato plants subjected to Cd stress experienced advantageous effects upon receiving EGCG treatment. The present work elucidated critical mechanisms by which EGCG induces tolerance to Cd, thereby providing a basis for future investigations into environmentally sustainable agricultural practices in areas contaminated with heavy metals, for utilizing naturally occurring substances found in plants.


Assuntos
Catequina , Catequina/análogos & derivados , Solanum lycopersicum , Humanos , Antioxidantes/metabolismo , Cádmio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Homeostase , Catequina/farmacologia , Catequina/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo
3.
J Hazard Mater ; 443(Pt A): 130212, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308936

RESUMO

Pesticide overuse has led to serious global concerns regarding food safety and environmental pollution. Although the reduction of pesticide residue is critical, our knowledge about induced pesticide metabolism in plants remains fragmentary. Melatonin (N-acetyl-5-methoxytryptamine) is an effective stress-relieving agent in both animals and plants, but little is known about the melatonin signaling mechanism and its effect on pesticide metabolism in plants. Here, we found that exogenous melatonin treatment significantly reduced chlorothalonil residue by 41 % but suppression of endogenous melatonin accumulation increased chlorothalonil residue in tomato leaves. Moreover, melatonin increased photosynthesis, Fv/Fm, Calvin cycle enzyme activity, antioxidant enzyme activity, glutathione pool, and RESPIRATORY BURST HOMOLOG1 (RBOH1) expression in tomato leaves. However, the upregulation of RBOH1, CYP724B2, GST1, GST2, GSH and ABC, the increased glutathione concentrations and the activity of detoxification enzymes due to melatonin treatment were all significantly attenuated by the treatment with an NADPH oxidase inhibitor and a ROS scavenger, indicating a clear relationship between the reduction of pesticide residue and induction in detoxifying enzymes and genes upon melatonin treatment in an apoplastic H2O2-dependent manner. These results reveal that melatonin-induced reduction in chlorothalonil residue is mediated by H2O2 signaling in tomato leaves.


Assuntos
Melatonina , Resíduos de Praguicidas , Praguicidas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Resíduos de Praguicidas/metabolismo , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Praguicidas/metabolismo
4.
Pathol Res Pract ; 239: 154141, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228347

RESUMO

BACKGROUND: Recent studies showed that HOXA1 can promote or suppress the transcription of target genes via binding to their promoter region, therefore regulating the development and progression of various cancers. However, the biological function of HOXA1 in bladder cancer (Bca) remains unknown. METHODS: qRT-PCR and Western blot assay was performed to measure the mRNA protein level of HOXA1 in Bca cells. CCK-8 and cell colony formation assay were carried out to detect cell proliferation ability. Wound healing assay was applied to detect cell migration ability, while transwell assay was applied to detect cell invasion ability. Chromatin Immunoprecipitation (ChIP) and dual-luciferase reporter assay were used to investigate the molecular mechanisms underlying HOXA1. RESULTS: In this study, we discovered that HOXA1 mRNA and protein was dramatically increased in Bca tissues and cells compared to matched normal tissues and normal bladder epithelial cell. Enhanced HOXA1 expression was positively correlated with bigger tumor size and lymphatic metastasis, causing shorter overall survival to Bca patients. Knockdown of HOXA1 obviously impaired cell proliferation and metastasis ability. Further experiments proved that HOXA1 could strength the transcription of SMAD3 via binding to the promoter region of SMAD3. CONCLUSION: In conclusion, our study suggested that HOXA1 contributed to the growth and metastasis of Bca and it might serve as a tumor biomarker for Bca treatment and prognosis monitoring.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Prognóstico , RNA Mensageiro , Proteína Smad3/genética , Proteína Smad3/metabolismo , Neoplasias da Bexiga Urinária/patologia
5.
Physiol Plant ; 173(1): 449-459, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33616963

RESUMO

Heavy metal pollution not only decreases crop yield and quality, but also affects human health via the food chain. Ubiquitination-dependent protein degradation is involved in plant growth, development, and environmental interaction, but the functions of ubiquitin-ligase (E3) genes are largely unknown in tomato (Solanum lycopersicum L.). Here, we functionally characterized a RING E3 ligase gene, SlRING1, which positively regulates cadmium (Cd) tolerance in tomato plants. An in vitro ubiquitination experiment shows that SlRING1 has E3 ubiquitin ligase activity. The determination of the subcellular localization reveals that SlRING1 is localized at both the plasma membrane and the nucleus. Overexpression of SlRING1 in tomato increased the chlorophyll content, the net photosynthetic rate, and the maximal photochemical efficiency of photosystem II (Fv/Fm), but reduced the levels of reactive oxygen species and relative electrolyte leakage under Cd stress. Moreover, SlRING1 overexpression increased the transcript levels of CATALASE (CAT), DEHYDROASCORBATE REDUCTASE (DHAR), MONODEHYDROASCORBATE REDUCTASE (MDHAR), GLUTATHIONE (GSH1), and PHYTOCHELATIN SYNTHASE (PCS), which contribute to the antioxidant and detoxification system. Crucially, SlRING1 overexpression also reduced the concentrations of Cd in both shoots and roots. Thus, SlRING1-overexpression-induced enhanced tolerance to Cd is ascribed to reduced Cd accumulation and alleviated oxidative stress. Our findings suggest that SlRING1 is a positive regulator of Cd tolerance, which can be a potential breeding target for improving heavy metal tolerance in horticultural crops.


Assuntos
Cádmio , Solanum lycopersicum , Antioxidantes , Cádmio/toxicidade , Solanum lycopersicum/genética , Estresse Oxidativo , Ubiquitina-Proteína Ligases/genética
6.
Front Plant Sci ; 11: 305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265958

RESUMO

Rising atmospheric carbon dioxide, an important driver of climate change, has multifarious effects on crop yields and quality. Despite tremendous progress in understanding the mechanisms of plant responses to elevated CO2, only a few studies have examined the CO2-enrichment effects on tea plants. Tea [Camellia sinensis (L.)], a non-deciduous woody perennial plant, operates massive physiologic, metabolic and transcriptional reprogramming to adapt to increasing CO2. Tea leaves elevate photosynthesis when grown at CO2-enriched environment which is attributed to increased maximum carboxylation rate of RuBisCO and maximum rates of RuBP regeneration. Elevated CO2-induced photosynthesis enhances the energy demand which triggers respiration. Stimulation of photosynthesis and respiration by elevated CO2 promotes biomass production. Moreover, elevated CO2 increases total carbon content, but it decreases total nitrogen content, leading to an increased ratio of carbon to nitrogen in tea leaves. Elevated CO2 alters the tea quality by differentially influencing the concentrations and biosynthetic gene expression of tea polyphenols, free amino acids, catechins, theanine, and caffeine. Signaling molecules salicylic acid and nitric oxide function in a hierarchy to mediate the elevated CO2-induced flavonoid biosynthesis in tea leaves. Despite enhanced synthesis of defense compounds, tea plant defense to some insects and pathogens is compromised under elevated CO2. Here we review the physiological and metabolic responses of tea plants to elevated CO2. In addition, the potential impacts of elevated CO2 on tea yield and defense responses are discussed. We also show research gaps and critical research areas relating to elevated CO2 and tea quality for future study.

7.
Environ Pollut ; 259: 113957, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32023799

RESUMO

Bisphenol A (BPA) is an emerging organic pollutant, widely distributed in environment. Plants can uptake and metabolize BPA, but BPA accumulation induces phytotoxicity. In this study, we administered dopamine, a kind of catecholamines with strong antioxidative potential, to unveil its role in cucumber tolerance to BPA stress. The results showed that exposure to BPA (20 mg L-1) for 21 days significantly reduced growth and biomass accumulation in cucumber seedlings as revealed by decreased lengths and dry weights of shoots and roots. While BPA exposure decreased the chlorophyll content, cell viability and root activity, it remarkably increased reactive oxygen species (ROS) accumulation, electrolyte leakage and malondialdehyde (MDA) content, suggesting that BPA induced oxidative stress in cucumber. However, exogenous dopamine application significantly improved the photosynthetic pigment content, root cell viability, growth and biomass accumulation, and decreased the ROS and MDA levels by increasing the activity of antioxidant enzymes under BPA stress. Further analysis revealed that dopamine application significantly increased the glutathione content and the transcripts and activity of glutathione S-transferase under co-administration of dopamine and BPA compared with only BPA treatment. Moreover, dopamine decreased the BPA content in both leaves and roots, suggesting that dopamine promoted BPA metabolism by enhancing the glutathione-dependent detoxification. Our results show that dopamine has a positive role against BPA phytotoxicity and it may reduce the risks-associated with the dietary intake of BPA through consumption of vegetables.


Assuntos
Antioxidantes/metabolismo , Compostos Benzidrílicos/toxicidade , Cucumis sativus/metabolismo , Dopamina/metabolismo , Fenóis/toxicidade , Compostos Benzidrílicos/metabolismo , Estresse Oxidativo , Fenóis/metabolismo , Fotossíntese , Plântula
8.
Environ Pollut ; 259: 113893, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918147

RESUMO

Phoxim, a broad-spectrum organophosphate pesticide, is widely used in agriculture to control insect pests in vegetable crops as well as in farm mammals. However, the indiscriminate use of phoxim has increased its release into the environment, leading to the contamination of plant-based foods such as vegetables. In this study, we investigated the effect of Trichoderma asperellum (TM, an opportunistic fungus) on phoxim residue in tomato roots and explored the mechanisms of phoxim metabolism through analysis of detoxification enzymes and gene expression. Degradation kinetics of phoxim showed that TM inoculation rapidly and significantly reduced phoxim residues in tomato roots. Phoxim concentrations at 5d, 10d and 15d post treatment were 75.12, 65.71 and 77.45% lower in TM + phoxim than only phoxim treatment, respectively. The TM inoculation significantly increased the glutathione (GSH) content, the activity of glutathione S-transferase (GST) and the transcript levels of GSH, GST1, GST2 and GST3 in phoxim-treated roots. In addition, the activity of peroxidase and polyphenol peroxidase involved in the xenobiotic conversion also increased in TM + phoxim treatment. The expression of detoxification genes, such as CYP724B2, GR, ABC2 and GPX increased by 3.82, 3.08, 7.89 and 2.46 fold, respectively in TM + phoxim compared with only phoxim. Similarly, the content of ascorbate (AsA) and the ratio of AsA to dehydroascorbate increased by 45.16% and 57.34%, respectively in TM + phoxim-treated roots. Our results suggest that TM stimulates plant detoxification potential in all three phases (conversion, conjugation and sequestration) of xenobiotc metabolism, leading to a reduced phoxim residue in tomato roots.


Assuntos
Compostos Organotiofosforados , Resíduos de Praguicidas , Raízes de Plantas , Solanum lycopersicum , Trichoderma , Animais , Recuperação e Remediação Ambiental , Solanum lycopersicum/microbiologia , Compostos Organotiofosforados/análise , Compostos Organotiofosforados/metabolismo , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Trichoderma/metabolismo
9.
J Plant Res ; 127(6): 775-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25160659

RESUMO

The combined effects of arbuscular mycorrhizal fungi (AMF) and low temperature (LT) on cucumber plants were investigated with respect to biomass production, H2O2 accumulation, NADPH oxidase, ATPase activity and related gene expression. Mycorrhizal colonization ratio was gradually increased after AMF-inoculation. However, LT significantly decreased mycorrhizal colonization ability and mycorrhizal dependency. Regardless of temperature, the total fresh and dry mass, and root activity of AMF-inoculated plants were significantly higher than that of the non-AMF control. The H2O2 accumulation in AMF-inoculated roots was decreased by 42.44% compared with the control under LT. H2O2 predominantly accumulated on the cell walls of apoplast but was hardly detectable in the cytosol or organelles of roots. Again, NADPH oxidase activity involved in H2O2 production was significantly reduced by AMF inoculation under LT. AMF-inoculation remarkably increased the activities of P-type H(+)-ATPase, P-Ca(2+)-ATPase, V-type H(+)-ATPase, total ATPase activity, ATP concentration and plasma membrane protein content in the roots under LT. Additionally, ATP concentration and expression of plasma membrane ATPase genes were increased by AMF-inoculation. These results indicate that NADPH oxidase and ATPase might play an important role in AMF-mediated tolerance to chilling stress, thereby maintaining a lower H2O2 accumulation in the roots of cucumber.


Assuntos
Adenosina Trifosfatases/genética , Cucumis sativus/microbiologia , Cucumis sativus/fisiologia , Glomeromycota/fisiologia , Peróxido de Hidrogênio/metabolismo , Micorrizas/fisiologia , Proteínas de Plantas/genética , Adenosina Trifosfatases/metabolismo , Temperatura Baixa , Cucumis sativus/genética , Proteínas de Plantas/metabolismo
10.
J Exp Bot ; 64(1): 199-213, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23201830

RESUMO

Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applied alone (100 µM); however, their combined application resulted in slightly improved photosynthetic activity and pigment content compared with Cd alone after a 40 d exposure. Accumulation of reactive oxygen species and membrane lipid peroxidation were induced by PHE and/or Cd; however, the differences in effect were insignificant between Cd and PHE+Cd. The foliar application of EBR (0.1 µM) to PHE- and/or Cd-stressed plants alleviated photosynthetic inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related transcript levels of the antioxidant system, secondary metabolism, and the xenobiotic detoxification system. Additionally, PHE and/or Cd residues were significantly decreased in both the leaves and roots after application of EBR, more specifically in PHE+Cd-stressed plants when treated with EBR, indicating a possible improvement in detoxification of these pollutants. The findings thus suggest a potential interaction of EBR and PHE for Cd stress alleviation. These results advocate a positive role for EBR in reducing pollutant residues for food safety and also strengthening phytoremediation.


Assuntos
Brassinosteroides/farmacologia , Cádmio/toxicidade , Poluição Ambiental/análise , Estresse Oxidativo/efeitos dos fármacos , Fenantrenos/toxicidade , Fotossíntese/efeitos dos fármacos , Solanum lycopersicum/fisiologia , Antioxidantes/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Fluorescência , Gases/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Inativação Metabólica/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Esteroides Heterocíclicos/farmacologia , Superóxidos/metabolismo
11.
Chemosphere ; 79(9): 958-65, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20347472

RESUMO

Chlorothalonil (CHT) and carbendazim (CAR) are two widely used fungicides in agriculture. Despite their agronomic importance in pest control, little is known about their detoxification in the plant. In this study, we investigated the effects of these fungicides on glutathione (GSH) content, GSH-dependent enzyme activities and gene expression in tomato leaves. Results showed that exposure to CHT resulted in increases in GSH content, activities of glutathione S-transferases (GSTs) and glutathione reductase (GR), as well as the transcriptional levels of glutathione S-transferase genes (GST1, GST2 and GST3), glutathione synthetase gene (GSH), glutathione reductase gene (GR) and glutathione peroxidase gene (GPX) in tomato leaves, but such increases were not observed in leaves exposed to CAR. In addition, GSTs, GR, peroxidase (POD) activities and most of GSH-dependent gene expression were induced by CHT in a concentration- and time-dependent manner. These results suggest that GSH-dependent pathway plays an important role in the CHT detoxification but not in the CAR detoxification in tomato leaves.


Assuntos
Benzimidazóis/farmacocinética , Benzimidazóis/toxicidade , Carbamatos/farmacocinética , Carbamatos/toxicidade , Glutationa/metabolismo , Nitrilas/farmacocinética , Nitrilas/toxicidade , Folhas de Planta/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Fungicidas Industriais/farmacocinética , Fungicidas Industriais/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/biossíntese , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Inativação Metabólica , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA