Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Analyst ; 149(4): 1179-1189, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38206348

RESUMO

Malachite green (MG) is highly toxic, persistent, and carcinogenic, and its widespread use is a danger to the ecosystem and a threat to public health and food safety, making it necessary to develop new sensitive multimode molecular spectroscopy methods. In this work, a new copper-based nanomaterial (CuNM) was prepared by a high-temperature roasting using a copper metal-organic framework (CuMOF) as precursor. The as-prepared CuNM was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and BET surface area analysis. CuNM was found to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce the oxidation product TMBOX; however, subsequently, the MG aptamer (Apt) could be adsorbed on the CuNM surface by intermolecular interaction, which would inhibit the catalytic performance. After the addition of MG to be tested, the CuNM previously adsorbed by the Apt was transformed into its free state, thus restoring its catalytic activity. This new nanocatalytic indicator reaction could be monitored by surface-enhanced Raman scattering (SERS)/resonance Rayleigh scattering (RRS)/fluorescence (FL)/absorption (Abs) quadruple-mode methods. The SERS determination range was 0.004-0.4 nmol L-1 MG, with a limit of detection of 0.0032 nM. In this way, a rapid, stable, and sensitive method for the determination of MG residues in the environment was established.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Corantes de Rosanilina , Cobre , Nanopartículas Metálicas/química , Peróxido de Hidrogênio , Ecossistema , Análise Espectral Raman/métodos , Oligonucleotídeos
2.
Arthritis Res Ther ; 25(1): 217, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946278

RESUMO

BACKGROUND: The aggressive phenotype of fibroblast-like synoviocytes (FLS) has been identified as a contributing factor to the exacerbation of rheumatoid arthritis (RA) through the promotion of synovitis and cartilage damage. Regrettably, there is currently no effective therapeutic intervention available to address this issue. Recent research has shed light on the crucial regulatory role of R-spondin-2 (Rspo2) in cellular proliferation, cartilage degradation, and tumorigenesis. However, the specific impact of Rspo2 on RA remains poorly understood. We aim to investigate the function and mechanism of Rspo2 in regulating the aggressive phenotype of FLS and maintaining chondrocyte homeostasis in the context of RA. METHODS: The expression of Rspo2 in knee joint synovium and cartilage were detected in RA mice with antigen-induced arthritis (AIA) and RA patients. Recombinant mouse Rspo2 (rmRspo2), Rspo2 neutralizing antibody (Rspo2-NAb), and recombinant mouse DKK1 (rmDKK1, a potent inhibitor of Wnt signaling pathway) were used to explore the role and mechanism of Rspo2 in the progression of RA, specifically in relation to the aggressive phenotype of FLS and chondrocyte homeostasis, both in vivo and in vitro. RESULTS: We indicated that Rspo2 expression was upregulated both in synovium and articular cartilage as RA progressed in RA mice and RA patients. Increased Rspo2 upregulated the expression of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), as the ligand for Rspo2, and ß-catenin in FLS and chondrocytes. Subsequent investigations revealed that intra-articular administration of rmRspo2 caused striking progressive synovitis and articular cartilage destruction to exacerbate RA progress in mice. Conversely, neutralization of Rspo2 or inhibition of the Wnt/ß-catenin pathway effectively alleviated experimental RA development. Moreover, Rspo2 facilitated FLS aggressive phenotype and disrupted chondrocyte homeostasis primarily through activating Wnt/ß-catenin pathway, which were effectively alleviated by Rspo2-NAb or rmDKK1. CONCLUSIONS: Our data confirmed a critical role of Rspo2 in enhancing the aggressive phenotype of FLS and disrupting chondrocyte homeostasis through the Wnt/ß-catenin pathway in the context of RA. Furthermore, the results indicated that intra-articular administration of Rspo2 neutralizing antibody or recombinant DKK1 might represent a promising therapeutic strategy for the treatment of RA.


Assuntos
Artrite Reumatoide , Cartilagem Articular , Sinoviócitos , Sinovite , Animais , Humanos , Camundongos , Anticorpos Neutralizantes/genética , Artrite Reumatoide/genética , beta Catenina/metabolismo , Cartilagem Articular/metabolismo , Proliferação de Células , Condrócitos/metabolismo , Fibroblastos/metabolismo , Homeostase , Fenótipo , Receptores Acoplados a Proteínas G/genética , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Via de Sinalização Wnt/genética
3.
Org Lett ; 25(13): 2218-2222, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36961340

RESUMO

We herein report the nickel-catalyzed enantioselective hydrofluoromethylation of enamides and enol esters with CH2FI as the fluoromethyl source to enable the diversity-oriented synthesis (DOS) of chiral α-fluoromethylated amides as well as esters with features of wide functional group compatibility as well as excellent enantioselectivity. The synthetic value of this protocol was demonstrated by transformations of the resulted α-fluoromethylated amides to different scaffolds including amine, oxazoline, thiazoline, and α-fluoromethylated tetrahydroquinoline.

4.
Cell Mol Life Sci ; 79(7): 380, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750966

RESUMO

Upon stress challenges, proteins/RNAs undergo liquid-liquid phase separation (LLPS) to fine-tune cell physiology and metabolism to help cells adapt to adverse environments. The formation of LLPS has been recently linked with intracellular pH, and maintaining proper intracellular pH homeostasis is known to be essential for the survival of organisms. However, organisms are constantly exposed to diverse stresses, which are accompanied by alterations in the intracellular pH. Aging processes and human diseases are also intimately linked with intracellular pH alterations. In this review, we summarize stress-, aging-, and cancer-associated pH changes together with the mechanisms by which cells regulate cytosolic pH homeostasis. How critical cell components undergo LLPS in response to pH alterations is also discussed, along with the functional roles of intracellular pH fluctuation in the regulation of LLPS. Further studies investigating the interplay of pH with other stressors in LLPS regulation and identifying protein responses to different pH levels will provide an in-depth understanding of the mechanisms underlying pH-driven LLPS in cell adaptation. Moreover, deciphering aging and disease-associated pH changes that influence LLPS condensate formation could lead to a deeper understanding of the functional roles of biomolecular condensates in aging and aging-related diseases.


Assuntos
Envelhecimento , Proteínas , Fenômenos Fisiológicos Celulares , Humanos , Concentração de Íons de Hidrogênio
5.
J Immunol Res ; 2018: 4564328, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651441

RESUMO

BACKGROUND: In our previous study, mouse double minute 2 homolog (MDM2), insulin-like growth factor 1 (IGF1), signal transducer and activator of transcription 1 (STAT1), and Rac family small GTPase 1 (RAC1) were correlated with the recurrence of giant cell tumor of bone (GCT). The aim of this study is to use a large cohort study to confirm the involvement of these four genes in GCT recurrence. METHODS: The expression of these four genes was detected and compared between GCT patients with or without recurrence. The correlation between the expression of these four genes and clinical characteristics was evaluated. Protein-protein interaction (PPI) network was constructed for functional enrichment analysis. RESULTS: It showed that the expression levels of MDM2, IGF1, STAT1, and RAC1 in GCT patients with recurrence were significantly higher than those in GCT patients without recurrence (P < 0.05). Multivariate logistic regression analysis suggested that several clinical characteristics may influence prognosis. A PPI network was constructed using the four genes as hub genes. Functional enrichment analysis showed that this network involves many important biological progress mediated by these four genes, including immune response. CONCLUSION: MDM2, IGF1, STAT1, and RAC1 are associated with GCT recurrence, which might serve as biomarkers for GCT recurrence.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/patologia , Tumor de Células Gigantes do Osso/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Recidiva Local de Neoplasia/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fator de Transcrição STAT1/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/metabolismo , Estudos de Coortes , Feminino , Tumor de Células Gigantes do Osso/diagnóstico , Tumor de Células Gigantes do Osso/metabolismo , Humanos , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/genética , Fator de Transcrição STAT1/genética , Adulto Jovem , Proteínas rac1 de Ligação ao GTP/genética
6.
Int J Oncol ; 45(3): 1133-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969034

RESUMO

Giant cell tumor (GCT) of the bone is a benign but locally aggressive bone neoplasm with a strong tendency to develop local recurrent and metastatic disease. Thus, it provides a useful model system for the identification of biological mechanisms involved in bone tumor progression and metastasis. This study profiled 24 cases of recurrent versus primary bone GCT tissues using QuantiGene 2.0 Multiplex Arrays that included Human p53 80-Plex Panels and Human Stem Cell 80-Plex Panels. A total of 32 differentially expressed genes were identified, including the 20 most upregulated genes and the 12 most downregulated genes in recurrent GCT. The genes identified are related to cell growth, adhesion, apoptosis, signal transduction and bone formation. Furthermore, iSubpathwayMiner analyses were performed to identify significant biological pathway regions (subpathway) associated with this disease. The pathway analysis identified 11 statistically significant enriched subpathways, including pathways in cancer, p53 signaling pathway, osteoclast differentiation pathway and Wnt signaling pathway. Among these subpathways, four genes (IGF1, MDM2, STAT1 and RAC1) were presumed to play an important role in bone GCT recurrence. The differentially expressed MDM2 protein was immunohistochemically confirmed in the recurrent versus primary bone GCT tissues. This study identified differentially expressed genes and their subpathways in recurrent GCT, which may serve as potential biomarkers for the prediction of GCT recurrence.


Assuntos
Neoplasias Ósseas/genética , Tumor de Células Gigantes do Osso/genética , Recidiva Local de Neoplasia/genética , Adolescente , Adulto , Neoplasias Ósseas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Tumor de Células Gigantes do Osso/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA