Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(2): 345-355, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35945313

RESUMO

Abdominal aortic aneurysm (AAA) is a dangerous vascular disease without any effective drug therapies so far. Emerging evidence suggests the phenotypic differences in perivascular adipose tissue (PVAT) between regions of the aorta are implicated in the development of atherosclerosis evidenced by the abdominal aorta more vulnerable to atherosclerosis than the thoracic aorta in large animals and humans. The prevalence of thoracic aortic aneurysms (TAA) is much less than that of abdominal aortic aneurysms (AAA). In this study we investigated the effect of thoracic PVAT (T-PVAT) transplantation on aortic aneurysm formation and the impact of T-PVAT on vascular smooth muscle cells. Calcium phosphate-induced mouse AAA model was established. T-PVAT (20 mg) was implanted around the abdominal aorta of recipient mice after removal of endogenous abdominal PVAT (A-PVAT) and calcium phosphate treatment. Mice were sacrificed two weeks after the surgery and the maximum external diameter of infrarenal aorta was measured. We found that T-PVAT displayed a more BAT-like phenotype than A-PVAT; transplantation of T-PVAT significantly attenuated calcium phosphate-induced abdominal aortic dilation and elastic degradation as compared to sham control or A-PVAT transplantation. In addition, T-PVAT transplantation largely preserved smooth muscle cell content in the abdominal aortic wall. Co-culture of T-PVAT with vascular smooth muscle cells (VSMCs) significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. RNA sequencing analysis showed that T-PVAT was enriched by browning adipocytes and anti-apoptotic secretory proteins. We further verified that the secretome of mature adipocytes isolated from T-PVAT significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. Using proteomic and bioinformatic analyses we identified cartilage oligomeric matrix protein (COMP) as a secreted protein significantly increased in T-PVAT. Recombinant COMP protein significantly inhibited VSMC apoptosis. We conclude that T-PVAT exerts anti-apoptosis effect on VSMCs and attenuates AAA formation, which is possibly attributed to the secretome of browning adipocytes.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Aterosclerose , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Peróxido de Hidrogênio/metabolismo , Secretoma , Músculo Liso Vascular/metabolismo , Cicloeximida/metabolismo , Proteômica , Tecido Adiposo/metabolismo , Aneurisma Aórtico/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal/cirurgia , Aterosclerose/metabolismo , Adipócitos Marrons , Camundongos Endogâmicos C57BL
2.
Front Cardiovasc Med ; 8: 701745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660710

RESUMO

Objective: To explore the role of glycolysis in cardiac fibroblast (CF) activation and cardiac fibrosis after myocardial infarction (MI). Method: In vivo: 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, was injected into the abdominal cavity of the MI or sham mice every day. On the 28th day, cardiac function was measured by ultrasonic cardiography, and the hearts were harvested. Masson staining and immunofluorescence (IF) were used to evaluate the fibrosis area, and western blot was used to identify the glycolytic level. In vitro, we isolated the CF from the sham, MI and MI with 2-DG treatment mice, and we also activated normal CF with transforming growth factor-ß1 (TGF-ß1) and block glycolysis with 2-DG. We then detected the glycolytic proteins, fibrotic proteins, and the concentrations of lactate and glucose in the culture medium. At last, we further detected the fibrotic and glycolytic markers in human fibrotic and non-fibrotic heart tissues with masson staining, IF and western blot. Result: More collagen and glycolytic protein expressions were observed in the MI mice hearts. The mortality increased when mice were treated with 2-DG (100 mg/kg/d) after the MI surgery (Log-rank test, P < 0.05). When the dosage of 2-DG declined to 50 mg/kg/d, and the treatment was started on the 4th day after MI, no statistical difference of mortality between the two groups was observed (Log-rank test, P = 0.98). The collagen volume fraction was smaller and the fluorescence signal of α-smooth muscle actin (α-SMA) was weaker in mice treated with 2-DG than PBS. In vitro, 2-DG could significantly inhibit the increased expression of both the glycolytic and fibrotic proteins in the activated CF. Conclusion: Cardiac fibrosis is along with the enhancement of CF activation and glycolysis. Glycolysis inhibition can alleviate cardiac fibroblast activation and cardiac fibrosis after myocardial infarction.

3.
Oxid Med Cell Longev ; 2021: 5572088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34035876

RESUMO

BACKGROUND: A disintegrin and metalloproteinase 17 (ADAM17) is a transmembrane protein that is widely expressed in various tissues; it mediates the shedding of many membrane-bound molecules, involving cell-cell and cell-matrix interactions. We investigated the role of ADAM17 within mouse cardiac fibroblasts (mCFs) in heart fibrosis. METHODS: mCFs were isolated from the hearts of neonatal mice. Effects of ADAM17 on the differentiation of mCFs towards myofibroblasts and their fibrotic behaviors following induction with TGF-ß1 were examined. The expression levels of fibrotic proteins, such as collagen I and α-SMA, were assessed by qRT-PCR analysis and western blotting. Cell proliferation and migration were measured using the CCK-8 and wound healing assay. To identify the target gene for ADAM17, the protein levels of the components of endoplasmic reticulum (ER) stress and the PINK1/Parkin pathway were assessed following ADAM17 silencing. The effects of ADAM17 silencing or treatment with thapsigargin, a key stimulator of acute ER stress, on mCFs proliferation, migration, and collagen secretion were also examined. In vivo, we used a mouse model of cardiac fibrosis established by left anterior descending artery ligation; the mice were administered oral gavage with a selective ADAM17 inhibitor (TMI-005) for 4 weeks after the operation. RESULTS: We found that the ADAM17 expression levels were higher in fibrosis heart tissues and TGF-ß1-treated mCFs. The ADAM17-specific siRNAs decreased TGF-ß1-induced increase in the collagen secretion, proliferation, and migration of mCFs. Knockdown of ADAM17 reduces the activation of mCFs by inhibiting the ATF6 branch of ER stress and further activating mitophagy. Moreover, decreased ADAM17 expression also ameliorated cardiac fibrosis and improved heart function. CONCLUSIONS: This study highlights that mCF ADAM17 expression plays a key role in cardiac fibrosis by regulating ER stress and mitophagy, thereby limiting fibrosis and improving heart function. Therefore, ADAM17 downregulation, within the physiological range, could exert protective effects against cardiac fibrosis.


Assuntos
Proteína ADAM17/metabolismo , Fibrose/fisiopatologia , Miocárdio/patologia , Animais , Diferenciação Celular , Regulação para Baixo , Estresse do Retículo Endoplasmático , Humanos , Masculino , Camundongos , Mitofagia , Transfecção
4.
Mil Med Res ; 6(1): 6, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30786926

RESUMO

The battlefield treatments of spinal and spinal cord injury vary from civilian settings. However, there is no unified battlefield treatment guidelines for spine trauma in PLA. An expert consensus is reached, based on spine trauma epidemiology and the concepts of battlefield treatment combined with the existing levels of military medical care in modern warfare. Since the specialized treatment for spine trauma are no significant difference between civilian settings and modern war, the first aid, emergency treatment and early treatment of spine trauma are introduced separately in three levels in this consensus. In Level I facilities, the fast and accurate evaluation of spine trauma followed by fixation and stabilization are recommended during the first-aid stage. Re-evaluation, further treatment for possible hemorrhagic shock, dyspnea and infection are recommended at Level II facilities. At Level III facilities, it is recommended to strengthen the intensive care and the prevention of urinary system and lung infection for the wounded with severe spinal injury, however, spinal surgery is not recommended in a battlefield hospital. The grading standard for evidence evaluation and recommendation was used to reach this expert consensus.


Assuntos
Traumatismos da Coluna Vertebral/terapia , Guerra , China , Consenso , Tratamento de Emergência/métodos , Fraturas Ósseas/etiologia , Fraturas Ósseas/terapia , Humanos , Saúde Ocupacional/normas , Traumatismos da Coluna Vertebral/etiologia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/terapia
5.
Mil Med Res ; 5(1): 34, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286811

RESUMO

The emergency treatment of thoracic injuries varies of general conditions and modern warfare. However, there are no unified battlefield treatment guidelines for thoracic injuries in the Chinese People's Liberation Army (PLA). An expert consensus has been reached based on the epidemiology of thoracic injuries and the concept of battlefield treatment combined with the existing levels of military medical care in modern warfare. Since there are no differences in the specialized treatment for thoracic injuries between general conditions and modern warfare, first aid, emergency treatment, and early treatment of thoracic injuries are introduced separately in three levels in this consensus. At Level I facilities, tension pneumothorax and open pneumothorax are recommended for initial assessment during the first aid stage. Re-evaluation and further treatment for hemothorax, flail chest, and pericardial tamponade are recommended at Level II facilities. At Level III facilities, simple surgical operations such as emergency thoracotomy and debridement surgery for open pneumothorax are recommended. The grading standard for evidence evaluation and recommendation was used to reach this expert consensus.


Assuntos
Tratamento de Emergência/métodos , Traumatismos Torácicos/prevenção & controle , Traumatismos Torácicos/terapia , Guerra , China , Consenso , Humanos , Equipamento de Proteção Individual , Toracotomia
6.
Mil Med Res ; 5(1): 21, 2018 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-29970166

RESUMO

The characteristics and treatment of pelvic fractures vary between general conditions and modern war. An expert consensus has been reached based on pelvic injury epidemiology and the concepts of battlefield treatment combined with the existing levels of military medical care in modern warfare. According to this consensus, first aid, emergency treatment and early treatment of pelvic fractures are introduced in three separate levels. In Level I facilities, simple triage and rapid treatment following the principles of advanced trauma life support are recommended to evaluate combat casualties during the first-aid stage. Re-evaluation, further immobilization and fixation, and hemostasis are recommended at Level II facilities. At Level III facilities, the main components of damage control surgery are recommended, including comprehensive hemostasis, a proper resuscitation strategy, the treatment of concurrent visceral and blood vessel damage, and battlefield intensive care. The grading standard for evidence evaluation and recommendation was used to reach this expert consensus.


Assuntos
Consenso , Fraturas Ósseas/cirurgia , Medicina Militar/normas , Ossos Pélvicos/cirurgia , Ferimentos e Lesões/terapia , China , Hemostasia , Humanos , Ossos Pélvicos/lesões , Ressuscitação , Guerra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA