Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Nat Commun ; 15(1): 1611, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383543

RESUMO

We introduce a computational approach for the design of target-specific peptides. Our method integrates a Gated Recurrent Unit-based Variational Autoencoder with Rosetta FlexPepDock for peptide sequence generation and binding affinity assessment. Subsequently, molecular dynamics simulations are employed to narrow down the selection of peptides for experimental assays. We apply this computational strategy to design peptide inhibitors that specifically target ß-catenin and NF-κB essential modulator. Among the twelve ß-catenin inhibitors, six exhibit improved binding affinity compared to the parent peptide. Notably, the best C-terminal peptide binds ß-catenin with an IC50 of 0.010 ± 0.06 µM, which is 15-fold better than the parent peptide. For NF-κB essential modulator, two of the four tested peptides display substantially enhanced binding compared to the parent peptide. Collectively, this study underscores the successful integration of deep learning and structure-based modeling and simulation for target specific peptide design.


Assuntos
Aprendizado Profundo , Simulação de Dinâmica Molecular , beta Catenina/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Peptídeos/química
2.
Biomaterials ; 305: 122456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184961

RESUMO

Combination therapy based on sonodynamic therapy (SDT) combined with immune checkpoint blockers anti-PD-L1 provides effective anti-tumor effects. We designed a combination therapy based on M1/PLGA@IR780/CAT NPs of SDT-enhanced immunity combined with immune checkpoint blockers against PD-L1, which was based on M1 macrophage membrane-encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles loaded with the acoustic sensitizer IR780 and catalase (CAT) to successfully realize it. SDT based on M1/PLGA@IR780/CAT NPs could induce tumor cell death by promoting dendritic cell (DC) maturation and modulating the tumor immune microenvironment. In particular, the systemic anti-tumor immune response and potent immune memory induced upon combination with anti-PD-L1 checkpoint blockade not only alleviated the progression of mammary cancer in 4T1 mice and effectively blocked distant metastasis, but also prevented tumor recurrence, providing a promising new therapeutic strategy for clinical tumor therapy.


Assuntos
Inibidores de Checkpoint Imunológico , Nanopartículas , Animais , Camundongos , Biomimética , Recidiva Local de Neoplasia , Imunoterapia , Macrófagos , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Commun Biol ; 7(1): 56, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184694

RESUMO

Profiling spatial variations of cellular composition and transcriptomic characteristics is important for understanding the physiology and pathology of tissues. Spatial transcriptomics (ST) data depict spatial gene expression but the currently dominating high-throughput technology is yet not at single-cell resolution. Single-cell RNA-sequencing (SC) data provide high-throughput transcriptomic information at the single-cell level but lack spatial information. Integrating these two types of data would be ideal for revealing transcriptomic landscapes at single-cell resolution. We develop the method STEM (SpaTially aware EMbedding) for this purpose. It uses deep transfer learning to encode both ST and SC data into a unified spatially aware embedding space, and then uses the embeddings to infer SC-ST mapping and predict pseudo-spatial adjacency between cells in SC data. Semi-simulation and real data experiments verify that the embeddings preserved spatial information and eliminated technical biases between SC and ST data. We apply STEM to human squamous cell carcinoma and hepatic lobule datasets to uncover the localization of rare cell types and reveal cell-type-specific gene expression variation along a spatial axis. STEM is powerful for mapping SC and ST data to build single-cell level spatial transcriptomic landscapes, and can provide mechanistic insights into the spatial heterogeneity and microenvironments of tissues.


Assuntos
Carcinoma de Células Escamosas , Aprendizagem , Humanos , Perfilação da Expressão Gênica , Transcriptoma , Aprendizado de Máquina , Microambiente Tumoral
4.
Small ; 20(7): e2303506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806770

RESUMO

Aseptic loosening of prostheses is a highly researched topic, and wear particle-induced macrophage polarization is a significant cause of peri-prosthetic osteolysis. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) promote M2 polarization and inhibit M1 polarization of macrophages. However, clinical application problems such as easy clearance and lack of targeting exist. Exosomes derived from M2 macrophages (M2-Exos) have good biocompatibility, immune escape ability, and natural inflammatory targeting ability. M2-Exos and BMSCs-Exos fused exosomes (M2-BMSCs-Exos) are constructed, which targeted the osteolysis site and exerted the therapeutic effect of both exosomes. M2-BMSCs-Exos achieved targeted osteolysis after intravenous administration inhibiting M1 polarization and promoting M2 polarization to a greater extent at the targeted site, ultimately playing a key role in the prevention and treatment of aseptic loosening of prostheses. In conclusion, M2-BMSCs-Exos can be used as a precise and reliable molecular drug for peri-prosthetic osteolysis. Fused exosomes M2-BMSCs-Exos  were originally proposed and successfully prepared, and exosome fusion technology provides a new theoretical basis and solution for the clinical application of therapeutic exosomes.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Osteólise , Humanos , Administração Intravenosa , Macrófagos
5.
Front Immunol ; 14: 1345222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116015

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2023.1285540.].

6.
Int J Nanomedicine ; 18: 6137-6151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915748

RESUMO

Background: Intelligent hydrogels continue to encounter formidable obstacles in the field of cancer treatment. A wide variety of hydrogel materials have been designed for diverse purposes, but materials with satisfactory therapeutic effects are still urgently needed. Methods: Here, we prepared an injectable hydrogel by means of physical crosslinking. Carbon nanoparticle suspension injection (CNSI), a sentinel lymph node imaging agent that has been widely used in the clinic, with sodium ß-glycerophosphate (ß-GP) were added to a temperature-sensitive chitosan (CS) hydrogel (CS/GP@CN) as an agent for photothermal therapy (PTT). After evaluating the rheological, morphological, and structural properties of the hydrogel, we used 4T1 mouse breast cancer cells and B16 melanoma cells to assess its in vitro properties. Then, we intratumorally injected the hydrogel into BALB/c tumor-bearing mice to assess the in vivo PTT effect, antitumor immune response and the number of lung metastases. Results: Surprisingly, this nanocarbon hydrogel called CS/GP@CN hydrogel not only had good biocompatibility and a great PTT effect under 808nm laser irradiation but also facilitated the maturation of dendritic cells to stimulate the antitumor immune response and had an extraordinary antimetastatic effect in the lungs. Discussion: Overall, this innovative temperature-sensitive nanocarbon hydrogel, which exists in a liquid state at room temperature and transforms to a gel at 37 °C, is an outstanding local delivery platform with tremendous PTT potential and broad clinical application prospects.


Assuntos
Quitosana , Neoplasias Pulmonares , Camundongos , Animais , Hidrogéis/química , Temperatura , Terapia Fototérmica , Quitosana/química
7.
Front Immunol ; 14: 1285540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965341

RESUMO

Single-cell sequencing is a technique for detecting and analyzing genomes, transcriptomes, and epigenomes at the single-cell level, which can detect cellular heterogeneity lost in conventional sequencing hybrid samples, and it has revolutionized our understanding of the genetic heterogeneity and complexity of tumor progression. Moreover, the tumor microenvironment (TME) plays a crucial role in the formation, development and response to treatment of tumors. The application of single-cell sequencing has ushered in a new age for the TME analysis, revealing not only the blueprint of the pan-cancer immune microenvironment, but also the heterogeneity and differentiation routes of immune cells, as well as predicting tumor prognosis. Thus, the combination of single-cell sequencing and the TME analysis provides a unique opportunity to unravel the molecular mechanisms underlying tumor development and progression. In this review, we summarize the recent advances in single-cell sequencing and the TME analysis, highlighting their potential applications in cancer research and clinical translation.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Diferenciação Celular , Epigenoma , Transcriptoma , Neoplasias/genética
8.
Aging (Albany NY) ; 15(20): 11152-11161, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37851373

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) accounts for more than 95% of all diabetes. DA3-CH is a novel dual receptor agonist of glucagon like peptide-1 (GLP-1) and glucose dependent insulin stimulating polypeptide (GIP). The regulatory role of DA3-CH in T2DM has not been reported. METHODS: T2DM rat model was established successfully with high sugar and fat feed and streptomycin (STZ) induction. The mRNA and protein expression were measured with RT-PCR and western blotting. The apoptosis level in the pancreatic tissue was evaluated with Tunel staining. Blood glucose, fat, and oxidative stress indicators were measured. RESULTS: DA3-CH greatly improved T2DM symptoms by reducing blood glucose, blood fat, pancreatic tissue injury, apoptosis, and oxidative stress condition. The inactivation of Adenylate activated protein kinase (AMPK)/acetyl CoA carboxylase (ACC) signaling pathway in T2DM rats was promoted by DA3-CH. The influence of DA3-CH was significantly reversed by Com-C, the inhibitor of AMPK/ACC signaling pathway. CONCLUSIONS: DA3-CH might improve T2DM through targeting AMPK/ACC signaling pathway. This study might provide a novel therapeutic strategy for the prevention and treatment of T2DM through targeting DA3-CH and AMPK/ACC signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Glicemia/metabolismo , Transdução de Sinais/fisiologia
9.
J Nanobiotechnology ; 21(1): 398, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904168

RESUMO

The wear particle-induced dissolution of bone around implants is a significant pathological factor in aseptic loosening, and controlling prosthetic aseptic loosening holds crucial social significance. While human umbilical cord mesenchymal stem cell-derived exosomes (HucMSCs-Exos, Exos) have been found to effectively promote osteogenesis and angiogenesis, their role in periprosthetic osteolysis remains unexplored. To enhance their in vivo application, we engineered HucMSCs-Exos-encapsulated poly lactic-co-glycolic acid (PLGA) nanoparticles (PLGA-Exos). In our study, we demonstrate that PLGA-Exos stimulate osteogenic differentiation while inhibiting the generation of reactive oxygen species (ROS) and subsequent osteoclast differentiation in vitro. In vivo imaging revealed that PLGA-Exos released exosomes slowly and maintained a therapeutic concentration. Our in vivo experiments demonstrated that PLGA-Exos effectively suppressed osteolysis induced by polyethylene particles. These findings suggest that PLGA-Exos hold potential as a therapeutic approach for the prevention and treatment of periprosthetic osteolysis. Furthermore, they provide novel insights for the clinical management of osteolysis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Nanopartículas , Osteólise , Humanos , Osteogênese , Osteólise/induzido quimicamente , Osteólise/terapia , Polietileno/efeitos adversos , Glicóis/efeitos adversos , Cordão Umbilical
10.
Arthroscopy ; 39(12): 2529-2546.e1, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37683831

RESUMO

PURPOSE: To investigate whether tranexamic acid (TXA) is cytotoxic in chondrocyte and cartilage tissues, as well as explore the mechanisms behind the possible toxicity in detail. METHODS: We detected the cell viability of chondrocytes in vitro and the change of morphology and specific in vivo contents of cartilage after TXA treatment. Furthermore, we detected apoptosis in cartilage. We used apoptosis-specific staining, reactive oxygen species detection, mitochondrial membrane potential detection, flow cytometry, and western blot for apoptosis detection. Finally, we detected the activation of endoplasmic reticulum stress (ERS) in TXA-treated chondrocytes to clarify the mechanism behind chondrocyte apoptosis. RESULTS: TXA presented an increasing toxic effect with increasing concentrations, especially in the 100 mg/mL group. In addition, we found that 50 mg/mL and 100 mg/mL TXA significantly increased apoptosis in cartilage and subchondral bone. TXA could induce chondrocyte apoptosis in cell and protein levels with reactive oxygen species generation and mitochondrial membrane depolarization. An apoptosis inhibitor could inhibit the induced apoptosis. Next, TXA induced calcium overload in chondrocytes and increased ERS-specific protein expression, whereas ERS inhibitor blocked ERS activation and further inhibited chondrocyte apoptosis. CONCLUSIONS: We concluded that TXA had a toxic effect on chondrocytes by inducing apoptosis through ERS activation, especially in 50 mg/mL and 100 mg/mL groups. We recommend TXA concentrations of less than 50 mg/mL in joint surgeries. CLINICAL RELEVANCE: It is still unclear whether TXA has a toxic effect on cartilage when topically used in joint surgeries. The concentration also varies. This study provides additional evidence that TXA at high concentrations will cause cartilage damage, which will help to provide a new understanding of the clinical administration of TXA.


Assuntos
Condrócitos , Ácido Tranexâmico , Humanos , Ácido Tranexâmico/farmacologia , Espécies Reativas de Oxigênio , Apoptose , Estresse do Retículo Endoplasmático
11.
Front Oncol ; 13: 1083713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007141

RESUMO

Objective: Locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients, even at the same stage, have different prognoses. We aim to construct a prognostic nomogram for predicting the overall survival (OS) to identify the high-risk LA-NPC patients. Materials and methods: Histologically diagnosed WHO type II and type III LA-NPC patients in the Surveillance, Epidemiology, and End Results (SEER) database were enrolled as the training cohort (n= 421), and LA-NPC patients from Shantou University Medical College Cancer Hospital (SUMCCH) served as the external validation cohort (n= 763). Variables were determined in the training cohort through Cox regression to form a prognostic OS nomogram, which was verified in the validation cohort, and compared with traditional clinical staging using the concordance index (C-index), Kaplan-Meier curves, calibration curves and decision curve analysis (DCA). Patients with scores higher than the specific cut-off value determined by the nomogram were defined as high-risk patients. Subgroup analyses and high-risk group determinants were explored. Results: Our nomogram had a higher C-index than the traditional clinical staging method (0.67 vs. 0.60, p<0.001). Good agreement between the nomogram-predicted and actual survival were shown in the calibration curves and DCA, indicating a clinical benefit of the nomogram. High-risk patients identified by our nomogram had worse prognosis than the other groups, with a 5-year overall survival (OS) of 60.4%. Elderly patients at advanced stage and without chemotherapy had a tendency for high risk than the other patients. Conclusions: Our OS predictive nomogram for LA-NPC patients is reliable to identify high-risk patients.

12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(1): 40-48, 2023 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36935176

RESUMO

OBJECTIVES: The excretion of urinary vitamin D-binding protein (uVDBP) is related to the occurrence and development of early-stage renal damage in patients with Type 2 diabetes (T2DM). This study aims to explore the significance of detecting uVDBP in T2DM patients and its relationship with renal tubules, and to provide a new direction for the early diagnosis of T2DM renal damage. METHODS: A total of 105 patients with T2DM, who met the inclusion criteria, were included as a patient group, and recruited 30 individuals as a normal control group. The general information and blood and urine biochemical indicators of all subjects were collected; the levels of uVDBP, and a marker of tubular injury [urine kidney injury molecule 1 (uKIM-1), urine neutrophil gelatinase-associated lipocalin (uNGAL) and urine retinol-binding protein (uRBP)] were detected by enzyme-linked immunosorbent assay. The results were corrected by urinary creatinine (Cr) to uVDBP/Cr, uKIM-1/Cr, uNGAL/Cr and uRBP/Cr. The Pearson's and Spearman's correlation tests were used to analyze the correlation between uVDBP/Cr and urine albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate (eGFR) and markers of tubular injury, and multivariate linear regression and receiver operating characteristic curve were used to analyze the correlation between uVDBP/Cr and UACR or eGFR. RESULTS: Compared with the normal control group, the uVDBP/Cr level in the patient group was increased (P<0.05), and which was positively correlated with UACR (r=0.774, P<0.01), and negatively correlated with eGFR (r=-0.397, P<0.01). There were differences in the levels of uKIM-1/Cr, uNGAL/Cr, and uRBP/Cr between the 2 groups (all P<0.01). The uVDBP/Cr was positively correlated with uKIM-1/Cr (r=0.752, P<0.01), uNGAL/Cr (r=0.644, P<0.01) and uRBP/Cr (r=0.812, P<0.01). The sensitivity was 90.0% and the specificity was 82.9% (UACR>30 mg/g) for evaluation of uVDBP/Cr on T2DM patients with early-stage renal damage, while the sensitivity was 75.0% and the specificity was 72.6% for evaluation of eGFR on T2DM patients with early-stage renal damage. CONCLUSIONS: The uVDBP/Cr can be used as a biomarker in early-stage renal damage in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Creatinina , Proteína de Ligação a Vitamina D/urina , Lipocalina-2/urina , Rim/metabolismo , Taxa de Filtração Glomerular , Biomarcadores
13.
Adv Healthc Mater ; 12(12): e2202907, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36802128

RESUMO

Aggregation-induced emission luminogens (AIEgens) are widely used as photosensitizers for image-guided photodynamic therapy (PDT). Due to the limited penetration depth of light in biological tissues, the treatments of deep-seated tumors by visible-light-sensitized aggregation-induced emission (AIE) photosensitizers are severely hampered. Microwave dynamic therapy attracts much attention because microwave irradiation can penetrate very deep tissues and sensitize the photosensitizers to generate reactive oxygen species (ROS). In this work, a mitochondrial-targeting AIEgen (DCPy) is integrated with living mitochondria to form a bioactive AIE nanohybrid. This nanohybrid can not only generate ROS under microwave irradiation to induce apoptosis of deep-seated cancer cells but also reprogram the metabolism pathway of cancer cells through retrieving oxidative phosphorylation (OXPHOS) instead of glycolysis to enhance the efficiency of microwave dynamic therapy. This work demonstrates an effective strategy to integrate synthetic AIEgens and natural living organelles, which would inspire more researchers to develop advanced bioactive nanohybrids for cancer synergistic therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Micro-Ondas , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico
14.
Front Genet ; 14: 1061569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845378

RESUMO

Background: Immunotherapy has been demonstrated favorable in head and neck squamous cell carcinoma (HNSCC). Studies indicated that immune-related gene prognostic index (IRGPI) was a robust signature, and N6-methyladenosine (m6A) methylation had a significant impact on the tumor immune microenvironment (TIME) and immunotherapy of head and neck squamous cell carcinoma. Thus, combining indicated that immune-related gene prognostic index with m6A status should offer a better predictive power for immune responses. Methods: Head and neck squamous cell carcinoma samples from the cancer genome atlas (TCGA, n = 498) and gene expression omnibus database (GSE65858, n = 270) were used in this study. Cox regression analysis was used to construct the indicated that immune-related gene prognostic index through immune-related hub genes which were identified by weighted gene co-expression network analysis (WGCNA). The m6A risk score was constructed by least absolute shrinkage and selection operator (LASSO) regression analysis. Principal component analysis was used to construct a composite score, and systematically correlate subgroups according to tumor immune microenvironment cell-infiltrating characteristics. Results: A composite score was determined based on indicated that immune-related gene prognostic index and m6A risk score. Head and neck squamous cell carcinoma patients in the cancer genome atlas were divided into four subgroups: A (IRGPI-High&m6A-risk-High, n = 127), B (IRGPI-High&m6A-risk-Low, n = 99), C (IRGPI-Low&m6A-risk-High, n = 99), and D (IRGPI-Low&m6A-risk-Low, n = 128), and overall survival (OS) was significantly different between subgroups (p < 0.001). The characteristics of tumor immune microenvironment cell infiltration in the four subgroups were significantly different in subgroups (p < 0.05). The receiver operating characteristic (ROC) curves show the predictive value of composite score for overall survival was superior to other scores. Conclusion: The composite score is a promising prognostic signature which might distinguish immune and molecular characteristics, predict prognosis, and guide more effective immunotherapeutic strategies for head and neck squamous cell carcinoma.

15.
Shock ; 59(5): 754-762, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840514

RESUMO

ABSTRACT: Background: Hemorrhagic shock-induced acute lung injury (ALI) is commonly associated with the posthemorrhagic shock mesenteric lymph (PHSML) return. Whether excessive autophagy is involved in PHSML-mediated ALI remains unclear. The relationship between estrogen treatment and PHSML or autophagy needs to verify. The current study will clarify the role of estrogen in reducing PHSML-mediated ALI through inhibition of autophagy. Methods: First, a hemorrhagic shock model in conscious rats was used to observe the effects of 17ß-estradiol (E2) on intestinal blood flow, pulmonary function, intestinal and pulmonary morphology, and expression of autophagy marker proteins. Meanwhile, the effect of PHSML and autophagy agonist during E2 treatment was also investigated. Secondly, rat primary pulmonary microvascular endothelial cells were used to observe the effect of PHSML, PHSML plus E2, and E2-PHSML (PHSML obtained from rats treated by E2) on the cell viability. Results: Hemorrhagic shock induced intestinal and pulmonary tissue damage and increased wet/dry ratio, reduced intestinal blood flow, along with pulmonary dysfunction characterized by increased functional residual capacity and lung resistance and decreased inspiratory capacity and peak expiratory flow. Hemorrhagic shock also enhanced the autophagy levels in intestinal and pulmonary tissue, which was characterized by increased expressions of LC3 II/I and Beclin-1 and decreased expression of p62. E2 treatment significantly attenuated these adverse changes after hemorrhagic shock, which was reversed by PHSML or rapamycin administration. Importantly, PHSML incubation decreased the viability of pulmonary microvascular endothelial cells, while E2 coincubation or E2-treated lymph counteracted the adverse roles of PHSML. Conclusions: The role of estrogen reducing PHSML-mediated ALI is associated with the inhibition of autophagy.


Assuntos
Lesão Pulmonar Aguda , Choque Hemorrágico , Ratos , Animais , Ratos Sprague-Dawley , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Células Endoteliais/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Autofagia
16.
Mol Omics ; 19(2): 137-149, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508252

RESUMO

Kashin-Beck disease (KBD) is a serious, endemic chronic osteochondral disease characterized by symmetrical enlargement of the phalanges, brachydactyly, joint deformity, and even dwarfism. To investigate the urinary metabolomic profiles of KBD patients, we performed an untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS). Adult urinary specimens were collected from 39 patients with KBD and 19 healthy subjects; the children's urinary specimens were collected from 5 patients with KBD, 25 suspected KBD cases and 123 healthy subjects in the KBD endemic area during a three consecutive year study. We identified 10 upregulated and 28 downregulated secondary level metabolites highly associated with aetiology and pathogenesis of KBD between adult KBD and adult controls. A total of 163, 967 and 795 metabolites were significantly different in the urine among children with KBD, suspected children with KBD cases and healthy child controls, respectively, for each year in three consecutive years. HT-2 toxin, Se-adenosylselenomethionine (AdoSeMet), the toxin T2 tetrol, and many kinds of amino acids were identified as differential metabolites in this study. Amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, arachidonic acid metabolism, D-glutamine and D-glutamate metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and D-glutamine and D-glutamate metabolism were perturbed pathways in adult and child KBD patients. Our study provides new insight into the underlying mechanisms of KBD, and suggests that we should pay more attention to these differences in small-molecule metabolites and metabolic pathways in the environmental aetiology and pathogenesis of KBD.


Assuntos
Doença de Kashin-Bek , Criança , Humanos , Doença de Kashin-Bek/epidemiologia , Doença de Kashin-Bek/metabolismo , Ácido Glutâmico , Glutamina , Metabolômica
17.
J Exp Med ; 220(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36367776

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.


Assuntos
Colite , Interleucina-6 , Camundongos , Animais , Qualidade de Vida , Colite/patologia , Imunoterapia , Inflamação
18.
Adv Healthc Mater ; 12(3): e2202219, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271734

RESUMO

Retinoblastoma (RB) is an aggressive eye cancer in infancy and childhood, lethal by metastasis if left untreated. Currently, the survival rate and the chance of saving vision depend on the severity of the disease. In this work, a highly efficient photodynamic ophthalmic therapy for RB is reported by employing an isoquinolinium-based aggregation-induced-emission (AIE) photosensitizer (PS) TPE-IQ-2O for photodynamic inactivation (PDI). TPE-IQ-2O is an efficient mitochondria-targeting photosensitizer as an efficient guided photodynamic therapy (PDT) agent against cancer cells. Maximizing cancer-selectively damage to tumors with minimized side effects on normal tissue is essential for effective anticancer PDT and provides long-lasting protection against metastasis. In addition, TPE-IQ-2O can effectively reduce the degree of tissue inflammation by inhibiting the expression of related inflammatory factors. TPE-IQ-2O also exhibits excellent biocompatibility with a neglectable hemolysis effect on mouse red blood cells and almost no killing effect on mammalian cells, which enables its potential applications in the treatment of RB.


Assuntos
Fotoquimioterapia , Neoplasias da Retina , Retinoblastoma , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Retinoblastoma/tratamento farmacológico , Neoplasias da Retina/tratamento farmacológico , Mitocôndrias , Mamíferos
19.
J Med Virol ; 95(1): e28383, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477795

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global coronavirus disease 2019 (COVID-19) pandemic that has affected the lives of billions of individuals. However, the host-virus interactions still need further investigation to reveal the underling mechanism of SARS-CoV-2 pathogenesis. Here, transcriptomics analysis of SARS-CoV-2 infection highlighted possible correlation between host-associated signaling pathway and virus. In detail, cAMP-protein kinase (PKA) pathway has an essential role in SARS-CoV-2 infection, followed by the interaction between cyclic AMP response element binding protein (CREB) and CREB-binding protein (CBP) could be induced and leading to the enhancement of CREB/CBP transcriptional activity. The replication of Delta and Omicron BA.5 were inhibited by about 49.4% and 44.7% after knockdown of CREB and CBP with small interfering RNAs, respectively. Furthermore, a small organic molecule naphthol AS-E (nAS-E), which targets on the interaction between CREB and CBP, potently inhibited SARS-CoV-2 wild-type (WT) infection with comparable the half-maximal effective concentration (EC50 ) 1.04 µM to Remdesivir 0.57 µM. Compared with WT virus, EC50 in Calu-3 cells against Delta, Omicron BA.2, and Omicron BA.5 were, on average, 1.5-fold, 1.1-fold, and 1.5-fold higher, respectively, nAS-E had a satisfied antiviral effect against Omicron variants. Taken together, our study demonstrated the importance of CREB/CBP induced by cAMP-PKA pathway during SARS-CoV-2 infection, and further provided a novel CREB/CBP interaction therapeutic drug targets for COVID-19.


Assuntos
COVID-19 , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Interações Hospedeiro-Patógeno , Humanos , COVID-19/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Proteína de Ligação a CREB/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia
20.
Eur Radiol ; 33(2): 893-903, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36001124

RESUMO

OBJECTIVES: To quantify intra-tumor heterogeneity (ITH) in non-small cell lung cancer (NSCLC) from computed tomography (CT) images. METHODS: We developed a quantitative ITH measurement-ITHscore-by integrating local radiomic features and global pixel distribution patterns. The associations of ITHscore with tumor phenotypes, genotypes, and patient's prognosis were examined on six patient cohorts (n = 1399) to validate its effectiveness in characterizing ITH. RESULTS: For stage I NSCLC, ITHscore was consistent with tumor progression from stage IA1 to IA3 (p < 0.001) and captured key pathological change in terms of malignancy (p < 0.001). ITHscore distinguished the presence of lymphovascular invasion (p = 0.003) and pleural invasion (p = 0.001) in tumors. ITHscore also separated patient groups with different overall survival (p = 0.004) and disease-free survival conditions (p = 0.005). Radiogenomic analysis showed that the level of ITHscore in stage I and stage II NSCLC is correlated with heterogeneity-related pathways. In addition, ITHscore was proved to be a stable measurement and can be applied to ITH quantification in head-and-neck cancer (HNC). CONCLUSIONS: ITH in NSCLC can be quantified from CT images by ITHscore, which is an indicator for tumor phenotypes and patient's prognosis. KEY POINTS: • ITHscore provides a radiomic quantification of intra-tumor heterogeneity in NSCLC. • ITHscore is an indicator for tumor phenotypes and patient's prognosis. • ITHscore has the potential to be generalized to other cancer types such as HNC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Prognóstico , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA