Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Antioxidants (Basel) ; 13(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38929089

RESUMO

Oxidative stress damage in periparturient cows decreases both production and their health; supplementation with complex additives during the periparturient period has been used as an important strategy to enhance the antioxidant status and production of dairy cows. The periparturient cows not only risk a negative energy balance due to reduced dry matter intake but also represent a sensitive period for oxidative stress. Therefore, we have developed an immunomodulatory and nutritional regulation combined additive (INC) that hopefully can improve the immune status and production of cows during the periparturient period and their offspring health and growth by improving their antioxidant stress status. The INC comprised a diverse array of additives, including water-soluble and fat-soluble vitamins, Selenomethionine, and active dry Saccharomyces cerevisiae. Forty-five multiparous Holstein cows were randomly assigned to three treatments: CON (no INC supplementation, n = 15), INC30 (30 g/d INC supplementation, n = 15), and INC60 (60 g/d INC supplementation, n = 15) based on last lactation milk yield, body condition score, and parity. Newborn calves were administered 4 L of maternal colostrum originating from the corresponding treatment and categorized based on the treatment received by their respective dams. The INC not only served to maintain the antioxidative stress system of dairy cows during the periparturient period but also showed a tendency to improve the immune response (lower tumor necrosis factor and interleukin-6) during the perinatal period. A linear decrease in concentrations of alkaline phosphatase postpartum and ß-hydroxybutyrate was observed with INC supplementation. Milk fat yield, milk protein yield, and energy-corrected milk yield were also increased linearly with increasing additive supplementation. Calves in the INC30 group exhibited greater wither height and chest girth but no significant effect on average daily gain or body weight. The diarrhea frequency was linearly decreased with the incremental level of INC. Results indicate that supplementation with INC in peripartum dairy cows could be a major strategy to improve immune response, decrease inflammation, maintain antioxidant stress status in transition dairy cows, and have merit in their calves. In conclusion, this study underlines the benefits of INC supplementation during the transition period, as it improved anti-inflammatory capacity, could positively impact antioxidative stress capacity, and eventually enhanced the production performance of dairy cows and the health and growth of calves.

2.
Curr Cancer Drug Targets ; 24(5): 501-509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38804343

RESUMO

BACKGROUND: Ataxia telangiectasia mutated (ATM), an apical DNA damage response gene, is a commonly mutated gene in tumors, and its mutation could strengthen tumor immunogenicity and alter the expression of PD-L1, which potentially contributes to immune checkpoint inhibitors (ICIs) therapy. METHODS: The characteristics of ATM mutation and its relationship with the ICIs-treated clinical prognosis have been analyzed comprehensively in this paper. The overall frequency of ATM mutations has been found to be 4% (554/10953) in the cancer genome atlas (TCGA) cohort. RESULTS: Both the TMB and MSI levels in patients with ATM mutations were significantly higher than those in patients without mutations (P < 0.0001). The median TMB was positively correlated with the frequency of ATM mutations (r = 0.54, P = 0.003). In the TCGA cohort, patients with ATM mutations had better clinical benefits in terms of overall survival (OS, hazard ratio (HR) = 0.736, 95% CI = 0.623 - 0.869), progression-free survival (PFS, HR = 0.761, 95% CI = 0.652 - 0.889), and disease-free survival (DFS, HR = 0.686, 95% CI = 0.512 - 0.919)] than patients without ATM mutations. Subsequently, the verification results showed ATM mutations to be significantly correlated with longer OS in ICIs-treated patients (HR = 0.710, 95% CI = 0.544 - 0.928). Further exploration indicated ATM mutation to be significantly associated with regulated anti-tumor immunity (P < 0.05). CONCLUSION: Our findings highlight the value of ATM mutation as a promising biomarker to predict ICIs therapy in multiple tumors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Biomarcadores Tumorais , Inibidores de Checkpoint Imunológico , Mutação , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso
3.
Talanta ; 276: 126251, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761657

RESUMO

Monitoring of glutathione has attracted considerable attention owing to its biological and clinical significance. An eco-friendly, economic, simple, biocompatible probe with excellent sensitivity and selectivity is very important. Herein, FeOOH QD@ATP-BODIPY nanocomposite was fabricated from one-step synthesized FeOOH quantum dots (FeOOH QD) and commercial boron-dipyrromethene-conjugated adenosine 5'-triphosphate (ATP-BODIPY) for glutathione (GSH) sensing in solutions and living cells. Three fascinate merits of FeOOH QD were confirmed: (a) as fluorescence quencher for ATP-BODIPY, (b) as selective recognizer of GSH and (c) with carrier effects and membrane permeability. The construction and response mechanism of the nanocomposite was based on the competitive coordination chemistry and redox reaction of FeOOH QD between GSH and phosphate group of ATP-BODIPY. Under the optimal conditions, the detection limit for GSH was as low as 68.8 nM. Excellent linear range of 0.2-400 µM was obtained. Furthermore, the chemical response of the nanocomposite exhibits high selectivity toward GSH over other electrolytes and biomolecules. It was successfully applied for GSH determination in human serum samples. The MTT assay exhibited FeOOH QD@ATP-BODIPY nanocomposite own good biocompatibility. FeOOH QD@ATP-BODIPY respond to GSH in living cells in situ was also proved via fluorescence imaging. These suggested that the FeOOH QD@ATP-BODIPY nanocomposite had potential application in biological and clinical applications.


Assuntos
Trifosfato de Adenosina , Compostos de Boro , Glutationa , Nanocompostos , Pontos Quânticos , Compostos de Boro/química , Glutationa/análise , Glutationa/química , Humanos , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/sangue , Trifosfato de Adenosina/química , Nanocompostos/química , Pontos Quânticos/química , Materiais Biocompatíveis/química , Células HeLa , Corantes Fluorescentes/química , Limite de Detecção , Compostos Férricos/química , Imagem Óptica
4.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339192

RESUMO

Natural products derived from medicinal plants offer convenience and therapeutic potential and have inspired the development of antimicrobial agents. Thus, it is worth exploring the combination of nanotechnology and natural products. In this study, silver nanoparticles (AgNPs) were synthesized from the leaf extract of Ginkgo biloba (Gb), having abundant flavonoid compounds. The reaction conditions and the colloidal stability were assessed using ultraviolet-visible spectroscopy. X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to characterize the AgNPs. AgNPs exhibited a spherical morphology, uniform dispersion, and diameter ranging from ~8 to 9 nm. The FTIR data indicated that phytoconstituents, such as polyphenols, flavonoids, and terpenoids, could potentially serve as reducing and capping agents. The antibacterial activity of the synthesized AgNPs was assessed using broth dilution and agar well diffusion assays. The results demonstrate antibacterial effects against both Gram-positive and Gram-negative strains at low AgNP concentrations. The cytotoxicity of AgNPs was examined in vitro using the CCK-8 method, which showed that low concentrations of AgNPs are noncytotoxic to normal cells and promote cell growth. In conclusion, an environmentally friendly approach for synthesizing AgNPs from Gb leaves yielded antibacterial AgNPs with minimal toxicity, holding promise for future applications in the field of biomedicine.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Ginkgo biloba , Nanopartículas Metálicas/química , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Front Pharmacol ; 15: 1354323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389923

RESUMO

Acting as a cysteine protease, small ubiquitin-like modifier (SUMO)/sentrin-specific protease1 (SENP1) involved in multiple physiological and pathological processes through processing the precursor SUMO protein into mature form and deSUMOylating target protein. It has been reported that SENP1 is highly expressed and plays a carcinogenic role in various cancers. In this paper, we mainly explore the function and mechanism of SENP1 in tumor cell proliferation, apoptosis, invasion, metastasis, stemness, angiogenesis, metabolism and drug resistance. Furthermore, the research progress of SENP1 inhibitors for cancer treatment is introduced. This study aims to provide theoretical references for cancer therapy by targeting SENP1.

6.
Crit Rev Food Sci Nutr ; : 1-38, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37846905

RESUMO

Extensive research from large prospective cohort studies and meta-analytical investigations over recent decades have consistently indicated that dairy foods have protective effects, reducing the risk of colorectal cancer. Most of the literature has explored the potential role of milk minerals and vitamins in managing colorectal cancer. Yet, there is a paucity of a comprehensive summary of the anticancer attributes of milk protein components and their underlying mechanisms of action. Recent advancements have spotlighted the potential of whey proteins, including ß-lactoglobulin, α-lactalbumin, serum albumin, and lactoferrin, as promising candidates for both the prevention and treatment of colorectal cancer. Notably, whey proteins have demonstrated a more pronounced capacity for suppressing carcinogen-induced tumors when compared to casein. Their strong binding affinity enables them to serve as effective carriers for small molecules or drugs targeting colon cancer therapy. Furthermore, numerous studies have underscored the anti-inflammatory and antioxidant prowess of whey proteins in cancer prevention. Additionally, whey proteins have been shown to trigger apoptosis, hinder tumor cell proliferation, and impede metastasis. This comprehensive review, therefore, not only substantiates the significance of incorporating whey protein components into a balanced daily diet but also underscores their potential in safeguarding against the onset and progression of colorectal cancer.


Dairy products have consistently had protective effects in reducing the risk of colorectal cancer.Whey proteins have shown promise as candidates for the prevention and treatment of colorectal cancer.Whey proteins have a strong binding ability, enabling them to act as carriers of small molecules or drugs targeting colon cancer therapy.Their anti-inflammatory and anti-oxidant capacity may play a role in cancer prevention.Whey proteins could induce apoptosis and inhibit the proliferation and metastasis of tumor cells.

7.
Polymers (Basel) ; 15(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896293

RESUMO

Poly (lactic acid) (PLA) is a promising green substitute for conventional petroleum-based plastics in a variety of applications. However, the wide application of PLA is still limited by its disadvantages, such as slow crystallization rate, inadequate gas barrier, thermal degradation, etc. In this study, lignin (1, 3, 5 PHR) was incorporated into PLA to improve the thermal, mechanical, and barrier properties of PLA. Two low-viscosity epoxy resins, ethylene glycol diglycidyl ether (EGDE) and poly (ethylene glycol) diglycidyl ether (PEGDE), were used as compatibilizers to enhance the performance of the composites. The addition of lignin improved the onset degradation temperature of PLA by up to 15 °C, increased PLA crystallinity, improved PLA tensile strength by approximately 15%, and improved PLA oxygen barrier by up to 58.3%. The addition of EGDE and PEGDE both decreased the glass transition, crystallization, and melting temperatures of the PLA/lignin composites, suggesting their compatabilizing and plasticizing effects, which contributed to improved oxygen barrier properties of the PLA/lignin composites. The developed PLA/lignin composites with improved thermal, mechanical, and gas barrier properties can potentially be used for green packaging applications.

8.
RSC Adv ; 13(37): 26288-26301, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37670995

RESUMO

Cancer poses a great threat to human life, and current cancer treatments, such as radiotherapy, chemotherapy, and surgery, have significant side effects and limitations that hinder their application. Nucleic acid nanomaterials have specific spatial configurations and can be used as nanocarriers to deliver different therapeutic drugs, thereby enabling various biomedical applications, such as biosensors and cancer therapy. In recent decades, a variety of DNA nanostructures have been synthesized, and they have demonstrated remarkable potential in cancer therapy related applications, such as DNA origami structures, tetrahedral framework nucleic acids, and dynamic DNA nanostructures. Importantly, more attention is also being paid to RNA nanostructures, which play an important role in gene therapy. Therefore, this review introduces the developmental history of nucleic acid nanotechnology, summarizes the applications of DNA and RNA nanostructures for tumor treatment, and discusses the development opportunities for nucleic acid nanomaterials in the future.

9.
BMC Musculoskelet Disord ; 24(1): 677, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626330

RESUMO

OBJECTIVE: This study aims to demonstrate the cellular composition and underlying mechanisms in subchondral bone marrow lesions (BMLs) of knee osteoarthritis (OA). METHODS: BMLs were assessed by MRI Osteoarthritis Knee Score (MOAKS)≥2. Bulk RNA-sequencing (bulk-seq) and BML-specific differentially expressed genes (DEGs) analysis were performed among subchondral bone samples (including OA-BML=3, paired OA-NBML=3; non-OA=3). The hub genes of BMLs were identified by verifying in independent datasets and multiple bioinformatic analyses. To further estimate cell-type composition of subchondral bone, we utilized two newly developed deconvolution algorithms (MuSiC, MCP-counter) in transcriptomic datasets, based on signatures from open-accessed single-cell RNA sequencing (scRNA-seq). Finally, competing endogenous RNA (ceRNA) and transcription factor (TF) networks were constructed through multiple predictive databases, and validated by public non-coding RNA profiles. RESULTS: A total of 86 BML-specific DEGs (up 79, down 7) were identified. IL11 and VCAN were identified as core hub genes. The "has-miR-424-5p/lncRNA PVT1" was determined as crucial network, targeting IL11 and VCAN, respectively. More importantly, two deconvolution algorithms produced approximate estimations of cell-type composition, and the cluster of heterotopic-chondrocyte was discovered abundant in BMLs, and positively correlated with the expression of hub genes. CONCLUSION: IL11 and VCAN were identified as the core hub genes of BMLs, and their molecular networks were determined as well. We profiled the characteristics of subchondral bone at single-cell level and determined that the heterotopic-chondrocyte was abundant in BMLs and was closely linked to IL11 and VCAN. Our study may provide new insights into the microenvironment and pathological molecular mechanism of BMLs, and could lead to novel therapeutic strategies.


Assuntos
Doenças Ósseas , Doenças das Cartilagens , Osteoartrite do Joelho , Humanos , Medula Óssea , Transcriptoma , Interleucina-11 , Osteoartrite do Joelho/genética
10.
Ther Adv Musculoskelet Dis ; 15: 1759720X231169839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197024

RESUMO

Osteoarthritis (OA) is a prevalent and severely debilitating disease with an unmet medical need. In order to alleviate OA symptoms or prevent structural progression of OA, new drugs, particularly disease-modifying osteoarthritis drugs (DMOADs), are required. Several drugs have been reported to attenuate cartilage loss or reduce subchondral bone lesions in OA and thus potentially be DMOADs. Most biologics (including interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibitors), sprifermin, and bisphosphonates failed to yield satisfactory results when treating OA. OA clinical heterogeneity is one of the primary reasons for the failure of these clinical trials, which can require different therapeutic approaches based on different phenotypes. This review describes the latest insights into the development of DMOADs. We summarize in this review the efficacy and safety profiles of various DMOADs targeting cartilage, synovitis, and subchondral bone endotypes in phase 2 and 3 clinical trials. To conclude, we summarize the reasons for clinical trial failures in OA and suggest possible solutions.

11.
J Orthop Surg Res ; 18(1): 304, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069639

RESUMO

OBJECTIVE: Osteoporosis (OP) is a disease caused by multiple factors. Studies have pointed out that isopsoralen (IPRN) is one of the most effective drugs for the treatment of OP. Based on network pharmacological and molecular experimental analysis, the molecular mechanism of IPRN in osteoporosis is clarified. METHODS: IPRN target genes and OP-related genes were predicted from the databases. Intersections were obtained and visualized. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on target genes, which was confirmed by experiments internal and external experiments. Molecular docking was used to verify the binding between IPRN and target proteins. Molecular dynamics (MD) simulates the binding affinity of protein targets and active compounds. RESULTS: 87 IPRN target genes and 242 disease-related targets were predicted. The protein-protein interaction (PPI) network identified 18 IPRN target proteins for the treatment of OP. GO analysis indicated that target genes were involved in biological processes. KEGG analysis showed that pathways such as PI3K/AKT/mTOR were associated with OP. Cell experiments (qPCR and WB) found that the expressions of PI3K, AKT, and mTOR in MC3T3-E1 cells at 10 µM, 20 µM, and 50 µM IPRN concentrations, especially at 20 µM IPRN treatment, were higher than those in the control group at 48 h. Animal experiments also showed that compared with the control group, 40 mg/kg/time IPRN could promote the expression of the PI3K gene in chondrocytes of SD rats. CONCLUSIONS: This study predicted the target genes of IPRN in the treatment of OP and preliminarily verified that IPRN plays an anti-OP role through the PI3K/AKT/mTOR pathway, which provides a new drug for the treatment of OP.


Assuntos
Medicamentos de Ervas Chinesas , Osteoporose , Animais , Ratos , Ratos Sprague-Dawley , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Osteoporose/tratamento farmacológico , Osteoporose/genética
12.
Front Genet ; 14: 1122955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007954

RESUMO

Objective: To assess the causal effect of systemic iron status by using four biomarkers (serum iron; transferrin saturation; ferritin; total iron-binding capacity) on knee osteoarthritis (OA), hip OA, total knee replacement, and total hip replacement using 2-sample Mendelian randomization (MR) design. Methods: Three instrument sets were used to construct the genetic instruments for the iron status: Liberal instruments (variants associated with one of the iron biomarkers), sensitivity instruments (liberal instruments exclude variants associated with potential confounders), and conservative instruments (variants associated with all four iron biomarkers). Summary-level data for four OA phenotypes, including knee OA, hip OA, total knee replacement, and total hip replacement were obtained from the largest genome-wide meta-analysis with 826,690 individuals. Inverse-variance weighted based on the random-effect model as the main approach was conducted. Weighted median, MR-Egger, and Mendelian randomization pleiotropy residual sum and outlier methods were used as sensitivity MR approaches. Results: Based on liberal instruments, genetically predicted serum iron and transferrin saturation were significantly associated with hip OA and total hip replacement, but not with knee OA and total knee replacement. Statistical evidence of heterogeneity across the MR estimates indicated that mutation rs1800562 was the SNP significantly associated with hip OA in serum iron (odds ratio, OR = 1.48), transferrin saturation (OR = 1.57), ferritin (OR = 2.24), and total-iron binding capacity (OR = 0.79), and hip replacement in serum iron (OR = 1.45), transferrin saturation (OR = 1.25), ferritin (OR = 1.37), and total-iron binding capacity (OR = 0.80). Conclusion: Our study suggests that high iron status might be a causal factor of hip OA and total hip replacement where rs1800562 is the main contributor.

13.
Altern Ther Health Med ; 29(5): 153-157, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37052971

RESUMO

Context: Tuberculous pleurisy (TP) is the most common manifestation of extrapulmonary tuberculosis and the most frequent cause of pleural effusion (PE). Clinicians make a definitive diagnosis of TP based on the isolation of the mycobacterium tuberculosis (MTB) from PE or a pleural biopsy. Since the currently available tests for TP all have limitations in making a definitive diagnosis, clinicians urgently need new diagnostic tests. Objective: The study intended to compare the value in clinically diagnosing TP of the paraffin-embedded sample test (PEST), using pleural-effusion samples; an adenosine deaminase assay (ADA) using pleural fluid; and the T cell enzyme-linked immunospot test (T-SPOT), using peripheral-blood. Design: The research team performed a retrospective observational study. Setting: The study took place at the Sir Run Run Hospital, Nanjing Medical University in Nanjing, Jiangsu, China. Participants: Participants were 37 patients with suspected TP who had been admitted to the hospital between September 2018 and December 2022. Outcome Measures: The research team assessed the diagnostic performance of PEST, ADA, and T-SPOT in the TP group, calculating the positive rate, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the tests. Results: Among the 37 participants, the testing confirmed that 24 had TP (64.86%), with 13 not having TP (35.14%). The PEST test produced a sensitivity of 83.3% for TP, with 20 out of 24 participants in the TP group testing positive (95% CI: 61.8 to 94.5), which was superior to the ADA, with only 9 out of the 24 participants (37.5%) in the TP group testing positive (95% CI: 19.6 to 59.2), with P < .001. Conclusions: The PEST test possesses a high diagnostic value, and clinicians can use it as a time-saving, noninvasive, and highly sensitive method for TP diagnosis. It can be adjunct method to the currently used tests for diagnosing TP. A combination of several detection methods could promote effective treatment.


Assuntos
Derrame Pleural , Tuberculose Extrapulmonar , Tuberculose Pleural , Humanos , Tuberculose Pleural/diagnóstico , Tuberculose Pleural/patologia , Inclusão em Parafina , Sensibilidade e Especificidade , Derrame Pleural/diagnóstico , Derrame Pleural/microbiologia
14.
Cancers (Basel) ; 15(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36831526

RESUMO

We aimed to explore the effect of CD39 expression on CD8+ T cells and on the diagnosis and prognosis of esophageal squamous cell carcinoma (ESCC). The independent prognostic factors for the surgical specimens of the 95 ESCC patients were screened by multivariate Cox regression analysis. Differential gene expression analysis was performed by the NetworkAnalyst platform based on data from the Gene Expression Omnibus (GEO). The expression of CD39 on CD8+ T cells in the CK+ region was higher in cancer tissue than in paracancerous tissue (p = 0.011), and high CD39-expressing CD8+ T cells in the CK+ region (HR, 2.587; p = 0.033) and high CD39-expressing CD8+ T cells in the CK- region (HR, 3.090; p = 0.008) were independent risk factors for prognosis in ESCC patients; the expression of ENTPD1 was upregulated in ESCC tissues compared to normal tissues (adjusted p < 0.001; log2 fold change = 1.99), and its expression was significantly positively correlated with the expression of PDCD1, CTLA4, and HAVCR2. High CD39-expressing CD8+ T cells can be used as a new molecular marker for the diagnosis and prognosis of ESCC, and the restoration of partially exhausted CD8+ T cells by inhibiting CD39 may be a new strategy for treating ESCC.

15.
Hellenic J Cardiol ; 73: 47-52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36796759

RESUMO

BACKGROUND: This study aims to review the midterm results of surgical repair of anomalous left coronary artery from the pulmonary artery (ALCAPA) in our center and assess the postoperative cardiac function recovery and misdiagnosis. METHOD: Patients who underwent repair of ALCAPA between January 2005 and January 2022 at our hospital were retrospectively reviewed. RESULTS: A total of 136 patients underwent repair of ALCAPA, among which 49.3% were misdiagnosed before referral to our hospital. On multivariable logistic regression analysis, patients with low left ventricular ejection fraction (LVEF) (odds ratio = 0.975, p = 0.018) were at increased risk for misdiagnosis. The median age at surgery was 0.83 years (range, 0.08 to 56 years), and the median LVEF was 52% (range, 5% to 86%). The mortality rate was 6.6% (n = 9), and four patients underwent reintervention. The median postoperative recovery time of left ventricular function (LVF) was 10 days (1 to 692 days). Competing risk analysis revealed that a low preoperative LVEF (hazard ratio = 1.067, p < 0.001) and age younger than 1 year (hazard ratio = 0.522, p = 0.007) were risk factors for a longer postoperative recovery time of LVF. During the follow-up period, 91.9% (113/123) of the patients had no aggravation of mitral regurgitation. CONCLUSION: The perioperative and intermediate outcomes after ALCAPA repair were favorable, but preoperative misdiagnosis deserved attention, especially in patients with low LVEF. LVF normalized in most patients, but patients younger than 1 year and with low LVEF required longer recovery times.


Assuntos
Artéria Coronária Esquerda Anormal , Síndrome de Bland-White-Garland , Anomalias dos Vasos Coronários , Insuficiência da Valva Mitral , Humanos , Lactente , Recém-Nascido , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Síndrome de Bland-White-Garland/diagnóstico , Síndrome de Bland-White-Garland/cirurgia , Síndrome de Bland-White-Garland/complicações , Artéria Coronária Esquerda Anormal/complicações , Anomalias dos Vasos Coronários/diagnóstico , Anomalias dos Vasos Coronários/cirurgia , Volume Sistólico , Estudos Retrospectivos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Artéria Pulmonar/anormalidades , Função Ventricular Esquerda , Insuficiência da Valva Mitral/cirurgia , Resultado do Tratamento
16.
Rheumatology (Oxford) ; 62(4): 1652-1661, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-35984286

RESUMO

OBJECTIVE: To investigate the therapeutic effect and mechanism of metformin on knee OA in normal diet (ND) mice or high-fat diet (HFD)-induced obese mice. METHODS: Destabilization of the medial meniscus surgery was performed in ND mice or HFD mice, and metformin was administrated in drinking water or not. The changes of OA joint structure, infiltration and polarization of synovial macrophages and circulating and local levels of leptin and adiponectin were evaluated. In vitro, the effects of metformin on chondrocytes and macrophages, and of conditioned mediums derived from mouse abdominal fat on murine chondrogenic cell line ATDC5 and murine macrophage cell line RAW264.7, were detected. RESULTS: Metformin showed protective effects on OA, characterized by reductions on OARSI score [2.00, 95% CI (1.15, 2.86) for ND mice and 3.17, 95% CI (2.37, 3.96) for HFD mice] and synovitis score [1.17, 95% CI (0.27, 2.06) for ND mice and 2.50, 95% CI (1.49, 3.51) for HFD mice] after 10 weeks of treatment, and the effects were more significant in HFD mice than in ND mice. Mechanistically, in addition to decreasing apoptosis and matrix-degrading enzymes expression in chondrocytes as well as infiltration and pro-inflammatory differentiation of synovial macrophages, metformin reduced leptin secretion by adipose tissue in HFD mice. CONCLUSIONS: Metformin protects against knee OA which could be through reducing apoptosis and catabolism of chondrocytes, and suppressing infiltration and pro-inflammatory polarization of synovial macrophages. For obese mice, metformin has a greater protective effect in knee OA additionally through reducing leptin secretion from adipose tissue.


Assuntos
Metformina , Osteoartrite , Camundongos , Animais , Leptina , Metformina/farmacologia , Metformina/uso terapêutico , Condrócitos/metabolismo , Camundongos Obesos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Adipócitos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
17.
J Biomater Sci Polym Ed ; 34(9): 1157-1170, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36484704

RESUMO

Polysaccharides are widely used in biomedicine because of their unique biological activity, low costs, and easy-to-obtain. In this paper, Bletilla striata polysaccharide (BSP) was integrated into waterborne polyurethane (WPU) to prepare a series of WPU-BSP (WPUB) hydrogels. The hydrogels showed good compressive strength, water absorption and retention ability, which are favorable for wound healing. Among them, the WPUB4 gel has the best comprehensive performances, including a compressive strength of 1.07 MPa, a swelling rate of 16.3, a reasonable WVRT of 2013 g/m2/day, and a long water retention time. About the in vitro biocompatibility, moreover, the WPUB4 hydrogel has a low hemolysis rate of 2.47%, a hydroxyl radical clearance rate of 35.5%, and little cytotoxicity with cell viability of 101.4%. Most importantly, the WPUB hydrogel dressings showed excellent ability in promoting wound healing. Compared to the conventional gauze, the wound surface area of mice treated with WPUB hydrogel was significantly reduced on day 3 after surgery and the wounds were healed on day 7. The new skin had a thicker epidermis and more capillaries. The WPUB hydrogels integrating BSP are promising to function as wound dressings.


Assuntos
Hidrogéis , Orchidaceae , Animais , Camundongos , Poliuretanos , Polissacarídeos , Bandagens , Água
18.
Brain Behav ; 13(2): e2870, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579576

RESUMO

BACKGROUND AND AIM: Traumatic spinal cord injury (SCI) is a common and devastating central nervous disease, the treatment of which faces many challenges to the medical community and society as a whole. Treatment measures based on oxidative stress of spinal motor neurons during SCI are expected to help restore biological functions of neurons under injury conditions. However, to date, there are no systematic reports regarding oxidative stress on spinal motor neuron injury. Our aim is to better understand and explain the influences and mechanisms of oxidative stress on spinal motor neurons during SCI. METHODS: We first exposed VSC4.1 motor neurons to hydrogen peroxide (H2 O2 ) and evaluated the effects on cell viability, morphology, cycling, and apoptosis, with an emphasis on the changes to the cytoskeleton and the effect of N-acetyl-l-cysteine (NAC) on these changes. Then, we investigated the effects of NAC on these cytoskeletal changes in vitro and in vivo. RESULTS: We found that H2 O2 caused severe damage to the normal cytoskeleton, leading to a reduction in neurite length and number, rearrangement of the actin cytoskeleton, and disorder of the microtubules and neurofilaments in VSC4.1. Importantly, NAC attenuated the oxidative damage of spinal motor neurons in vitro and in vivo, promoting the recovery of hindlimb motor ability in mice with SCI at the early stage of injury. CONCLUSION: This study shows that oxidative stress plays an important role in the cytoskeleton destruction of spinal motor neurons in SCI, and treatment of SCI on this basis is a promising strategy. These findings will help to elucidate the role of oxidative stress in spinal motor neuron injury in SCI and provide references for further research into the study of the pathology and underlying mechanism of SCI.


Assuntos
Neurônios Motores , Traumatismos da Medula Espinal , Camundongos , Animais , Estresse Oxidativo , Traumatismos da Medula Espinal/terapia , Citoesqueleto/patologia , Microtúbulos/patologia , Medula Espinal
19.
Int J Mol Med ; 51(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36416350

RESUMO

Following the publication of the above article, an interested reader drew to the authors' attention that Figs. 1C and 2 in the paper appeared to contain instances of duplicated data. The authors were able to consult their original data files, and realized that these figures had indeed been assembled incorrectly. Moreover, they identified further errors with a number of the other figures in their published formats (specifically, Figs. 3, 4, 6 and 7), and requested that a corrigendum be published to take account of all the errors that were made during the compilation of these figures. The Editor of International Journal of Molecular Medicine has considered the authors' request to publish a corrigendum, but has declined this request on account of the large number of errors that have been identified, and subsequently determined that this article should be retracted from the Journal on the basis of an overall lack of confidence in the presented data. Upon receiving this decision from the Editor, the authors were in agreement that the article should be retracted. The Editor apologizes to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 39: 527­538, 2017; DOI: 10.3892/ijmm.2017.2880].

20.
RSC Adv ; 12(50): 32534-32551, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36425719

RESUMO

A dual-loaded multi-targeted drug delivery nanosystem was constructed to simultaneously load paclitaxel (PTX) and 5-fluorouracil (5-FU) for targeted delivery and sustained release at tumor sites. Hollow mesoporous silica nanoparticles (HMSNs) were prepared by the inverse microemulsion method, then modified with folic acid and pH- and temperature-responsive materials, co-loaded with PTX and 5-FU, and finally encapsulated into lipid membranes. The obtained nanosystem was selectively internalized by human breast cancer MCF-7 cells that overexpress folate receptors through an energy-dependent process, and it released both drugs in vitro in a simulated tumor microenvironment. Moreover, the inhibitory effect of the dual-loaded nanoparticles was significantly better than that of the free drugs, suggesting that the composite nanosystem has the potential to selectively target tumor sites and perform the synergistic effect of PTX and 5-FU, while reducing their toxic effects on normal tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA