Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 9(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33504576

RESUMO

BACKGROUND: Oncolytic viruses (OVs) have shown promise in containing cancer progression in both animal models and clinical trials. How to further improve the efficacy of OVs are intensively explored. Arming OVs with immunoregulatory molecules has emerged as an important means to enhance their oncolytic activities majorly based on the mechanism of reverting the immunosuppressive nature of tumor environment. In this study, we aimed to identify the optimal combination of different OVs and immunomodulatory molecules for solid tumor treatment as well as the underlying mechanism, and subsequently evaluated its potential synergy with other immunotherapies. METHODS: Panels of oncolytic viruses and cells stably expressing immunoregulatory molecules were separately evaluated for treating solid tumors in mouse model. A tumor-targeted replicating vaccinia virus Tian Tan strain with deletion of TK gene (TTVΔTK) was armed rationally with IL-21 to create rTTVΔTK-IL21 through recombination. CAR-T cells and iNKT cells were generated from human peripheral blood mononuclear cells. The impact of rTTVΔTK-IL21 on tumor-infiltrating lymphocytes was assessed by flow cytometry, and its therapeutic efficacy as monotherapy or in combination with CAR-T and iNKT therapy was assessed in mouse tumor models. RESULTS: IL-21 and TTV was respectively identified as most potent immunomodulatory molecule and oncolytic virus for solid tumor suppression in mouse models. A novel recombinant oncolytic virus that resulted from their combination, namely rTTVΔTK-mIL21, led to significant tumor regression in mice, even for noninjected distant tumor. Mechanistically, rTTV∆TK-mIL21 induced a selective enrichment of immune effector cells over Treg cells and engage a systemic response of therapeutic effect. Moreover, its human form showed a notable synergy with CAR-T or iNKT therapy for tumor treatment when coupled in humanized mice. CONCLUSION: With a strong potency of shaping tumor microenvironment toward favoring TIL activities, rTTVΔTK-IL21 represents a new opportunity worthy of further exploration in clinical settings for solid tumor control, particularly in combinatorial strategies with other immunotherapies. ONE SENTENCE SUMMARY: IL21-armed recombinant oncolytic vaccinia virus has potent anti-tumor activities as monotherapy and in combination with other immunotherapies.


Assuntos
Imunoterapia Adotiva/métodos , Interleucinas/genética , Células T Matadoras Naturais/transplante , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo , Vaccinia virus/fisiologia , Animais , Terapia Combinada , Feminino , Humanos , Interleucinas/metabolismo , Camundongos , Neoplasias/imunologia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/fisiologia , Estudo de Prova de Conceito , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral , Vaccinia virus/genética , Vaccinia virus/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Virol Sin ; 36(3): 365-372, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32696399

RESUMO

Successful vaccines induce specific immune responses and protect against various viral and bacterial infections. Noninactivated vaccines, especially viral vector vaccines such as adenovirus and poxvirus vaccines, dominate the vaccine market because their viral particles are able to replicate and proliferate in vivo and produce lasting immunity in a manner similar to natural infection. One challenge of human and livestock vaccination is vaccine stability related to the antigenicity and infectivity. Freeze-drying is the typical method to maintain virus vaccine stability, while cold chain transportation is required for temperatures about 2 °C-8 °C. The financial and technological resource requirements hinder vaccine distribution in underdeveloped areas. In this study, we developed a freeze-drying formula consisting of bovine serum albumin (BSA), L-glutamic acid (L-Glu), polyethylene glycol (PEG), and dextran (DEX) to improve the thermal stability and activity of viral vaccines, including vaccinia recombinant vaccine (rTTV-OVA) and adenovirus vaccine (Ad5-ENV). We compared a panel of five different formulations (PEG: DEX: BSA: L-GLU = 50:9:0:0(#1), 50:5:4:0(#2), 50:10:9:0(#3), 50:0:0:9(#4), and 50:1:0:8(#5), respectively) and optimized the freeze-drying formula for rTTV-OVA and Ad5-ENV. We found that the freeze-drying formulations #2 and #3 could maintain rTTV-OVA infectivity at temperatures of 4 °C and 25 °C and that rTTV-OVA immunogenicity was retained during lyophilization. However, formulations #4 and #5 maintained Ad5-ENV infectivity under the same conditions, and Ad5-ENV immunogenicity had maximum retention with freeze-drying formulation #4. In summary, we developed new freeze-drying formulations that increased virus vaccine storage times and retained immunogenicity at an ambient temperature.


Assuntos
Vacinas contra Adenovirus , Adenoviridae/genética , Estabilidade de Medicamentos , Liofilização , Humanos , Temperatura
3.
Sci Signal ; 13(626)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265337

RESUMO

Type I interferons (IFNs) are the first line of defense against viral infection. Using a mouse model of influenza A virus infection, we found that IFN-κ was one of the earliest responding type I IFNs after infection with H9N2, a low-pathogenic avian influenza A virus, whereas this early induction did not occur upon infection with the epidemic-causing H7N9 virus. IFN-κ efficiently suppressed the replication of various influenza viruses in cultured human lung cells, and chromodomain helicase DNA binding protein 6 (CHD6) was the major effector for the antiviral activity of IFN-κ, but not for that of IFN-α or IFN-ß. The induction of CHD6 required both of the type I IFN receptor subunits IFNAR1 and IFNAR2, the mitogen-activated protein kinase (MAPK) p38, and the transcription factor c-Fos but was independent of signal transducer and activator of transcription 1 (STAT1) activity. In addition, we showed that pretreatment with IFN-κ protected mice from lethal influenza viral challenge. Together, our findings identify an IFN-κ-specific pathway that constrains influenza A virus and provide evidence that IFN-κ may have potential as a preventative and therapeutic agent against influenza A virus.


Assuntos
Caderinas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Vírus da Influenza A/fisiologia , Interferon Tipo I/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Proto-Oncogênicas c-fos/imunologia , Receptor de Interferon alfa e beta/imunologia , Replicação Viral/imunologia , Animais , Camundongos , Infecções por Orthomyxoviridae/imunologia
4.
Nat Commun ; 9(1): 824, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483513

RESUMO

Severe influenza A virus (IAV) infection is associated with immune dysfunction. Here, we show circulating CD8+ T-cell profiles from patients hospitalized with avian H7N9, seasonal IAV, and influenza vaccinees. Patient survival reflects an early, transient prevalence of highly activated CD38+HLA-DR+PD-1+ CD8+ T cells, whereas the prolonged persistence of this set is found in ultimately fatal cases. Single-cell T cell receptor (TCR)-αß analyses of activated CD38+HLA-DR+CD8+ T cells show similar TCRαß diversity but differential clonal expansion kinetics in surviving and fatal H7N9 patients. Delayed clonal expansion associated with an early dichotomy at a transcriptome level (as detected by single-cell RNAseq) is found in CD38+HLA-DR+CD8+ T cells from patients who succumbed to the disease, suggesting a divergent differentiation pathway of CD38+HLA-DR+CD8+ T cells from the outset during fatal disease. Our study proposes that effective expansion of cross-reactive influenza-specific TCRαß clonotypes with appropriate transcriptome signatures is needed for early protection against severe influenza disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Seleção Clonal Mediada por Antígeno/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Humana/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Subpopulações de Linfócitos T/imunologia , Transcriptoma/imunologia , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Estudos de Coortes , Estado Terminal , Regulação da Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Hospitalização , Humanos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/genética , Influenza Humana/mortalidade , Influenza Humana/virologia , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Análise de Sobrevida , Subpopulações de Linfócitos T/patologia , Subpopulações de Linfócitos T/virologia
5.
Emerg Microbes Infect ; 6(8): e77, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28831192

RESUMO

Zika virus (ZIKV) infection can cause fetal developmental abnormalities and Guillain-Barré syndrome in adults. Although progress has been made in understanding the link between ZIKV infection and microcephaly, the pathology of ZIKV, particularly the viral reservoirs in human, remains poorly understood. Several studies have shown that compared to serum samples, patients' urine samples often have a longer duration of ZIKV persistency and higher viral load. This finding suggests that an independent viral reservoir may exist in the human urinary system. Despite the clinical observations, the host cells of ZIKV in the human urinary system are poorly characterized. In this study, we demonstrate that ZIKV can infect renal proximal tubular epithelial cells (RPTEpiCs) in immunodeficient mice in vivo and in both immortalized and primary human renal proximal tubular epithelial cells (hRPTEpiCs) in vitro. Importantly, ZIKV infection in mouse kidneys caused caspase-3-mediated apoptosis of renal cells. Similarly, in vitro infection of immortalized and primary hRPTEpiCs resulted in notable cytopathic effects. Consistent with the clinical observations, we found that ZIKV infection can persist with prolonged duration in hRPTEpiCs. RNA-Seq analyses of infected hRPTEpiCs revealed a large number of transcriptional changes in response to ZIKV infection, including type I interferon signaling genes and anti-viral response genes. Our results suggest that hRPTEpiCs are a potential reservoir of ZIKV in the human urinary system, providing a possible explanation for the prolonged persistency of ZIKV in patients' urine.


Assuntos
Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/virologia , Urotélio/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Apoptose , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Reservatórios de Doenças/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Rim/patologia , Rim/virologia , Túbulos Renais Proximais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Urina/virologia , Urotélio/citologia , Carga Viral , Replicação Viral , Zika virus/isolamento & purificação , Infecção por Zika virus/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA