Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
iScience ; 26(8): 107269, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37609633

RESUMO

We present DoSurvive, a user-friendly survival analysis web tool and a cancer prognostic biomarker centered database. DoSurvive is the first database that allows users to perform multivariant survival analysis for cancers with customized gene/patient list. DoSurvive offers three survival analysis methods, Log rank test, Cox regression and accelerated failure time model (AFT), for users to analyze five types of quantitative features (mRNA, miRNA, lncRNA, protein and methylation of CpG islands) with four survival types, i.e. overall survival, disease-specific survival, disease-free interval, and progression-free interval, in 33 cancer types. Notably, the implemented AFT model provides an alternative method for genes/features which failed the proportional hazard assumption in Cox regression. With the unprecedented number of survival models implemented and high flexibility in analysis, DoSurvive is a unique platform for the identification of clinically relevant targets for cancer researcher and practitioners. DoSurvive is freely available at http://dosurvive.lab.nycu.edu.tw/.

2.
Cancer Cell Int ; 23(1): 112, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309001

RESUMO

Oral squamous cell carcinoma (OSCC) is the predominant histological type of the head and neck squamous cell carcinoma (HNSCC). By comparing the differentially expressed genes (DEGs) in OSCC-TCGA patients with copy number variations (CNVs) that we identify in OSCC-OncoScan dataset, we herein identified 37 dysregulated candidate genes. Among these potential candidate genes, 26 have been previously reported as dysregulated proteins or genes in HNSCC. Among 11 novel candidates, the overall survival analysis revealed that melanotransferrin (MFI2) is the most significant prognostic molecular in OSCC-TCGA patients. Another independent Taiwanese cohort confirmed that higher MFI2 transcript levels were significantly associated with poor prognosis. Mechanistically, we found that knockdown of MFI2 reduced cell viability, migration and invasion via modulating EGF/FAK signaling in OSCC cells. Collectively, our results support a mechanistic understanding of a novel role for MFI2 in promoting cell invasiveness in OSCC.

3.
Front Oncol ; 12: 940402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936710

RESUMO

TP53 is mutated in more than 80% of basal-like breast cancers (BLBCs). BLBCs with TP53 mutation are usually high-grade and have worse responses to chemotherapy, leading to poor clinical outcomes. Wild-type p53 (WTp53) is well-accepted to promote fatty acid oxidation (FAO); however, in this study, we demonstrate that mutant p53 (Mutp53) enhances FAO activity through constitutively upregulating CPT1C via dysregulating the miR-200c-ZEB2 axis. Sustained CPT1C expression contributes to the metabolic preference of FAO, epithelial-mesenchymal transition (EMT) phenotypes, migration, invasion, and cancer stemness in BLBC, which is mediated by modulating the redox status. Furthermore, interference of CPT1C expression impairs tumor growth and pulmonary colonization of BLBC cells in vivo, and even postpones the occurrence of spontaneous metastasis, resulting in a prolonged disease-specific survival (DSS). Consistently, clinical validation reveals that high CPT1C is observed in breast cancer patients with metastasis and is correlated with poor overall, disease-free, progression-free, and disease-specific survival in BLBC patients. Together, unlike WTp53 which transiently transactivates CPT1C, Mutp53 provides long-term benefits through sustaining CPT1C expression by disturbing the miR-200c-ZEB2 axis, which potentiates FAO and facilitates tumor progression in BLBC, suggesting that targeting Mutp53-CPT1C-driven metabolic reprogramming is promising to serve as novel therapeutic strategies for BLBC in the future.

4.
J Virol ; 96(16): e0075522, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35914074

RESUMO

Primary effusion lymphoma (PEL) is a fatal B-cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Inducing KSHV lytic replication that causes the death of host cells is an attractive treatment approach for PE; however, combination therapy inhibiting viral production is frequently needed to improve its outcomes. We have previously shown that the KSHV lytic protein K-bZIP can SUMOylate histone lysine demethylase 4A (KDM4A) at lysine 471 (K471) and this SUMOylation is required for virus production upon KSHV reactivation. Here, we demonstrate that SUMOylation of KDM4A orchestrates PEL cell survival, a major challenge for the success of PEL treatment; and cell movement and angiogenesis, the cell functions contributing to PEL cell extravasation and dissemination. Furthermore, integrated ChIP-seq and RNA-seq analyses identified interleukin-10 (IL-10), an immunosuppressive cytokine, as a novel downstream target of KDM4A. We demonstrate that PEL-induced angiogenesis is dependent on IL-10. More importantly, single-cell RNA sequencing (scRNA-seq) analysis demonstrated that, at the late stage of KSHV reactivation, KDM4A determines the fates of PEL cells, as evidenced by two distinct cell populations; one with less apoptotic signaling expresses high levels of viral genes and the other is exactly opposite, while KDM4A-K417R-expressing cells contain only the apoptotic population with less viral gene expression. Consistently, KDM4A knockout significantly reduced cell viability and virus production in KSHV-reactivated PEL cells. Since inhibiting PEL extravasation and eradicating KSHV-infected PEL cells without increasing viral load provide a strong rationale for treating PEL, this study indicates targeting KDM4A as a promising therapeutic option for treating PEL. IMPORTANCE PEL is an aggressive and untreatable B-cell lymphoma caused by KSHV infection. Therefore, new therapeutic approaches for PEL need to be investigated. Since simultaneous induction of KSHV reactivation and apoptosis can directly kill PEL cells, they have been applied in the treatment of this hematologic malignancy and have made progress. Epigenetic therapy with histone deacetylase (HDAC) inhibitors has been proved to treat PEL. However, the antitumor efficacies of HDAC inhibitors are modest and new approaches are needed. Following our previous report showing that the histone lysine demethylase KDM4A and its SUMOylation are required for lytic reactivation of KSHV in PEL cells, we further investigated its cellular function. Here, we found that SUMOylation of KDM4A is required for the survival, movement, and angiogenesis of lytic KSHV-infected PEL cells. Together with our previous finding showing the importance of KDM4A SUMOylation in viral production, KDM4A can be a potential therapeutic target for PEL.


Assuntos
Herpesvirus Humano 8 , Histona Desmetilases com o Domínio Jumonji/metabolismo , Linfoma de Efusão Primária , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Histona Desmetilases/genética , Humanos , Interleucina-10/metabolismo , Ativação Viral , Replicação Viral
5.
Microbiol Spectr ; 10(3): e0259521, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638785

RESUMO

Leptospirosis, an emerging infectious disease caused by pathogenic Leptospira spp., occurs in ecoregions with heavy rainfall and has public health implications. Macrophages are the major anti-Leptospira phagocytes that infiltrate the kidneys during renal leptospirosis, which is caused by leptospires residing in the renal tubules. The pathogenicity of Leptospira spp. in immune effector cells such as macrophages is not well understood. To evaluate this pathogenesis, we characterized and compared the transcriptome-wide alterations in macrophages infected with pathogenic and nonpathogenic Leptospira spp. Using transcriptome data and quantitative reverse transcription PCR analysis, at 2 h postinfection, the hypoxia-inducible factor-1α-dependent glycolysis pathway was implicated in pathogenic Leptospira-infected macrophages but not in nonpathogenic leptospiral infections. Immune-related biological processes were mostly activated in pathogenic Leptospira-infected macrophages, and flow cytometry investigations revealed that classically activated macrophages represent the predominant polarization status. At 24 h after infection, biological pathways associated with interleukin-10, IL-10, signaling the induction of macrophage tolerance, as well as higher levels of IL-10 mRNA and protein expression, were observed in nonpathogenic Leptospira-infected macrophages compared to in pathogenic leptospiral infection. Following leptospiral infection of macrophages, strong IL-10-expressing transcriptome signatures were observed following nonpathogenic leptospiral infection. The transcriptional programs generated in Leptospira-infected macrophages revealed an inflammatory milieu following the production of a critical anti-inflammatory cytokine, IL-10, which is implicated in controlling the pathogenicity of activated macrophages. These findings imply that IL-10-mediated anti-inflammatory responses and tolerance in activated macrophages induced by nonpathogenic Leptospira spp. infection reduce inflammation and tissue damage, thus providing a potential therapeutic target for leptospirosis. IMPORTANCE Activation of macrophages by Leptospira spp. infection is thought to be involved in the pathogenesis of leptospirosis. To evaluate the innate macrophage responses to Leptospira spp., specifically pathogenic versus nonpathogenic Leptospira spp., we characterized the entire transcriptome-wide alterations in infected macrophages. We showed that hypoxia-inducible factor-1α and immune-related pathways are activated in pathogenic leptospiral-infected macrophages. We confirmed the significantly high levels of IL-10-expressing signatures and tolerance in activated macrophages caused by nonpathogenic Leptospira infection. Furthermore, nonpathogenic leptospiral infections attenuated macrophage activation responses. These findings suggest a potential therapeutic strategy for the immune microenvironment caused by macrophage activation driven by IL-10 overexpression, which may contribute to regulating inflammation in leptospirosis.


Assuntos
Leptospira , Leptospirose , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Leptospira/genética , Leptospirose/genética , Macrófagos , Virulência
6.
BMC Genomics ; 22(Suppl 5): 918, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508961

RESUMO

BACKGROUND: Pan-cancer studies have disclosed many commonalities and differences in mutations, copy number variations, and gene expression alterations among cancers. Some of these features are significantly associated with clinical outcomes, and many prognosis-predictive biomarkers or biosignatures have been proposed for specific cancer types. Here, we systematically explored the biological functions and the distribution of survival-related genes (SRGs) across cancers. RESULTS: We carried out two different statistical survival models on the mRNA expression profiles in 33 cancer types from TCGA. We identified SRGs in each cancer type based on the Cox proportional hazards model and the log-rank test. We found a large difference in the number of SRGs among different cancer types, and most of the identified SRGs were specific to a particular cancer type. While these SRGs were unique to each cancer type, they were found mostly enriched in cancer hallmark pathways, e.g., cell proliferation, cell differentiation, DNA metabolism, and RNA metabolism. We also analyzed the association between cancer driver genes and SRGs and did not find significant over-representation amongst most cancers. CONCLUSIONS: In summary, our work identified all the SRGs for 33 cancer types from TCGA. In addition, the pan-cancer analysis revealed the similarities and the differences in the biological functions of SRGs across cancers. Given the potential of SRGs in clinical utility, our results can serve as a resource for basic research and biotech applications.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Prognóstico
7.
Gut ; 71(2): 309-321, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33687943

RESUMO

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a global disease characterised by chronic obstruction of lung airflow interfering with normal breathing. Although the microbiota of respiratory tract is established to be associated with COPD, the causality of gut microbiota in COPD development is not yet established. We aimed to address the connection between gut microbiota composition and lung COPD development, and characterise bacteria and their derived active components for COPD amelioration. DESIGN: A murine cigarette smoking (CS)-based model of COPD and strategies evaluating causal effects of microbiota were performed. Gut microbiota structure was analysed, followed by isolation of target bacterium. Single cell RNA sequencing, together with sera metabolomics analyses were performed to identify host responsive molecules. Bacteria derived active component was isolated, followed by functional assays. RESULTS: Gut microbiota composition significantly affects CS-induced COPD development, and faecal microbiota transplantation restores COPD pathogenesis. A commensal bacterium Parabacteroides goldsteinii was isolated and shown to ameliorate COPD. Reduction of intestinal inflammation and enhancement of cellular mitochondrial and ribosomal activities in colon, systematic restoration of aberrant host amino acids metabolism in sera, and inhibition of lung inflammations act as the important COPD ameliorative mechanisms. Besides, the lipopolysaccharide derived from P. goldsteinii is anti-inflammatory, and significantly ameliorates COPD by acting as an antagonist of toll-like receptor 4 signalling pathway. CONCLUSION: The gut microbiota-lung COPD axis was connected. A potentially benefial bacterial strain and its functional component may be developed and used as alternative agents for COPD prevention or treatment.


Assuntos
Bacteroidetes/isolamento & purificação , Microbioma Gastrointestinal/fisiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Animais , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar
8.
Pharmaceutics ; 13(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34834318

RESUMO

Brachytherapy can provide sufficient doses to head and neck squamous cell carcinoma (HNSCC) with minimal damage to nearby normal tissues. In this study, the ß--emitter 177Lu was conjugated to DTPA-polyethylene glycol (PEG) decorated gold nanostars (177Lu-DTPA-pAuNS) used in surface-enhanced Raman scattering and photothermal therapy (PTT). The accumulation and therapeutic efficacy of 177Lu-DTPA-pAuNS were compared with those of 177Lu-DTPA on an orthotopic HNSCC tumor model. The SPECT/CT imaging and biodistribution studies showed that 177Lu-DTPA-pAuNS can be accumulated in the tumor up to 15 days, but 177Lu-DTPA could not be detected at 24 h after injection. The tumor viability and growth were suppressed by injected 177Lu-DTPA-pAuNS but not nonconjugated 177Lu-DTPA, as evaluated by bioluminescent imaging. The radiation-absorbed dose of the normal organ was the highest in the liver (0.33 mSv/MBq) estimated in a 73 kg adult, but that of tumorsphere (0.5 g) was 3.55 mGy/MBq, while intravenous injection of 177Lu-DTPA-pAuNS resulted in 1.97 mSv/MBq and 0.13 mGy/MBq for liver and tumorsphere, respectively. We also observed further enhancement of tumor-suppressive effects by a combination of 177Lu-DTPA-pAuNS and PTT compared to 177Lu-DTPA-pAuNS alone. In conclusion, 177Lu-DTPA-pAuNS may be considered as a potential radiopharmaceutical agent for HNSCC brachytherapy.

9.
Cancers (Basel) ; 13(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830778

RESUMO

Radioresistance is one of the major factors that contributes to radiotherapy failure in oral cavity squamous cell carcinoma (OSCC). By comparing the prognostic values of 20,502 genes expressed in patients in The Cancer Genome Atlas (TCGA)-OSCC cohort with (n = 162) and without radiotherapy (n = 118), herein identified 297 genes positively correlated with poor disease-free survival in OSCC patients with radiotherapy as the potential radioresistance-associated genes. Among the potential radioresistance-associated genes, 36 genes were upregulated in cancerous tissues relative to normal tissues. The bioinformatics analysis revealed that 60S ribosomal protein L36a (RPL36A) was the most frequently detected gene involved in radioresistance-associated gene-mediated biological pathways. Then, two independent cohorts (n = 162 and n = 136) were assessed to confirm that higher RPL36A transcript levels were significantly associated with a poor prognosis only in OSCC patients with radiotherapy. Mechanistically, we found that knockdown of RPL36A increased radiosensitivity via sensitizing cells to DNA damage and promoted G2/M cell cycle arrest followed by augmenting the irradiation-induced apoptosis pathway in OSCC cells. Taken together, our study supports the use of large-scale genomic data for identifying specific radioresistance-associated genes and suggests a regulatory role for RPL36A in the development of radioresistance in OSCC.

10.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502535

RESUMO

Gut microbiota are reported to be associated with many diseases, including cancers. Several bacterial taxa have been shown to be associated with cancer development or response to treatment. However, longitudinal microbiota alterations during the development of cancers are relatively unexplored. To better understand how microbiota changes, we profiled the gut microbiota composition from prostate cancer-bearing mice and control mice at five different time points. Distinct gut microbiota differences were found between cancer-bearing mice and control mice. Akkermansiaceae was found to be significantly higher in the first three weeks in cancer-bearing mice, which implies its role in the early stage of cancer colonization. We also found that Bifidobacteriaceae and Enterococcaceae were more abundant in the second and last sampling week, respectively. The increments of Akkermansiaceae, Bifidobacteriaceae and Enterococcaceae were previously found to be associated with responses to immunotherapy, which suggests links between these bacteria families and cancers. Additionally, our function analysis showed that the bacterial taxa carrying steroid biosynthesis and butirosin and neomycin biosynthesis were increased, whereas those carrying naphthalene degradation decreased in cancer-bearing mice. Our work identified the bacteria taxa altered during prostate cancer progression and provided a resource of longitudinal microbiota profiles during cancer development in a mouse model.


Assuntos
Microbioma Gastrointestinal/fisiologia , Neoplasias da Próstata/microbiologia , Neoplasias da Próstata/patologia , Verrucomicrobia/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Estadiamento de Neoplasias , RNA Ribossômico 16S/genética , Esteroides/biossíntese , Fatores de Tempo , Verrucomicrobia/genética , Verrucomicrobia/metabolismo
11.
Mol Cancer Res ; 19(11): 1900-1916, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34312289

RESUMO

miR-200c is a tumor suppressor miRNA that plays a critical role in regulating epithelial phenotype and cancer stemness. p53 deficiency downregulates the expression of miR-200c and leads to epithelial-mesenchymal transition (EMT) and stemness phenotype, which contributes to the progression of breast cancers. In this study, we demonstrated that CRISPR-mediated knockout (KO) of miR-200c induces metabolic features similar to the metabolic rewiring caused by p53 hot-spot mutations, and that impairing this metabolic reprogramming interferes with miR-200c deficiency-induced stemness and transformation. Moreover, restoring miR-200c expression compromised EMT, stem-cell properties, and the Warburg effect caused by p53 mutations, suggesting that mutant p53 (MTp53) induces EMT-associated phenotypes and metabolic reprogramming by downregulating miR-200c. Mechanistically, decreased expression of PCK2 was observed in miR-200c- and p53-deficient mammary epithelial cells, and forced expression of miR-200c restored PCK2 in p53 mutant-expressing cells. Reduced PCK2 expression not only led to attenuated oxidative phosphorylation (OXPHOS) and increased stemness in normal mammary epithelial cells but also compromised the enhanced OXPHOS and suppression of cancer stemness exerted by miR-200c in p53 mutation-bearing basal-like breast cancer (BLBC) cells. Clinically, PCK2 expression is negatively associated with EMT markers and is downregulated in basal-like subtype and cases with low miR-200c expression or p53 mutation. Notably, low expression of PCK2 is associated with poor overall survival (OS) in patients with breast cancer. IMPLICATIONS: Together, our results suggest that p53 and miR-200c regulate OXPHOS and stem/cancer stemness through PCK2, and loss of the p53-miR-200c-PCK2 axis might provide metabolic advantages that facilitate cancer stemness, leading to the progression of BLBCs.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Masculino , Fosforilação Oxidativa
12.
Sci Rep ; 11(1): 5022, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658578

RESUMO

We hypothesized that epigenetics is a link between smoking/allergen exposures and the development of Asthma and chronic obstructive pulmonary disease (ACO). A total of 75 of 228 COPD patients were identified as ACO, which was independently associated with increased exacerbations. Microarray analysis identified 404 differentially methylated loci (DML) in ACO patients, and 6575 DML in those with rapid lung function decline in a discovery cohort. In the validation cohort, ACO patients had hypermethylated PDE9A (+ 30,088)/ZNF323 (- 296), and hypomethylated SEPT8 (- 47) genes as compared with either pure COPD patients or healthy non-smokers. Hypermethylated TIGIT (- 173) gene and hypomethylated CYSLTR1 (+ 348)/CCDC88C (+ 125,722)/ADORA2B (+ 1339) were associated with severe airflow limitation, while hypomethylated IFRD1 (- 515) gene with frequent exacerbation in all the COPD patients. Hypermethylated ZNF323 (- 296) / MPV17L (+ 194) and hypomethylated PTPRN2 (+ 10,000) genes were associated with rapid lung function decline. In vitro cigarette smoke extract and ovalbumin concurrent exposure resulted in specific DNA methylation changes of the MPV17L / ZNF323 genes, while 5-aza-2'-deoxycytidine treatment reversed promoter hypermethylation-mediated MPV17L under-expression accompanied with reduced apoptosis and decreased generation of reactive oxygen species. Aberrant DNA methylations may constitute a determinant for ACO, and provide a biomarker of airflow limitation, exacerbation, and lung function decline.


Assuntos
Asma/genética , Metilação de DNA , Epigênese Genética , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/efeitos adversos , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Alérgenos/efeitos adversos , Asma/complicações , Asma/etiologia , Asma/metabolismo , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise em Microsséries , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Fenótipo , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Testes de Função Respiratória , Septinas/genética , Septinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Molecules ; 25(16)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784458

RESUMO

Hypopharyngeal cancer (HPC) accounts for the lowest survival rate among all types of head and neck cancers (HNSCC). However, the therapeutic approach for HPC still needs to be investigated. In this study, a theranostic 188Re-liposome was prepared to treat orthotopic HPC tumors and analyze the deregulated microRNA expressive profiles. The therapeutic efficacy of 188Re-liposome on HPC tumors was evaluated using bioluminescent imaging followed by next generation sequencing (NGS) analysis, in order to address the deregulated microRNAs and associated signaling pathways. The differentially expressed microRNAs were also confirmed using clinical HNSCC samples and clinical information from The Cancer Genome Atlas (TCGA) database. Repeated doses of 188Re-liposome were administrated to tumor-bearing mice, and the tumor growth was apparently suppressed after treatment. For NGS analysis, 13 and 9 microRNAs were respectively up-regulated and down-regulated when the cutoffs of fold change were set to 5. Additionally, miR-206-3p and miR-142-5p represented the highest fold of up-regulation and down-regulation by 188Re-liposome, respectively. According to Differentially Expressed MiRNAs in human Cancers (dbDEMC) analysis, most of 188Re-liposome up-regulated microRNAs were categorized as tumor suppressors, while down-regulated microRNAs were oncogenic. The KEGG pathway analysis showed that cancer-related pathways and olfactory and taste transduction accounted for the top pathways affected by 188Re-liposome. 188Re-liposome down-regulated microRNAs, including miR-143, miR-6723, miR-944, and miR-136 were associated with lower survival rates at a high expressive level. 188Re-liposome could suppress the HPC tumors in vivo, and the therapeutic efficacy was associated with the deregulation of microRNAs that could be considered as a prognostic factor.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Hipofaríngeas/radioterapia , Lipossomos/química , MicroRNAs/genética , Polietilenoglicóis/química , Radioisótopos/administração & dosagem , Radioisótopos/uso terapêutico , Rênio/administração & dosagem , Rênio/uso terapêutico , Animais , Cápsulas , Linhagem Celular Tumoral , Humanos , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patologia , Camundongos , Radioisótopos/química , Rênio/química , Análise de Sobrevida
14.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365959

RESUMO

We hypothesized that DNA methylation patterns may contribute to the development of active pulmonary tuberculosis (TB). Illumina's DNA methylation 450 K assay was used to identify differentially methylated loci (DML) in a discovery cohort of 12 active pulmonary TB patients and 6 healthy subjects (HS). DNA methylation levels were validated in an independent cohort of 64 TB patients and 24 HS. Microarray analysis identified 1028 DMLs in TB patients versus HS, and 3747 DMLs in TB patients after versus before anti-TB treatment, while autophagy was the most enriched signaling pathway. In the validation cohort, PARP9 and miR505 genes were hypomethylated in the TB patients versus HS, while RASGRP4 and GNG12 genes were hypermethylated, with the former two further hypomethylated in those with delayed sputum conversion, systemic symptoms, or far advanced lesions. MRPS18B and RPTOR genes were hypomethylated in TB patients with pleural involvement. RASGRP4 gene hypermethylation and RPTOR gene down-regulation were associated with high mycobacterial burden. TB patients with WIPI2/GNG12 hypermethylation or MRPS18B/FOXO3 hypomethylation had lower one-year survival. In vitro ESAT6 and CFP10 stimuli of THP-1 cells resulted in DNA de-methylation changes of the PARP9, RASGRP4, WIPI2, and FOXO3 genes. In conclusions, aberrant DNA methylation over the PARP9/miR505/RASGRP4/GNG12 genes may contribute to the development of active pulmonary TB disease and its clinical phenotypes, while aberrant DNA methylation over the WIPI2/GNG12/MARPS18B/FOXO3 genes may constitute a determinant of long-term outcomes.


Assuntos
Metilação de DNA/fisiologia , Regiões Promotoras Genéticas/genética , Tuberculose Pulmonar/genética , Estudos de Coortes , Metilação de DNA/genética , Proteína Forkhead Box O3/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteínas de Ligação a Fosfato/genética , Poli(ADP-Ribose) Polimerases/genética , Proteína Regulatória Associada a mTOR/genética , Fatores ras de Troca de Nucleotídeo Guanina/genética
15.
Oncologist ; 24(12): e1388-e1400, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31273053

RESUMO

BACKGROUND: DNA copy number variations (CNVs) are a hallmark of cancer, and the current study aimed to demonstrate the profile of the CNVs for oral cavity squamous cell carcinoma (OSCC) and elucidate the clinicopathological associations and molecular mechanisms of a potential marker derived from CNVs, mixed-lineage leukemia translocated to chromosome 3 protein (MLLT3), in OSCC carcinogenesis. MATERIALS AND METHODS: CNVs in 37 OSCC tissue specimens were analyzed using a high-resolution microarray, the OncoScan array. Gene expression was analyzed by real-time polymerase chain reaction in 127 OSCC and normal tissue samples. Cell function assays included cell cycle, migration, invasion and chromatin immunoprecipitation assays. RESULTS: We found a novel copy number amplified region, chromosome 9p, encompassing MLLT3 via the comparison of our data set with six other OSCC genome-wide CNV data sets. MLLT3 overexpression was associated with poorer overall survival in patients with OSCC (p = .048). MLLT3 knockdown reduced cell migration and invasion. The reduced invasion ability in MLLT3-knockdown cells was rescued with double knockdown of MLLT3 and CBP/p300-interacting transactivator with ED rich carboxy-terminal domain 4 (CITED4; 21.0% vs. 61.5%). Knockdown of MLLT3 impaired disruptor of telomeric silencing-1-like (Dot1L)-associated hypermethylation in the promoter of the tumor suppressor, CITED4 (p < .001), and hence dysregulated HIF-1α-mediated genes (TWIST, MMP1, MMP2, VIM, and CDH1) in OSCC cells. CONCLUSION: We identified unique CNVs in tumors of Taiwanese patients with OSCC. Notably, MLLT3 overexpression is related to the poorer prognosis of patients with OSCC and is required for Dot1L-mediated transcriptional repression of CITED4, leading to dysregulation of HIF-1α-mediated genes. IMPLICATIONS FOR PRACTICE: This article reports unique copy number variations in oral cavity squamous cell carcinoma (OSCC) tumors of Taiwanese patients. Notably, MLLT3 overexpression is related to the poorer prognosis of patients with OSCC and is required for Dot1L-mediated transcriptional repression of CITED4, leading to dysregulation of HIF-1α-mediated genes.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias Bucais/genética , Proteínas Nucleares/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Transfecção
16.
Sci Rep ; 9(1): 3877, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846808

RESUMO

Because of innumerable cancer sequencing projects, abundant transcriptome expression profiles together with survival data are available from the same patients. Although some expression signatures for prognosis or pathologic staging have been identified from these data, systematically discovering such kind of expression signatures remains a challenge. To address this, we developed TACCO (Transcriptome Alterations in CanCer Omnibus), a database for identifying differentially expressed genes and altered pathways in cancer. TACCO also reveals miRNA cooperative regulations and supports construction of models for prognosis. The resulting signatures have great potential for patient stratification and treatment decision-making in future clinical applications. TACCO is freely available at http://tacco.life.nctu.edu.tw/ .


Assuntos
Bases de Dados Factuais , Neoplasias/metabolismo , Neoplasias/terapia , Transcriptoma , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Internet , MicroRNAs/metabolismo , Modelos Biológicos , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico , RNA Mensageiro/metabolismo
17.
Anal Chim Acta ; 1050: 113-122, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661578

RESUMO

Oral cavity squamous cell carcinoma (OSCC), the most common malignancy of the oral cavity, is associated with poor prognosis and high mortality worldwide. Moreover, knowledge of the metabolic alterations that occur in OSCC is still limited. In the present study, we used a quantitative metabolomic approach with chemical isotope labeling (CIL) to analyze alterations in the metabolite levels in paired cancerous (T) and adjacent noncancerous (AN) tissues from 31 OSCC patients. Using volcano plot and orthogonal projections to latent structure-discriminant analysis (OPLS-DA), we uncovered 99 dysregulated metabolites in OSCC and verified the identities of seven metabolites via comparison with authenticated standards. From these seven metabolites, we constructed a 3-marker panel, consisting of putrescine, glycyl-leucine, and phenylalanine, using a support vector machine (SVM) model that can discriminate T from AN with high sensitivity and specificity based on receiver operator characteristic (ROC) analysis. Furthermore, by integrating the metabolomics profiles with transcriptomics data obtained from the same sample set, we revealed the dysregulation of the polyamine pathway in OSCC. Our findings provide insights into the metabolic perturbations present in OSCC and have uncovered potential metabolic biomarkers and therapeutic targets for use in the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Metabolômica , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Poliaminas/metabolismo , Transcriptoma/genética , Adulto , Idoso , Análise Discriminante , Feminino , Humanos , Marcação por Isótopo , Masculino , Pessoa de Meia-Idade , Curva ROC , Máquina de Vetores de Suporte
18.
Cell Rep ; 24(10): 2733-2745.e7, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184506

RESUMO

CTP synthase (CTPS) forms compartmentalized filaments in response to substrate availability and environmental nutrient status. However, the physiological role of filaments and mechanisms for filament assembly are not well understood. Here, we provide evidence that CTPS forms filaments in response to histidine influx during glutamine starvation. Tetramer conformation-based filament formation restricts CTPS enzymatic activity during nutrient deprivation. CTPS protein levels remain stable in the presence of histidine during nutrient deprivation, followed by rapid cell growth after stress relief. We demonstrate that filament formation is controlled by methylation and that histidine promotes re-methylation of homocysteine by donating one-carbon intermediates to the cytosolic folate cycle. Furthermore, we find that starvation stress and glutamine deficiency activate the GCN2/ATF4/MTHFD2 axis, which coordinates CTPS filament formation. CTPS filament formation induced by histidine-mediated methylation may be a strategy used by cancer cells to maintain homeostasis and ensure a growth advantage in adverse environments.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Histidina/metabolismo , Animais , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo
19.
J Exp Clin Cancer Res ; 37(1): 102, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747653

RESUMO

BACKGROUND: Aberrant hypermethylation of cellular genes is a common phenomenon to inactivate genes and promote tumorigenesis in nasopharyngeal carcinoma (NPC). METHODS: Methyl binding domain (MBD)-ChIP sequencing of NPC cells, microarray data of NPC biopsies and gene ontology analysis were conducted to identify a potential tumor suppressor gene CLDN11 that was both hypermethylated and downregulated in NPC. Bisulfite sequencing, qRT-PCR, immunohistochemistry staining of the NPC clinical samples and addition of methylation inhibitor, 5'azacytidine, in NPC cells were performed to verify the correlation between DNA hypermethylation and expression of CLDN11. Promoter reporter and EMSA assays were used to dissect the DNA region responsible for transcription activator binding and to confirm whether DNA methylation could affect activator's binding, respectively. CLDN11 was transiently overexpressed in NPC cells followed by cell proliferation, migration, invasion assays to characterize its biological roles. Co-immunoprecipitation experiments and proteomic approach were carried out to identify novel interacting protein(s) and the binding domain of CLDN11. Anti-tumor activity of the CLDN11 was elucidated by in vitro functional assay. RESULTS: A tight junction gene, CLDN11, was identified as differentially hypermethylated gene in NPC. High methylation percentage of CLDN11 promoter in paired NPC clinical samples was correlated with low mRNA expression level. Immunohistochemistry staining of NPC paired samples tissue array demonstrated that CLDN11 protein expression was relatively low in NPC tumors. Transcription activator GATA1 bound to CLDN11 promoter region - 62 to - 53 and its DNA binding activity was inhibited by DNA methylation. Re-expression of CLDN11 reduced cell migration and invasion abilities in NPC cells. By co-immunoprecipitation and liquid chromatography-tandem mass spectrometry LC-MS/MS, tubulin alpha-1b (TUBA1B) and beta-3 (TUBB3), were identified as the novel CLDN11-interacting proteins. CLDN11 interacted with these two tubulins through its intracellular loop and C-terminus. Furthermore, these domains were required for CLDN11-mediated cell migration inhibition. Treatment with a tubulin polymerization inhibitor, nocodazole, blocked NPC cell migration. CONCLUSIONS: CLDN11 is a hypermethylated and downregulated gene in NPC. Through interacting with microtubules TUBA1B and TUBB3, CLDN11 blocks the polymerization of tubulins and cell migration activity. Thus, CLDN11 functions as a potential tumor suppressor gene and silencing of CLDN11 by DNA hypermethylation promotes NPC progression.


Assuntos
Claudinas/genética , Metilação de DNA/genética , Carcinoma Nasofaríngeo/genética , Junções Íntimas/metabolismo , Tubulina (Proteína)/metabolismo , Movimento Celular , Humanos , Carcinoma Nasofaríngeo/patologia , Polimerização , Transfecção
20.
Cancer Cell ; 33(4): 690-705.e9, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29622464

RESUMO

We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories.


Assuntos
Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Redes Reguladoras de Genes , Neoplasias dos Genitais Femininos/genética , Mutação , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Especificidade de Órgãos , Prognóstico , RNA Longo não Codificante/genética , Receptores de Estrogênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA